A modified ABC algorithm based on improved-global-best-guided approach and adaptive-limit strategy for global optimization
[Display omitted] •A modified ABC algorithm is proposed for global optimization problems.•Improved global-best-guided term with nonlinear adjusting factors is employed.•Nonlinear adjusting factors are used to balance the exploration and exploitation.•An adaptive-limit strategy is designed to control...
Gespeichert in:
| Veröffentlicht in: | Applied soft computing Jg. 46; S. 469 - 486 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.09.2016
|
| Schlagworte: | |
| ISSN: | 1568-4946, 1872-9681 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | [Display omitted]
•A modified ABC algorithm is proposed for global optimization problems.•Improved global-best-guided term with nonlinear adjusting factors is employed.•Nonlinear adjusting factors are used to balance the exploration and exploitation.•An adaptive-limit strategy is designed to control the variable limit.•Multiple numerical experiments are conducted to verify the proposed algorithm.
Artificial bee colony (ABC) is a novel biological-inspired optimization algorithm which has been shown to be more effective for global optimization of multimodal and multidimensional optimization problems, than some other conventional biological-inspired optimization algorithms, such as genetic algorithm (GA) and particle swarm optimization (PSO), for its good exploration capability and the efficient balance between the local search and the global search processes. It has drawn widely attentions from scholars and was applied to various fields for its advantages of excellent global optimization ability and it is easy to implement. However, the basic ABC has some drawbacks such as poor exploitation, slow to converge and hard to find the best solution from all feasible solutions in some cases. In this paper, a modified ABC algorithm based on improved-global-best-guided approach and adaptive-limit strategy for global optimization problems called IGAL-ABC algorithm is proposed. An improved-global-best-guided term with a nonlinear adjusting factor is employed in the update equation. Two nonlinear adjusting factors are applied to control the convergence speed and balance the exploration and exploitation abilities. Multiple dimensions of solution are perturbed each time for generating new candidate food sources. In addition, an adaptive-limit strategy is applied to adjust the limit which controls the frequency that the employed bee abandons its food source, to improve the performance of the algorithm further. Results of experiments tested on multiple benchmark functions show that the proposed method is effective and has good performance. The comparison experiments illustrate that the proposed algorithm has better solution quality and convergence characteristics. |
|---|---|
| AbstractList | [Display omitted]
•A modified ABC algorithm is proposed for global optimization problems.•Improved global-best-guided term with nonlinear adjusting factors is employed.•Nonlinear adjusting factors are used to balance the exploration and exploitation.•An adaptive-limit strategy is designed to control the variable limit.•Multiple numerical experiments are conducted to verify the proposed algorithm.
Artificial bee colony (ABC) is a novel biological-inspired optimization algorithm which has been shown to be more effective for global optimization of multimodal and multidimensional optimization problems, than some other conventional biological-inspired optimization algorithms, such as genetic algorithm (GA) and particle swarm optimization (PSO), for its good exploration capability and the efficient balance between the local search and the global search processes. It has drawn widely attentions from scholars and was applied to various fields for its advantages of excellent global optimization ability and it is easy to implement. However, the basic ABC has some drawbacks such as poor exploitation, slow to converge and hard to find the best solution from all feasible solutions in some cases. In this paper, a modified ABC algorithm based on improved-global-best-guided approach and adaptive-limit strategy for global optimization problems called IGAL-ABC algorithm is proposed. An improved-global-best-guided term with a nonlinear adjusting factor is employed in the update equation. Two nonlinear adjusting factors are applied to control the convergence speed and balance the exploration and exploitation abilities. Multiple dimensions of solution are perturbed each time for generating new candidate food sources. In addition, an adaptive-limit strategy is applied to adjust the limit which controls the frequency that the employed bee abandons its food source, to improve the performance of the algorithm further. Results of experiments tested on multiple benchmark functions show that the proposed method is effective and has good performance. The comparison experiments illustrate that the proposed algorithm has better solution quality and convergence characteristics. |
| Author | Zhong, Shouming Li, Hui Zhong, Fuli |
| Author_xml | – sequence: 1 givenname: Fuli surname: Zhong fullname: Zhong, Fuli email: zhongfulicn@163.com organization: School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, PR China – sequence: 2 givenname: Hui surname: Li fullname: Li, Hui organization: School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, PR China – sequence: 3 givenname: Shouming surname: Zhong fullname: Zhong, Shouming organization: School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, PR China |
| BookMark | eNp9kMlOwzAQhi1UJNrCC3DyCyTYWV2JS6nYpEpc4GxNbCedKokr21Rqnx6XcuLQy-zfaOafkcloR0PIPWcpZ7x62KbgrUqzGKesTBmrr8iUizpLFpXgkxiXlUiKRVHdkJn3WxYHF5mYkuOSDlZji0bT5dOKQt9Zh2Ez0AZ8rNmR4rBzdm900vW2gT5pjA9J9406tmEXe6A2FMaYaNgF3JukxwED9cFBMN2BttbRM0ttHBjwCAHteEuuW-i9ufvzc_L18vy5ekvWH6_vq-U6UTljIVrdaK00r6u8KIXgDctZzYsWBLQLnnMOlalynalcNUVZ6ryooK21KQuhGwX5nGTnvcpZ751p5c7hAO4gOZMn9eRWntSTJ_UkK2VUL0LiH6Qw_J4dv8L-Mvp4Rk18ao_GSa_QjMpodEYFqS1ewn8A-pGQPA |
| CitedBy_id | crossref_primary_10_1007_s10489_021_02711_w crossref_primary_10_1109_ACCESS_2020_3013332 crossref_primary_10_1007_s00521_022_07530_9 crossref_primary_10_1016_j_ijleo_2016_09_085 crossref_primary_10_1016_j_asoc_2017_06_044 crossref_primary_10_1016_j_cma_2022_115652 crossref_primary_10_1016_j_swevo_2018_02_013 crossref_primary_10_1007_s00500_020_04758_2 crossref_primary_10_1007_s00034_017_0613_7 crossref_primary_10_1007_s00521_020_05118_9 crossref_primary_10_1007_s10462_023_10403_9 crossref_primary_10_3390_app8030329 crossref_primary_10_1016_j_matcom_2022_11_021 crossref_primary_10_1155_2019_6291968 crossref_primary_10_3390_en14134014 crossref_primary_10_3390_info9080193 crossref_primary_10_1007_s10462_025_11269_9 crossref_primary_10_1016_j_asoc_2018_07_033 crossref_primary_10_1002_int_22535 crossref_primary_10_1016_j_asoc_2017_09_039 crossref_primary_10_1109_TITS_2021_3122396 |
| Cites_doi | 10.1023/A:1008202821328 10.1016/j.dsp.2012.09.015 10.1016/j.amc.2009.03.090 10.1016/j.cor.2012.12.006 10.1016/j.engappai.2014.07.012 10.1016/j.asoc.2011.08.040 10.1016/j.compstruc.2012.10.017 10.1016/j.dsp.2013.10.019 10.1016/j.apm.2013.07.038 10.1016/j.energy.2014.03.059 10.1016/j.asoc.2011.05.039 10.1016/j.amc.2010.08.049 10.1016/j.advengsoft.2012.05.003 10.1016/j.asoc.2012.12.006 10.1016/j.ins.2013.09.015 10.1016/j.engappai.2010.01.020 10.1016/j.simpat.2012.11.002 10.1016/S0020-0190(02)00447-7 10.1007/s10898-007-9149-x 10.1016/j.ins.2010.07.015 10.1016/j.amc.2005.09.043 10.1016/j.amc.2013.04.001 10.1016/S1874-1029(14)60010-0 10.1016/j.asoc.2013.07.009 10.1109/79.543973 10.1016/j.cor.2011.06.007 10.1016/j.trb.2014.05.008 10.1016/j.trd.2014.05.015 10.1016/j.cam.2012.01.013 10.1016/j.neucom.2012.02.047 10.1016/j.asoc.2007.05.007 10.1016/j.amc.2012.09.052 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. |
| Copyright_xml | – notice: 2016 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2016.05.007 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| EndPage | 486 |
| ExternalDocumentID | 10_1016_j_asoc_2016_05_007 S1568494616302083 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-c3dbddcd176345881b030714fa8af91311a6e63d2c3cb455d346af7de548dbca3 |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377999900035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Tue Nov 18 22:33:17 EST 2025 Sat Nov 29 03:05:29 EST 2025 Fri Feb 23 02:24:49 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Swarm intelligence Artificial bee colony Biological-inspired optimization algorithm Optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-c3dbddcd176345881b030714fa8af91311a6e63d2c3cb455d346af7de548dbca3 |
| PageCount | 18 |
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2016_05_007 crossref_citationtrail_10_1016_j_asoc_2016_05_007 elsevier_sciencedirect_doi_10_1016_j_asoc_2016_05_007 |
| PublicationCentury | 2000 |
| PublicationDate | September 2016 2016-09-00 |
| PublicationDateYYYYMMDD | 2016-09-01 |
| PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2016 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhu, Kwong (bib0135) 2010; 217 Sun, Lu, Betti (bib0100) 2013; 116 Price (bib0065) 1996 Zhang, Lee, Choy, Ho, Ip (bib0185) 2014; 31 Karaboga, Basturk (bib0070) 2008; 8 Imanian, Shiri, Moradi (bib0005) 2014; 36 Storn, Price (bib0055) 1995 Moeini, Afshar (bib0050) 2012; 51 Gao, Liu, Huang (bib0155) 2012; 236 Li, Niu, Xiao (bib0140) 2012; 12 Karaboga, Basturk (bib0075) 2007; 39 Kennedy, Eberhart (bib0020) 1995 Das, Biswas, Kundu (bib0085) 2013; 13 Gao, Liu (bib0145) 2012; 39 Karaboga, Latifoglu (bib0045) 2013; 23 Xiang, An (bib0160) 2013; 40 Karaboga, Akay (bib0080) 2009; 214 Tang, Man, Kwong, He (bib0015) 1996; 13 Sabat, Udgata, Abraham (bib0120) 2010; 23 Uzlu, Akpnar, zturk, Nacar, Kankal (bib0180) 2014; 69 Banharnsakun, Sirinaovakul, Achalakul (bib0165) 2013; 116 Luo, Wang, Xiao (bib0170) 2013; 219 Ahirwal, Kumar, Singh (bib0125) 2014; 25 Trelea (bib0190) 2003; 85 Dorigo, Stutzle (bib0025) 2004 Szeto, Jiang (bib0110) 2014; 67 Biswas, Chatterjee, Goswami (bib0130) 2013; 13 Chang (bib0040) 2013; 31 Tsai (bib0090) 2014; 258 Zhang, Tang, Guan (bib0095) 2014; 40 Chen, Sarosh, Dong (bib0150) 2012; 219 Vesterstrom, Thomsen (bib0200) 2004 Holland (bib0010) 1992 Karaboga (bib0035) 2005 Ma, Liang, Guo, Fan, Yin (bib0105) 2011; 11 Akay, Karaboga (bib0175) 2012; 192 Pham, Ghanbarzadeh, Koc, Otri, Rahim, Zaidi (bib0030) 2005 Bäck, Fogel, Michalewicz (bib0195) 1997 Storn, Price (bib0060) 1997; 11 Li, Pan, Tasgetiren (bib0115) 2014; 38 Toksari (bib0205) 2006; 176 Karaboga (10.1016/j.asoc.2016.05.007_bib0080) 2009; 214 Akay (10.1016/j.asoc.2016.05.007_bib0175) 2012; 192 Li (10.1016/j.asoc.2016.05.007_bib0115) 2014; 38 Moeini (10.1016/j.asoc.2016.05.007_bib0050) 2012; 51 Price (10.1016/j.asoc.2016.05.007_bib0065) 1996 Zhang (10.1016/j.asoc.2016.05.007_bib0095) 2014; 40 Storn (10.1016/j.asoc.2016.05.007_bib0060) 1997; 11 Zhu (10.1016/j.asoc.2016.05.007_bib0135) 2010; 217 Luo (10.1016/j.asoc.2016.05.007_bib0170) 2013; 219 Chen (10.1016/j.asoc.2016.05.007_bib0150) 2012; 219 Uzlu (10.1016/j.asoc.2016.05.007_bib0180) 2014; 69 Toksari (10.1016/j.asoc.2016.05.007_bib0205) 2006; 176 Karaboga (10.1016/j.asoc.2016.05.007_bib0070) 2008; 8 Dorigo (10.1016/j.asoc.2016.05.007_bib0025) 2004 Chang (10.1016/j.asoc.2016.05.007_bib0040) 2013; 31 Sabat (10.1016/j.asoc.2016.05.007_bib0120) 2010; 23 Vesterstrom (10.1016/j.asoc.2016.05.007_bib0200) 2004 Biswas (10.1016/j.asoc.2016.05.007_bib0130) 2013; 13 Storn (10.1016/j.asoc.2016.05.007_bib0055) 1995 Xiang (10.1016/j.asoc.2016.05.007_bib0160) 2013; 40 Das (10.1016/j.asoc.2016.05.007_bib0085) 2013; 13 Trelea (10.1016/j.asoc.2016.05.007_bib0190) 2003; 85 Szeto (10.1016/j.asoc.2016.05.007_bib0110) 2014; 67 Banharnsakun (10.1016/j.asoc.2016.05.007_bib0165) 2013; 116 Holland (10.1016/j.asoc.2016.05.007_bib0010) 1992 Bäck (10.1016/j.asoc.2016.05.007_bib0195) 1997 Sun (10.1016/j.asoc.2016.05.007_bib0100) 2013; 116 Pham (10.1016/j.asoc.2016.05.007_bib0030) 2005 Tsai (10.1016/j.asoc.2016.05.007_bib0090) 2014; 258 Imanian (10.1016/j.asoc.2016.05.007_bib0005) 2014; 36 Ma (10.1016/j.asoc.2016.05.007_bib0105) 2011; 11 Gao (10.1016/j.asoc.2016.05.007_bib0155) 2012; 236 Tang (10.1016/j.asoc.2016.05.007_bib0015) 1996; 13 Li (10.1016/j.asoc.2016.05.007_bib0140) 2012; 12 Gao (10.1016/j.asoc.2016.05.007_bib0145) 2012; 39 Ahirwal (10.1016/j.asoc.2016.05.007_bib0125) 2014; 25 Kennedy (10.1016/j.asoc.2016.05.007_bib0020) 1995 Karaboga (10.1016/j.asoc.2016.05.007_bib0035) 2005 Karaboga (10.1016/j.asoc.2016.05.007_bib0075) 2007; 39 Karaboga (10.1016/j.asoc.2016.05.007_bib0045) 2013; 23 Zhang (10.1016/j.asoc.2016.05.007_bib0185) 2014; 31 |
| References_xml | – volume: 39 start-page: 687 year: 2012 end-page: 697 ident: bib0145 article-title: A modified artificial bee colony algorithm publication-title: Comput. Oper. Res. – volume: 12 start-page: 320 year: 2012 end-page: 332 ident: bib0140 article-title: Development and investigation of efficient artificial bee colony algorithm for numerical function optimization publication-title: Appl. Soft Comput. – volume: 69 start-page: 638 year: 2014 end-page: 647 ident: bib0180 article-title: Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey publication-title: Energy – volume: 23 start-page: 1051 year: 2013 end-page: 1058 ident: bib0045 article-title: Elimination of noise on transcranial Doppler signal using IIR filters designed with artificial bee colony ABC-algorithm publication-title: Digit. Signal Process. – volume: 13 start-page: 4676 year: 2013 end-page: 4694 ident: bib0085 article-title: Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization publication-title: Appl. Soft Comput. – volume: 40 start-page: 973 year: 2014 end-page: 979 ident: bib0095 article-title: Optimum design of fractional order PID controller for an AVR system using an improved artificial bee colony algorithm publication-title: Acta Autom. Sin. – volume: 176 start-page: 308 year: 2006 end-page: 316 ident: bib0205 article-title: Ant colony optimization for finding the global minimum publication-title: Appl. Math. Comput. – start-page: 524 year: 1996 end-page: 527 ident: bib0065 article-title: Differential evolution: a fast and simple numerical optimizer publication-title: Proceedings of Biennial Conference of the North American Fuzzy Information Processing Society – volume: 236 start-page: 2741 year: 2012 end-page: 2753 ident: bib0155 article-title: A global best artificial bee colony algorithm for global optimization publication-title: J. Comput. Appl. Math. – year: 1997 ident: bib0195 article-title: Handbook of Evolutionary Computation – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib0060 article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. – volume: 219 start-page: 3575 year: 2012 end-page: 3589 ident: bib0150 article-title: Simulated annealing based artificial bee colony algorithm for global numerical optimization publication-title: Appl. Math. Comput. – volume: 116 start-page: 355 year: 2013 end-page: 366 ident: bib0165 article-title: The best-so-far ABC with multiple patrilines for clustering problems publication-title: Neurocomputing – volume: 67 start-page: 235 year: 2014 end-page: 263 ident: bib0110 article-title: Transit route and frequency design: bi-level modeling and hybrid artificial bee colony algorithm approach publication-title: Transp. Res. B: Methodol. – start-page: 1980 year: 2004 end-page: 1987 ident: bib0200 article-title: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems publication-title: Congress on Evolutionary Computation, 2004. CEC2004, vol. 2 – volume: 116 start-page: 59 year: 2013 end-page: 74 ident: bib0100 article-title: Identification of structural models using a modified artificial bee colony algorithm publication-title: Comput. Struct. – volume: 11 start-page: 5205 year: 2011 end-page: 5214 ident: bib0105 article-title: SAR image segmentation based on artificial bee colony algorithm publication-title: Appl. Soft Comput. – volume: 219 start-page: 10253 year: 2013 end-page: 10262 ident: bib0170 article-title: A modified artificial bee colony algorithm based on converge-onlookers approach for global optimization publication-title: Appl. Math. Comput. – start-page: 1942 year: 1995 end-page: 1948 ident: bib0020 article-title: Particle swarm optimization publication-title: Proceedings of IEEE International Conference on Neural Networks, vol. 4 – volume: 25 start-page: 164 year: 2014 end-page: 172 ident: bib0125 article-title: Adaptive filtering of EEG/ERP through bounded range artificial bee colony (BR-ABC) algorithm publication-title: Digit. Signal Process. – volume: 23 start-page: 689 year: 2010 end-page: 694 ident: bib0120 article-title: Artificial bee colony algorithm for small signal model parameter extraction of MESFET publication-title: Eng. Appl. Artif. Intell. – volume: 40 start-page: 1256 year: 2013 end-page: 1265 ident: bib0160 article-title: An efficient and robust artificial bee colony algorithm for numerical optimization publication-title: Comput. Oper. Res. – year: 2005 ident: bib0030 article-title: The Bees Algorithm – A Novel Tool for Complex Optimization Problems – volume: 258 start-page: 80 year: 2014 end-page: 93 ident: bib0090 article-title: Integrating the artificial bee colony and bees algorithm to face constrained optimization problems publication-title: Inf. Sci. – volume: 217 start-page: 3166 year: 2010 end-page: 3173 ident: bib0135 article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization publication-title: Appl. Math. Comput. – volume: 192 start-page: 120 year: 2012 end-page: 142 ident: bib0175 article-title: A modified artificial bee colony algorithm for real-parameter optimization publication-title: Inf. Sci. – volume: 31 start-page: 85 year: 2014 end-page: 99 ident: bib0185 article-title: Design and development of a hybrid artificial bee colony algorithm for the environmental vehicle routing problem publication-title: Transp. Res. D: Transp. Environ. – volume: 36 start-page: 148 year: 2014 end-page: 163 ident: bib0005 article-title: Velocity based artificial bee colony algorithm for high dimensional continuous optimization problems publication-title: Eng. Appl. Artif. Intell. – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: bib0075 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Glob. Optim. – year: 1992 ident: bib0010 article-title: Adaptation in Natural and Artificial Systems – year: 2004 ident: bib0025 article-title: Ant Colony Optimization – year: 1995 ident: bib0055 article-title: Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces publication-title: Technical Report TR-95-012 (1995) – volume: 214 start-page: 108 year: 2009 end-page: 132 ident: bib0080 article-title: A comparative study of artificial bee colony algorithm publication-title: Appl. Math. Comput. – volume: 38 start-page: 1111 year: 2014 end-page: 1132 ident: bib0115 article-title: A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities publication-title: Appl. Math. Model. – volume: 13 start-page: 2343 year: 2013 end-page: 2355 ident: bib0130 article-title: An artificial bee colony-least square algorithm for solving harmonic estimation problems publication-title: Appl. Soft Comput. – year: 2005 ident: bib0035 article-title: An idea based on honey bee swarm for numerical optimization – volume: 85 start-page: 317 year: 2003 end-page: 325 ident: bib0190 article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection publication-title: Inf. Process. Lett. – volume: 31 start-page: 1 year: 2013 end-page: 9 ident: bib0040 article-title: Nonlinear CSTR control system design using an artificial bee colony algorithm publication-title: Simul. Model. Pract. Theory – volume: 13 start-page: 22 year: 1996 end-page: 37 ident: bib0015 article-title: Genetic algorithms and their applications publication-title: IEEE Signal Process. Mag. – volume: 51 start-page: 49 year: 2012 end-page: 62 ident: bib0050 article-title: Layout and size optimization of sanitary sewer network using intelligent ants publication-title: Adv. Eng. Softw. – volume: 8 start-page: 687 year: 2008 end-page: 697 ident: bib0070 article-title: On the performance of artificial bee colony (ABC) algorithm publication-title: Appl. Soft Comput. – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.asoc.2016.05.007_bib0060 article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 23 start-page: 1051 issue: 3 year: 2013 ident: 10.1016/j.asoc.2016.05.007_bib0045 article-title: Elimination of noise on transcranial Doppler signal using IIR filters designed with artificial bee colony ABC-algorithm publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2012.09.015 – year: 1997 ident: 10.1016/j.asoc.2016.05.007_bib0195 – volume: 214 start-page: 108 year: 2009 ident: 10.1016/j.asoc.2016.05.007_bib0080 article-title: A comparative study of artificial bee colony algorithm publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2009.03.090 – volume: 40 start-page: 1256 issue: 5 year: 2013 ident: 10.1016/j.asoc.2016.05.007_bib0160 article-title: An efficient and robust artificial bee colony algorithm for numerical optimization publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2012.12.006 – volume: 36 start-page: 148 year: 2014 ident: 10.1016/j.asoc.2016.05.007_bib0005 article-title: Velocity based artificial bee colony algorithm for high dimensional continuous optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2014.07.012 – volume: 12 start-page: 320 issue: 1 year: 2012 ident: 10.1016/j.asoc.2016.05.007_bib0140 article-title: Development and investigation of efficient artificial bee colony algorithm for numerical function optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.08.040 – volume: 116 start-page: 59 year: 2013 ident: 10.1016/j.asoc.2016.05.007_bib0100 article-title: Identification of structural models using a modified artificial bee colony algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.10.017 – volume: 25 start-page: 164 year: 2014 ident: 10.1016/j.asoc.2016.05.007_bib0125 article-title: Adaptive filtering of EEG/ERP through bounded range artificial bee colony (BR-ABC) algorithm publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2013.10.019 – year: 2005 ident: 10.1016/j.asoc.2016.05.007_bib0030 – volume: 38 start-page: 1111 issue: 3 year: 2014 ident: 10.1016/j.asoc.2016.05.007_bib0115 article-title: A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2013.07.038 – volume: 69 start-page: 638 year: 2014 ident: 10.1016/j.asoc.2016.05.007_bib0180 article-title: Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey publication-title: Energy doi: 10.1016/j.energy.2014.03.059 – volume: 11 start-page: 5205 issue: 8 year: 2011 ident: 10.1016/j.asoc.2016.05.007_bib0105 article-title: SAR image segmentation based on artificial bee colony algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.05.039 – volume: 217 start-page: 3166 issue: 7 year: 2010 ident: 10.1016/j.asoc.2016.05.007_bib0135 article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2010.08.049 – volume: 51 start-page: 49 year: 2012 ident: 10.1016/j.asoc.2016.05.007_bib0050 article-title: Layout and size optimization of sanitary sewer network using intelligent ants publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2012.05.003 – volume: 13 start-page: 2343 issue: 5 year: 2013 ident: 10.1016/j.asoc.2016.05.007_bib0130 article-title: An artificial bee colony-least square algorithm for solving harmonic estimation problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.12.006 – volume: 258 start-page: 80 year: 2014 ident: 10.1016/j.asoc.2016.05.007_bib0090 article-title: Integrating the artificial bee colony and bees algorithm to face constrained optimization problems publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.09.015 – volume: 23 start-page: 689 issue: 5 year: 2010 ident: 10.1016/j.asoc.2016.05.007_bib0120 article-title: Artificial bee colony algorithm for small signal model parameter extraction of MESFET publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2010.01.020 – volume: 31 start-page: 1 year: 2013 ident: 10.1016/j.asoc.2016.05.007_bib0040 article-title: Nonlinear CSTR control system design using an artificial bee colony algorithm publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2012.11.002 – volume: 85 start-page: 317 year: 2003 ident: 10.1016/j.asoc.2016.05.007_bib0190 article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection publication-title: Inf. Process. Lett. doi: 10.1016/S0020-0190(02)00447-7 – start-page: 524 year: 1996 ident: 10.1016/j.asoc.2016.05.007_bib0065 article-title: Differential evolution: a fast and simple numerical optimizer – volume: 39 start-page: 459 year: 2007 ident: 10.1016/j.asoc.2016.05.007_bib0075 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Glob. Optim. doi: 10.1007/s10898-007-9149-x – volume: 192 start-page: 120 year: 2012 ident: 10.1016/j.asoc.2016.05.007_bib0175 article-title: A modified artificial bee colony algorithm for real-parameter optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.07.015 – volume: 176 start-page: 308 year: 2006 ident: 10.1016/j.asoc.2016.05.007_bib0205 article-title: Ant colony optimization for finding the global minimum publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2005.09.043 – volume: 219 start-page: 10253 issue: 20 year: 2013 ident: 10.1016/j.asoc.2016.05.007_bib0170 article-title: A modified artificial bee colony algorithm based on converge-onlookers approach for global optimization publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2013.04.001 – start-page: 1942 year: 1995 ident: 10.1016/j.asoc.2016.05.007_bib0020 article-title: Particle swarm optimization – year: 2004 ident: 10.1016/j.asoc.2016.05.007_bib0025 – volume: 40 start-page: 973 issue: 5 year: 2014 ident: 10.1016/j.asoc.2016.05.007_bib0095 article-title: Optimum design of fractional order PID controller for an AVR system using an improved artificial bee colony algorithm publication-title: Acta Autom. Sin. doi: 10.1016/S1874-1029(14)60010-0 – volume: 13 start-page: 4676 issue: 12 year: 2013 ident: 10.1016/j.asoc.2016.05.007_bib0085 article-title: Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.07.009 – volume: 13 start-page: 22 year: 1996 ident: 10.1016/j.asoc.2016.05.007_bib0015 article-title: Genetic algorithms and their applications publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.543973 – volume: 39 start-page: 687 issue: 3 year: 2012 ident: 10.1016/j.asoc.2016.05.007_bib0145 article-title: A modified artificial bee colony algorithm publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2011.06.007 – volume: 67 start-page: 235 year: 2014 ident: 10.1016/j.asoc.2016.05.007_bib0110 article-title: Transit route and frequency design: bi-level modeling and hybrid artificial bee colony algorithm approach publication-title: Transp. Res. B: Methodol. doi: 10.1016/j.trb.2014.05.008 – year: 2005 ident: 10.1016/j.asoc.2016.05.007_bib0035 – volume: 31 start-page: 85 year: 2014 ident: 10.1016/j.asoc.2016.05.007_bib0185 article-title: Design and development of a hybrid artificial bee colony algorithm for the environmental vehicle routing problem publication-title: Transp. Res. D: Transp. Environ. doi: 10.1016/j.trd.2014.05.015 – volume: 236 start-page: 2741 issue: 11 year: 2012 ident: 10.1016/j.asoc.2016.05.007_bib0155 article-title: A global best artificial bee colony algorithm for global optimization publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2012.01.013 – year: 1992 ident: 10.1016/j.asoc.2016.05.007_bib0010 – volume: 116 start-page: 355 issue: 20 year: 2013 ident: 10.1016/j.asoc.2016.05.007_bib0165 article-title: The best-so-far ABC with multiple patrilines for clustering problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.047 – year: 1995 ident: 10.1016/j.asoc.2016.05.007_bib0055 article-title: Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces – start-page: 1980 year: 2004 ident: 10.1016/j.asoc.2016.05.007_bib0200 article-title: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems – volume: 8 start-page: 687 year: 2008 ident: 10.1016/j.asoc.2016.05.007_bib0070 article-title: On the performance of artificial bee colony (ABC) algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.05.007 – volume: 219 start-page: 3575 issue: 8 year: 2012 ident: 10.1016/j.asoc.2016.05.007_bib0150 article-title: Simulated annealing based artificial bee colony algorithm for global numerical optimization publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2012.09.052 |
| SSID | ssj0016928 |
| Score | 2.2903726 |
| Snippet | [Display omitted]
•A modified ABC algorithm is proposed for global optimization problems.•Improved global-best-guided term with nonlinear adjusting factors is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 469 |
| SubjectTerms | Artificial bee colony Biological-inspired optimization algorithm Optimization Swarm intelligence |
| Title | A modified ABC algorithm based on improved-global-best-guided approach and adaptive-limit strategy for global optimization |
| URI | https://dx.doi.org/10.1016/j.asoc.2016.05.007 |
| Volume | 46 |
| WOSCitedRecordID | wos000377999900035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKx4EL34iND_nArQpKYseJj2EaAg4T0obUW2THzpapTao2mSb-BP7qPcd2KCuqAImL1bp-reX363vPL-8DoXdhGRPCiQoklzqgIqoCnsHbpIyqSDPGlQiHZhPp6Wk2n_Ovk8kPnwtzvUibJru54av_ymqYA2ab1Nm_YPf4pTABr4HpMALbYfwjxuemu01dGdMy_3A8E4uLdl13l8uZUVjKPByoB0eCNvHqphpIIEEzBBd9reBjX2PcFnFVYmXEYbAwaVCzja1ka0M8XSWRFhYsXS7ntqHrrdsNiPkhbr3vvJIc3NQuEhhuwPUYE2QbaPf1zqqzy7ZfenLnoojYGIPl_GY7uTNW1LIsoNw5ILWdy9I44Mw2cfHymW4LWGobuzhdTW0Z7R01YD0SV-8FINyE77GhOqttr3unvPaZ2YfZBhimpmEpuYcO4jTh2RQd5J9P5l_GZ1KMD516x327FCwbLXj3l35v5myZLueP0UN358C5xcoTNNHNU_TI9_PATrw_Q99z7KGDATp4hA4eoIPbBu-BDvbQwQAd_Ct0sIcOBuhgS4u3ofMcfft4cn78KXC9OYKShGEHo5JKlSoC_WSSnSNptEVEK5GJipsaToJpRlRcklLSJFGEMlGlSsMNWclSkBdo2rSNfomwVCTmIpIJ45KmTPOUlLGmmQRyHVbyEEX-KIvSFa43_VMWhY9QvCrM8Rfm-IswKeD4D9FspFnZsi17VyeeQ4UzPK1BWQCg9tAd_SPdK_Tg59_kNZp2616_QffL667erN863N0CuAisPg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+ABC+algorithm+based+on+improved-global-best-guided+approach+and+adaptive-limit+strategy+for+global+optimization&rft.jtitle=Applied+soft+computing&rft.au=Zhong%2C+Fuli&rft.au=Li%2C+Hui&rft.au=Zhong%2C+Shouming&rft.date=2016-09-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=46&rft.spage=469&rft.epage=486&rft_id=info:doi/10.1016%2Fj.asoc.2016.05.007&rft.externalDocID=S1568494616302083 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |