The thresholding greedy algorithm versus approximations with sizes bounded by certain functions f
Let X be a Banach space and (en)n=1∞ be a basis. For a function f in a large collection F (closed under composition), we define and characterize f-greedy and f-almost greedy bases. We study relations among these bases as f varies and show that while a basis is not almost greedy, it can be f-greedy f...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 539; číslo 2; s. 128570 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
15.11.2024
|
| Témata: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let X be a Banach space and (en)n=1∞ be a basis. For a function f in a large collection F (closed under composition), we define and characterize f-greedy and f-almost greedy bases. We study relations among these bases as f varies and show that while a basis is not almost greedy, it can be f-greedy for some f∈F. Furthermore, we prove that for all non-identity function f∈F, we have the surprising equivalencef-greedy⟺f-almost greedy. We give various examples of Banach spaces to illustrate our results. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2024.128570 |