A method for finding numerical solutions to Diophantine equations using Spiral Optimization Algorithm with Clustering (SOAC)
Diophantine equations are equations containing two or more unknowns, such that only the integer solutions are required. To find solutions of these equations numerically, we can be performed by solving an optimization problem using a metaheuristic method. In this paper, the Spiral Optimization Algori...
Uloženo v:
| Vydáno v: | Applied soft computing Ročník 145; s. 110569 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.09.2023
|
| Témata: | |
| ISSN: | 1568-4946 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Diophantine equations are equations containing two or more unknowns, such that only the integer solutions are required. To find solutions of these equations numerically, we can be performed by solving an optimization problem using a metaheuristic method. In this paper, the Spiral Optimization Algorithm with Clustering (SOAC) method is proposed to find solutions to Diophantine equations in the form of polynomial, exponential, and also linear and nonlinear systems of equations. In the implementation of the method on solving some existing benchmark problems, the goal of simulation is to find all solutions only in a single run and in a short period of time. Appropriate values of required parameters are selected during the simulation. Results shows satisfactory in solving four problems in polynomial equations, four problems in exponential equations, and three problems in systems of linear and nonlinear equations. In most of cases, the results yield the same with the analytical or numerical solutions in the reference papers, and in some cases the results give more solutions.
•We find numerical solutions to polynomial and exponential Diophantine equations.•We also find solutions to linear and nonlinear systems of Diophantine equations numerically.•Spiral Optimization with Clustering (SOAC) method, a metaheuristic method, is being used.•The goal is to find all solutions in a single run and a short period of time.•In most cases, the results yield the same as the solutions in the reference papers.•In some cases, the results give more solutions than the existing results. |
|---|---|
| AbstractList | Diophantine equations are equations containing two or more unknowns, such that only the integer solutions are required. To find solutions of these equations numerically, we can be performed by solving an optimization problem using a metaheuristic method. In this paper, the Spiral Optimization Algorithm with Clustering (SOAC) method is proposed to find solutions to Diophantine equations in the form of polynomial, exponential, and also linear and nonlinear systems of equations. In the implementation of the method on solving some existing benchmark problems, the goal of simulation is to find all solutions only in a single run and in a short period of time. Appropriate values of required parameters are selected during the simulation. Results shows satisfactory in solving four problems in polynomial equations, four problems in exponential equations, and three problems in systems of linear and nonlinear equations. In most of cases, the results yield the same with the analytical or numerical solutions in the reference papers, and in some cases the results give more solutions.
•We find numerical solutions to polynomial and exponential Diophantine equations.•We also find solutions to linear and nonlinear systems of Diophantine equations numerically.•Spiral Optimization with Clustering (SOAC) method, a metaheuristic method, is being used.•The goal is to find all solutions in a single run and a short period of time.•In most cases, the results yield the same as the solutions in the reference papers.•In some cases, the results give more solutions than the existing results. |
| ArticleNumber | 110569 |
| Author | Edriani, Tiara Shofi Aditya, Yudi Sumarti, Novriana Sidarto, Kuntjoro Adji Kania, Adhe |
| Author_xml | – sequence: 1 givenname: Novriana orcidid: 0000-0003-3239-0982 surname: Sumarti fullname: Sumarti, Novriana email: novriana@itb.ac.id organization: Industrial and Financial Mathematics Research Group, Institut Teknologi Bandung, Ganesha 10 Bandung 40132, Indonesia – sequence: 2 givenname: Kuntjoro Adji surname: Sidarto fullname: Sidarto, Kuntjoro Adji organization: Industrial and Financial Mathematics Research Group, Institut Teknologi Bandung, Ganesha 10 Bandung 40132, Indonesia – sequence: 3 givenname: Adhe orcidid: 0000-0001-9586-6226 surname: Kania fullname: Kania, Adhe organization: Industrial and Financial Mathematics Research Group, Institut Teknologi Bandung, Ganesha 10 Bandung 40132, Indonesia – sequence: 4 givenname: Tiara Shofi surname: Edriani fullname: Edriani, Tiara Shofi organization: Mathematics Master Study Program, Institut Teknologi Bandung, Ganesha 10 Bandung 40132, Indonesia – sequence: 5 givenname: Yudi orcidid: 0000-0003-3213-4161 surname: Aditya fullname: Aditya, Yudi organization: Computational Science Master Study Program, Institut Teknologi Bandung, Ganesha 10 Bandung 40132, Indonesia |
| BookMark | eNp9kD9PwzAQxT0UibbwBZg8wtDgOE6aSCxR-StV6lCYLddx2qsSu9gOCMSHx2mYGLrcSXfvd3r3JmikjVYIXcUkikmc3e4j4YyMKKFJFMckzYoRGsdpls9YwbJzNHFuT4KwoPkY_ZS4VX5nKlwbi2vQFegt1l2rLEjRYGeazoPRDnuD78EcdkJ70Aqr904Mi871yPoANuhXBw8tfB9XuGy2xoLftfgzVLxoOufD3aC-Xq_Kxc0FOqtF49TlX5-it8eH18XzbLl6elmUy5lMCPEzWWQiIwkJhmtSsSpVTEiZVDkhbMPqVBSsCuNNvklVQanMqMjmcyloympFmUqmKB_uSmucs6rmEvzRorcCGh4T3ifH97xPjvfJ8SG5gNJ_6MFCK-zXaehugFR46gOU5U6C0lJVYJX0vDJwCv8FGaOOkQ |
| CitedBy_id | crossref_primary_10_1093_jcde_qwae051 crossref_primary_10_3390_a17110507 |
| Cites_doi | 10.9746/jcmsi.7.173 10.1080/00150517.2010.12428127 10.1016/j.cogsys.2013.07.005 10.1016/j.jnt.2021.07.009 10.1016/j.aim.2014.01.017 10.1016/j.aim.2016.07.002 10.1016/j.jnt.2016.02.010 10.20965/jaciii.2015.p0697 10.1016/j.laa.2021.12.020 10.1016/j.jnt.2014.07.009 10.1016/j.tcs.2012.04.012 10.1016/j.jnt.2012.05.010 10.22342/jims.25.3.826.292-301 10.15446/dyna.v81n185.37244 10.1109/12.588074 10.1016/j.comcom.2015.01.007 10.1016/j.ijepes.2014.04.037 10.20965/jaciii.2011.p1116 10.3182/20100701-2-PT-4011.00058 10.1109/12.368013 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2023.110569 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_asoc_2023_110569 S1568494623005872 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSH SST SSV SSZ T5K UHS UNMZH ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-c96a6030928f0d4d5e4acc3d8004b4f5a94dd4db8b5e922c62a677ca254fe24e3 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001054919900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Tue Nov 18 21:45:57 EST 2025 Sat Nov 29 07:05:43 EST 2025 Sun Apr 06 06:53:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | 65K10 The Markoff–Hurwitz equation 90C59 Polynomial and exponential Diophantine equations Root finding algorithm 11Y50 Optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-c96a6030928f0d4d5e4acc3d8004b4f5a94dd4db8b5e922c62a677ca254fe24e3 |
| ORCID | 0000-0003-3213-4161 0000-0003-3239-0982 0000-0001-9586-6226 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2023_110569 crossref_primary_10_1016_j_asoc_2023_110569 elsevier_sciencedirect_doi_10_1016_j_asoc_2023_110569 |
| PublicationCentury | 2000 |
| PublicationDate | September 2023 2023-09-00 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Sidarto, Kania, Sumarti (b21) 2017; 23 Sidarto, Kania (b20) 2015; 19 Aggarwal (b23) 2000 Laih, Gau (b6) 1997; 46 Velupillai, Kao (b7) 2014; 29/30 Kazalicki, Naskrȩcki (b3) 2022; 236 Brüdern, Dietmann (b1) 2014; 256 Lin, Chang, Lee (b5) 1995; 44 Tamura, Yasuda (b25) 2020; 50 Amaya, Gomez, Correa (b13) 2014; 81 Champarnaud, Dubernard, Guingne, Jeanne (b8) 2012; 449 Soydan (b29) 2012 Abraham, Sanyal, Sanglikar (b12) 2013; 219 Quinlan, Shau, Szechtman (b4) 2022; 640 Tamura, Yasuda (b14) 2010; 6 Cangul, Demirci, Luca, Pinter, Soydan (b30) 2010; 48 Tsai, Huang, Chiang (b17) 2014; vol. 274 Benasla, Belmadani, Rahli (b16) 2014; 62 Adiceam, Beresnevich, Levesley, Velani, Zorin (b10) 2016; 302 Luca, Soydan (b31) 2012; 132 Kania, Sidarto (b19) 2016; vol. 1716 Costa-Pérez, Wu, Mezzavilla, de Marca, Aráuz (b11) 2015; 60 Tamura, Yasuda (b24) 2014; 7 Sidarto, Kania (b22) 2018; vol. 488 Ansori, Sidarto, Sumarti (b18) 2019; 25 Ai, Chen, Zhang, Hu (b33) 2015; 147 Bocewicz, Muszyński, Banaszak (b9) 2010; 43 Sun (b2) 2016; 166 Rosen (b26) 1984 Abraham, Sanyal, Sanglikar (b27) 2013; III Tamura, Yasuda (b15) 2011; 15 Gao, Chen (b28) 2016 Perez, Amaya, Correa (b32) 2013; 225 Costa-Pérez (10.1016/j.asoc.2023.110569_b11) 2015; 60 Sidarto (10.1016/j.asoc.2023.110569_b20) 2015; 19 Quinlan (10.1016/j.asoc.2023.110569_b4) 2022; 640 Tamura (10.1016/j.asoc.2023.110569_b15) 2011; 15 Lin (10.1016/j.asoc.2023.110569_b5) 1995; 44 Champarnaud (10.1016/j.asoc.2023.110569_b8) 2012; 449 Adiceam (10.1016/j.asoc.2023.110569_b10) 2016; 302 Ansori (10.1016/j.asoc.2023.110569_b18) 2019; 25 Perez (10.1016/j.asoc.2023.110569_b32) 2013; 225 Rosen (10.1016/j.asoc.2023.110569_b26) 1984 Tamura (10.1016/j.asoc.2023.110569_b25) 2020; 50 Tamura (10.1016/j.asoc.2023.110569_b24) 2014; 7 Soydan (10.1016/j.asoc.2023.110569_b29) 2012 Ai (10.1016/j.asoc.2023.110569_b33) 2015; 147 Brüdern (10.1016/j.asoc.2023.110569_b1) 2014; 256 Sun (10.1016/j.asoc.2023.110569_b2) 2016; 166 Benasla (10.1016/j.asoc.2023.110569_b16) 2014; 62 Amaya (10.1016/j.asoc.2023.110569_b13) 2014; 81 Luca (10.1016/j.asoc.2023.110569_b31) 2012; 132 Gao (10.1016/j.asoc.2023.110569_b28) 2016 Tsai (10.1016/j.asoc.2023.110569_b17) 2014; vol. 274 Kania (10.1016/j.asoc.2023.110569_b19) 2016; vol. 1716 Kazalicki (10.1016/j.asoc.2023.110569_b3) 2022; 236 Laih (10.1016/j.asoc.2023.110569_b6) 1997; 46 Velupillai (10.1016/j.asoc.2023.110569_b7) 2014; 29/30 Abraham (10.1016/j.asoc.2023.110569_b27) 2013; III Sidarto (10.1016/j.asoc.2023.110569_b21) 2017; 23 Bocewicz (10.1016/j.asoc.2023.110569_b9) 2010; 43 Abraham (10.1016/j.asoc.2023.110569_b12) 2013; 219 Cangul (10.1016/j.asoc.2023.110569_b30) 2010; 48 Sidarto (10.1016/j.asoc.2023.110569_b22) 2018; vol. 488 Aggarwal (10.1016/j.asoc.2023.110569_b23) 2000 Tamura (10.1016/j.asoc.2023.110569_b14) 2010; 6 |
| References_xml | – year: 1984 ident: b26 article-title: Elementary Number Theory and Its Application – year: 2000 ident: b23 article-title: Solving transcendental equations using Genetic Algorithms – start-page: 1292 year: 2016 end-page: 1297 ident: b28 article-title: Computation in Markoff-Hurwitz equations publication-title: 2016 International Conference on Computational Science and Computational Intelligence – volume: 50 year: 2020 ident: b25 article-title: The spiral optimization algorithm: Convergence conditions and settings publication-title: IEEE Trans. Syst. Man Cybern.: Syst. – volume: 60 start-page: 1 year: 2015 end-page: 11 ident: b11 article-title: E-diophantine estimating peak allocated capacity in wireless networks publication-title: Comput. Commun. – volume: 25 start-page: 292 year: 2019 end-page: 301 ident: b18 article-title: Model of deposit and loan of a bank using spiral optimization algorithm publication-title: J. Indones. Math. Soc. – volume: vol. 488 year: 2018 ident: b22 article-title: Computing complex roots of systems of nonlinear equations using spiral optimization algorithm with clustering publication-title: Computational Science and Technology – volume: 132 start-page: 2604 year: 2012 end-page: 2609 ident: b31 article-title: On the Diophantine publication-title: J. Number Theory – volume: 7 start-page: 173 year: 2014 end-page: 182 ident: b24 article-title: A parameter setting method for spiral optimization from stability analysis of dynamics equilibrium point publication-title: SICE J. Control Meas. Syst. Integr. – volume: 23 start-page: 95 year: 2017 end-page: 102 ident: b21 article-title: Finding multiple solutions of Multimodal Optimization using Spiral Optimization Algorithm with Clustering publication-title: MENDEL — Soft Comput. J. – volume: 147 start-page: 103 year: 2015 end-page: 108 ident: b33 article-title: Complete solution of the simultaneous Pell equation publication-title: J. Number Theory – volume: 62 start-page: 163 year: 2014 end-page: 174 ident: b16 article-title: Spiral optimization algorithm for solving combined economic and emission dispatch publication-title: Int. J. Electr. Power Energy Syst. – volume: 29/30 start-page: 40 year: 2014 end-page: 52 ident: b7 article-title: Computable and computational complexity theoretic bases for Herbert Simon’s cognitive behavioral economics publication-title: Cogn. Syst. Res. – volume: 43 start-page: 338 year: 2010 end-page: 343 ident: b9 article-title: Cyclic scheduling: Diophantine problems perspective publication-title: IFAC Proc. Vol. – volume: 219 start-page: 11376 year: 2013 end-page: 11387 ident: b12 article-title: Finding numerical solutions of diophantine equations using Ant Colony Optimization publication-title: Appl. Math. Comput. – volume: 166 start-page: 181 year: 2016 end-page: 192 ident: b2 article-title: Class numbers of quadratic Diophantine equations publication-title: J. Number Theory – volume: 46 start-page: 511 year: 1997 end-page: 512 ident: b6 article-title: Cryptanalysis of a Diophantine equation oriented public key cryptosystem publication-title: IEEE Trans. Comput. – year: 2012 ident: b29 article-title: On the Diophantine equation – volume: vol. 1716 year: 2016 ident: b19 article-title: Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm publication-title: Application of Mathematics in Industry and Life – volume: 48 start-page: 39 year: 2010 end-page: 46 ident: b30 article-title: On the Diophantine equation publication-title: Fibonacci Quart. – volume: 19 start-page: 697 year: 2015 end-page: 707 ident: b20 article-title: Finding all solutions of systems of nonlinear equations using spiral dynamics optimization with clustering publication-title: J. Adv. Comput. Intell. Intell. Inform. – volume: III start-page: 73 year: 2013 end-page: 81 ident: b27 article-title: A connectionist network approach to find numerical solutions of Diophantine equations publication-title: Int. J. Eng. Sci. Manag. – volume: vol. 274 year: 2014 ident: b17 article-title: A novel spiral optimization for clustering publication-title: Mobile, Ubiquitous, and Intelligent Computing – volume: 6 start-page: 99 year: 2010 end-page: 100 ident: b14 article-title: Primary study of spiral dyamics inspired optimization publication-title: IEEJ Trans. Electr. Electron. Eng. – volume: 640 start-page: 67 year: 2022 end-page: 90 ident: b4 article-title: Linear Diophantine equations in several variables publication-title: Linear Algebra Appl. – volume: 225 start-page: 737 year: 2013 end-page: 746 ident: b32 article-title: Numerical solution of certain exponential and nonlinear Diophantine systems of equation by using a discrete particle swarm optimization algorithm publication-title: Appl. Math. Comput. – volume: 256 start-page: 18 year: 2014 end-page: 45 ident: b1 article-title: Random Diophantine equations, I publication-title: Adv. Math. – volume: 449 start-page: 54 year: 2012 end-page: 63 ident: b8 article-title: Geometrical regular languages and linear Diophantine equations: The strongly connected case publication-title: Theoret. Comput. Sci. – volume: 81 start-page: 139 year: 2014 end-page: 144 ident: b13 article-title: Discrete Particle Swarm Optimization in the numerical solution of a system of linear Diophantine Equations publication-title: DYNA – volume: 236 start-page: 41 year: 2022 end-page: 70 ident: b3 article-title: Diophantine triples and K3 surfaces publication-title: J. Number Theory – volume: 302 start-page: 231 year: 2016 end-page: 279 ident: b10 article-title: Diophantine approximation and applications in interference alignment publication-title: Adv. Math. – volume: 15 start-page: 1116 year: 2011 end-page: 1122 ident: b15 article-title: Spiral dynamics inspired optimization publication-title: J. Adv. Comput. Intell. Intell. Inform. – volume: 44 start-page: 13 year: 1995 end-page: 19 ident: b5 article-title: A new public-key cipher system based upon the Diophantine Equations publication-title: IEEE Trans. Comput. – volume: 7 start-page: 173 issue: 3 year: 2014 ident: 10.1016/j.asoc.2023.110569_b24 article-title: A parameter setting method for spiral optimization from stability analysis of dynamics equilibrium point publication-title: SICE J. Control Meas. Syst. Integr. doi: 10.9746/jcmsi.7.173 – volume: 48 start-page: 39 year: 2010 ident: 10.1016/j.asoc.2023.110569_b30 article-title: On the Diophantine equation x2+2a.11b=yn publication-title: Fibonacci Quart. doi: 10.1080/00150517.2010.12428127 – volume: 23 start-page: 95 issue: 1 year: 2017 ident: 10.1016/j.asoc.2023.110569_b21 article-title: Finding multiple solutions of Multimodal Optimization using Spiral Optimization Algorithm with Clustering publication-title: MENDEL — Soft Comput. J. – year: 1984 ident: 10.1016/j.asoc.2023.110569_b26 – volume: 225 start-page: 737 year: 2013 ident: 10.1016/j.asoc.2023.110569_b32 article-title: Numerical solution of certain exponential and nonlinear Diophantine systems of equation by using a discrete particle swarm optimization algorithm publication-title: Appl. Math. Comput. – volume: 29/30 start-page: 40 year: 2014 ident: 10.1016/j.asoc.2023.110569_b7 article-title: Computable and computational complexity theoretic bases for Herbert Simon’s cognitive behavioral economics publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2013.07.005 – volume: 219 start-page: 11376 year: 2013 ident: 10.1016/j.asoc.2023.110569_b12 article-title: Finding numerical solutions of diophantine equations using Ant Colony Optimization publication-title: Appl. Math. Comput. – volume: 236 start-page: 41 year: 2022 ident: 10.1016/j.asoc.2023.110569_b3 article-title: Diophantine triples and K3 surfaces publication-title: J. Number Theory doi: 10.1016/j.jnt.2021.07.009 – volume: 256 start-page: 18 issue: 2014 year: 2014 ident: 10.1016/j.asoc.2023.110569_b1 article-title: Random Diophantine equations, I publication-title: Adv. Math. doi: 10.1016/j.aim.2014.01.017 – volume: III start-page: 73 issue: 1 year: 2013 ident: 10.1016/j.asoc.2023.110569_b27 article-title: A connectionist network approach to find numerical solutions of Diophantine equations publication-title: Int. J. Eng. Sci. Manag. – volume: vol. 488 year: 2018 ident: 10.1016/j.asoc.2023.110569_b22 article-title: Computing complex roots of systems of nonlinear equations using spiral optimization algorithm with clustering – volume: 302 start-page: 231 year: 2016 ident: 10.1016/j.asoc.2023.110569_b10 article-title: Diophantine approximation and applications in interference alignment publication-title: Adv. Math. doi: 10.1016/j.aim.2016.07.002 – volume: 6 start-page: 99 year: 2010 ident: 10.1016/j.asoc.2023.110569_b14 article-title: Primary study of spiral dyamics inspired optimization publication-title: IEEJ Trans. Electr. Electron. Eng. – volume: 166 start-page: 181 year: 2016 ident: 10.1016/j.asoc.2023.110569_b2 article-title: Class numbers of quadratic Diophantine equations publication-title: J. Number Theory doi: 10.1016/j.jnt.2016.02.010 – year: 2000 ident: 10.1016/j.asoc.2023.110569_b23 – start-page: 1292 year: 2016 ident: 10.1016/j.asoc.2023.110569_b28 article-title: Computation in Markoff-Hurwitz equations – volume: 19 start-page: 697 issue: 5 year: 2015 ident: 10.1016/j.asoc.2023.110569_b20 article-title: Finding all solutions of systems of nonlinear equations using spiral dynamics optimization with clustering publication-title: J. Adv. Comput. Intell. Intell. Inform. doi: 10.20965/jaciii.2015.p0697 – volume: 640 start-page: 67 year: 2022 ident: 10.1016/j.asoc.2023.110569_b4 article-title: Linear Diophantine equations in several variables publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2021.12.020 – volume: vol. 274 year: 2014 ident: 10.1016/j.asoc.2023.110569_b17 article-title: A novel spiral optimization for clustering – volume: 50 issue: 1 year: 2020 ident: 10.1016/j.asoc.2023.110569_b25 article-title: The spiral optimization algorithm: Convergence conditions and settings publication-title: IEEE Trans. Syst. Man Cybern.: Syst. – volume: vol. 1716 year: 2016 ident: 10.1016/j.asoc.2023.110569_b19 article-title: Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm – volume: 147 start-page: 103 year: 2015 ident: 10.1016/j.asoc.2023.110569_b33 article-title: Complete solution of the simultaneous Pell equation x2−24y2=1 and y2−pz2=1 publication-title: J. Number Theory doi: 10.1016/j.jnt.2014.07.009 – volume: 449 start-page: 54 year: 2012 ident: 10.1016/j.asoc.2023.110569_b8 article-title: Geometrical regular languages and linear Diophantine equations: The strongly connected case publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2012.04.012 – volume: 132 start-page: 2604 year: 2012 ident: 10.1016/j.asoc.2023.110569_b31 article-title: On the Diophantine 2m+nx2=yn publication-title: J. Number Theory doi: 10.1016/j.jnt.2012.05.010 – volume: 25 start-page: 292 issue: 3 year: 2019 ident: 10.1016/j.asoc.2023.110569_b18 article-title: Model of deposit and loan of a bank using spiral optimization algorithm publication-title: J. Indones. Math. Soc. doi: 10.22342/jims.25.3.826.292-301 – volume: 81 start-page: 139 issue: 185 year: 2014 ident: 10.1016/j.asoc.2023.110569_b13 article-title: Discrete Particle Swarm Optimization in the numerical solution of a system of linear Diophantine Equations publication-title: DYNA doi: 10.15446/dyna.v81n185.37244 – volume: 46 start-page: 511 issue: 4 year: 1997 ident: 10.1016/j.asoc.2023.110569_b6 article-title: Cryptanalysis of a Diophantine equation oriented public key cryptosystem publication-title: IEEE Trans. Comput. doi: 10.1109/12.588074 – volume: 60 start-page: 1 year: 2015 ident: 10.1016/j.asoc.2023.110569_b11 article-title: E-diophantine estimating peak allocated capacity in wireless networks publication-title: Comput. Commun. doi: 10.1016/j.comcom.2015.01.007 – volume: 62 start-page: 163 year: 2014 ident: 10.1016/j.asoc.2023.110569_b16 article-title: Spiral optimization algorithm for solving combined economic and emission dispatch publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.04.037 – year: 2012 ident: 10.1016/j.asoc.2023.110569_b29 – volume: 15 start-page: 1116 year: 2011 ident: 10.1016/j.asoc.2023.110569_b15 article-title: Spiral dynamics inspired optimization publication-title: J. Adv. Comput. Intell. Intell. Inform. doi: 10.20965/jaciii.2011.p1116 – volume: 43 start-page: 338 issue: 4 year: 2010 ident: 10.1016/j.asoc.2023.110569_b9 article-title: Cyclic scheduling: Diophantine problems perspective publication-title: IFAC Proc. Vol. doi: 10.3182/20100701-2-PT-4011.00058 – volume: 44 start-page: 13 issue: 1 year: 1995 ident: 10.1016/j.asoc.2023.110569_b5 article-title: A new public-key cipher system based upon the Diophantine Equations publication-title: IEEE Trans. Comput. doi: 10.1109/12.368013 |
| SSID | ssj0016928 |
| Score | 2.3982785 |
| Snippet | Diophantine equations are equations containing two or more unknowns, such that only the integer solutions are required. To find solutions of these equations... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110569 |
| SubjectTerms | Optimization Polynomial and exponential Diophantine equations Root finding algorithm The Markoff–Hurwitz equation |
| Title | A method for finding numerical solutions to Diophantine equations using Spiral Optimization Algorithm with Clustering (SOAC) |
| URI | https://dx.doi.org/10.1016/j.asoc.2023.110569 |
| Volume | 145 |
| WOSCitedRecordID | wos001054919900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0016928 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj5swFLbSmR566V7N0lY-9NAKERFjFh9RmqqbMpUylXJDxoYJEYE0A9Ec-pP6I2vjJem0HXUOvSBk4IF4H-893grAK8SwxynKXcSzwsUchS5h2cgNs4KiLMgDXPQt8z9H02k8n5Mvg8EPUwuzraK6jq-uyPq_slqsCWbL0tlbsNsSFQtiXzBdbAXbxfafGJ_oqdB9AmEfkq4vnLpTkZnKsTeXVufbslkvqBwWkTv5t06nxXW9_2AmQ_CVcyZkykoXazpJddFsynaxUv7bcdXJPgva2zA7S8bGsWD62mob91II-z57vWuNquwDUSuTTjBttuLV1FZHzEouDvVu3E9d3S6bTeMkfFla_UBrleWb8IWF5oRLGqWCIN1QZ7ZoVFmy8Wsg3yZuWVEcxi4m2kFpZDUO9qStMF0CNejlN0WgfBLLIRUYH0ryw93Jv3bdvqYNbY6iSX9bppJGKmmkisYdcIiigAg1cJh8mMw_2qhVSPpZvvbJdZGWyie8_iR_NoT2jJvzh-C-_iuBiULTIzDI68fggZn4AbUCeAK-J1CBCwpwQQ0uaMEFLbhg28A9cEELLtiDCypwwX1wQQsuKMEFd-CCryW03jwFX99NzsfvXT2_w2W-57UuIyENZQgPxYXHMQ9yTBnzufhHwRkuAkowF8tZLGQCQYiFiIZRxCgSAiJHOPefgYO6qfMjAL3AKwrqFwXPCI4JznwWjsIow0yY-2zkHYOReZkp083t5YyVKv07G4-BY69Zq9YuN54dGB6l2jhVRmcqIHfDdSe3usspuLf7Fp6Dg3bT5S_AXbZty8vNS423n3oatZc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+finding+numerical+solutions+to+Diophantine+equations+using+Spiral+Optimization+Algorithm+with+Clustering+%28SOAC%29&rft.jtitle=Applied+soft+computing&rft.au=Sumarti%2C+Novriana&rft.au=Sidarto%2C+Kuntjoro+Adji&rft.au=Kania%2C+Adhe&rft.au=Edriani%2C+Tiara+Shofi&rft.date=2023-09-01&rft.issn=1568-4946&rft.volume=145&rft.spage=110569&rft_id=info:doi/10.1016%2Fj.asoc.2023.110569&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2023_110569 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |