A modified ABC algorithm based on improved-global-best-guided approach and adaptive-limit strategy for global optimization

[Display omitted] •A modified ABC algorithm is proposed for global optimization problems.•Improved global-best-guided term with nonlinear adjusting factors is employed.•Nonlinear adjusting factors are used to balance the exploration and exploitation.•An adaptive-limit strategy is designed to control...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 46; S. 469 - 486
Hauptverfasser: Zhong, Fuli, Li, Hui, Zhong, Shouming
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.09.2016
Schlagworte:
ISSN:1568-4946, 1872-9681
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract [Display omitted] •A modified ABC algorithm is proposed for global optimization problems.•Improved global-best-guided term with nonlinear adjusting factors is employed.•Nonlinear adjusting factors are used to balance the exploration and exploitation.•An adaptive-limit strategy is designed to control the variable limit.•Multiple numerical experiments are conducted to verify the proposed algorithm. Artificial bee colony (ABC) is a novel biological-inspired optimization algorithm which has been shown to be more effective for global optimization of multimodal and multidimensional optimization problems, than some other conventional biological-inspired optimization algorithms, such as genetic algorithm (GA) and particle swarm optimization (PSO), for its good exploration capability and the efficient balance between the local search and the global search processes. It has drawn widely attentions from scholars and was applied to various fields for its advantages of excellent global optimization ability and it is easy to implement. However, the basic ABC has some drawbacks such as poor exploitation, slow to converge and hard to find the best solution from all feasible solutions in some cases. In this paper, a modified ABC algorithm based on improved-global-best-guided approach and adaptive-limit strategy for global optimization problems called IGAL-ABC algorithm is proposed. An improved-global-best-guided term with a nonlinear adjusting factor is employed in the update equation. Two nonlinear adjusting factors are applied to control the convergence speed and balance the exploration and exploitation abilities. Multiple dimensions of solution are perturbed each time for generating new candidate food sources. In addition, an adaptive-limit strategy is applied to adjust the limit which controls the frequency that the employed bee abandons its food source, to improve the performance of the algorithm further. Results of experiments tested on multiple benchmark functions show that the proposed method is effective and has good performance. The comparison experiments illustrate that the proposed algorithm has better solution quality and convergence characteristics.
AbstractList [Display omitted] •A modified ABC algorithm is proposed for global optimization problems.•Improved global-best-guided term with nonlinear adjusting factors is employed.•Nonlinear adjusting factors are used to balance the exploration and exploitation.•An adaptive-limit strategy is designed to control the variable limit.•Multiple numerical experiments are conducted to verify the proposed algorithm. Artificial bee colony (ABC) is a novel biological-inspired optimization algorithm which has been shown to be more effective for global optimization of multimodal and multidimensional optimization problems, than some other conventional biological-inspired optimization algorithms, such as genetic algorithm (GA) and particle swarm optimization (PSO), for its good exploration capability and the efficient balance between the local search and the global search processes. It has drawn widely attentions from scholars and was applied to various fields for its advantages of excellent global optimization ability and it is easy to implement. However, the basic ABC has some drawbacks such as poor exploitation, slow to converge and hard to find the best solution from all feasible solutions in some cases. In this paper, a modified ABC algorithm based on improved-global-best-guided approach and adaptive-limit strategy for global optimization problems called IGAL-ABC algorithm is proposed. An improved-global-best-guided term with a nonlinear adjusting factor is employed in the update equation. Two nonlinear adjusting factors are applied to control the convergence speed and balance the exploration and exploitation abilities. Multiple dimensions of solution are perturbed each time for generating new candidate food sources. In addition, an adaptive-limit strategy is applied to adjust the limit which controls the frequency that the employed bee abandons its food source, to improve the performance of the algorithm further. Results of experiments tested on multiple benchmark functions show that the proposed method is effective and has good performance. The comparison experiments illustrate that the proposed algorithm has better solution quality and convergence characteristics.
Author Zhong, Shouming
Li, Hui
Zhong, Fuli
Author_xml – sequence: 1
  givenname: Fuli
  surname: Zhong
  fullname: Zhong, Fuli
  email: zhongfulicn@163.com
  organization: School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, PR China
– sequence: 2
  givenname: Hui
  surname: Li
  fullname: Li, Hui
  organization: School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, PR China
– sequence: 3
  givenname: Shouming
  surname: Zhong
  fullname: Zhong, Shouming
  organization: School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, PR China
BookMark eNp9kMlOwzAQhi1UJNrCC3DyCyTYWV2JS6nYpEpc4GxNbCedKokr21Rqnx6XcuLQy-zfaOafkcloR0PIPWcpZ7x62KbgrUqzGKesTBmrr8iUizpLFpXgkxiXlUiKRVHdkJn3WxYHF5mYkuOSDlZji0bT5dOKQt9Zh2Ez0AZ8rNmR4rBzdm900vW2gT5pjA9J9406tmEXe6A2FMaYaNgF3JukxwED9cFBMN2BttbRM0ttHBjwCAHteEuuW-i9ufvzc_L18vy5ekvWH6_vq-U6UTljIVrdaK00r6u8KIXgDctZzYsWBLQLnnMOlalynalcNUVZ6ryooK21KQuhGwX5nGTnvcpZ751p5c7hAO4gOZMn9eRWntSTJ_UkK2VUL0LiH6Qw_J4dv8L-Mvp4Rk18ao_GSa_QjMpodEYFqS1ewn8A-pGQPA
CitedBy_id crossref_primary_10_1007_s10489_021_02711_w
crossref_primary_10_1109_ACCESS_2020_3013332
crossref_primary_10_1007_s00521_022_07530_9
crossref_primary_10_1016_j_ijleo_2016_09_085
crossref_primary_10_1016_j_asoc_2017_06_044
crossref_primary_10_1016_j_cma_2022_115652
crossref_primary_10_1016_j_swevo_2018_02_013
crossref_primary_10_1007_s00500_020_04758_2
crossref_primary_10_1007_s00034_017_0613_7
crossref_primary_10_1007_s00521_020_05118_9
crossref_primary_10_1007_s10462_023_10403_9
crossref_primary_10_3390_app8030329
crossref_primary_10_1016_j_matcom_2022_11_021
crossref_primary_10_1155_2019_6291968
crossref_primary_10_3390_en14134014
crossref_primary_10_3390_info9080193
crossref_primary_10_1007_s10462_025_11269_9
crossref_primary_10_1016_j_asoc_2018_07_033
crossref_primary_10_1002_int_22535
crossref_primary_10_1016_j_asoc_2017_09_039
crossref_primary_10_1109_TITS_2021_3122396
Cites_doi 10.1023/A:1008202821328
10.1016/j.dsp.2012.09.015
10.1016/j.amc.2009.03.090
10.1016/j.cor.2012.12.006
10.1016/j.engappai.2014.07.012
10.1016/j.asoc.2011.08.040
10.1016/j.compstruc.2012.10.017
10.1016/j.dsp.2013.10.019
10.1016/j.apm.2013.07.038
10.1016/j.energy.2014.03.059
10.1016/j.asoc.2011.05.039
10.1016/j.amc.2010.08.049
10.1016/j.advengsoft.2012.05.003
10.1016/j.asoc.2012.12.006
10.1016/j.ins.2013.09.015
10.1016/j.engappai.2010.01.020
10.1016/j.simpat.2012.11.002
10.1016/S0020-0190(02)00447-7
10.1007/s10898-007-9149-x
10.1016/j.ins.2010.07.015
10.1016/j.amc.2005.09.043
10.1016/j.amc.2013.04.001
10.1016/S1874-1029(14)60010-0
10.1016/j.asoc.2013.07.009
10.1109/79.543973
10.1016/j.cor.2011.06.007
10.1016/j.trb.2014.05.008
10.1016/j.trd.2014.05.015
10.1016/j.cam.2012.01.013
10.1016/j.neucom.2012.02.047
10.1016/j.asoc.2007.05.007
10.1016/j.amc.2012.09.052
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2016.05.007
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 486
ExternalDocumentID 10_1016_j_asoc_2016_05_007
S1568494616302083
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-c3dbddcd176345881b030714fa8af91311a6e63d2c3cb455d346af7de548dbca3
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377999900035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 22:33:17 EST 2025
Sat Nov 29 03:05:29 EST 2025
Fri Feb 23 02:24:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Swarm intelligence
Artificial bee colony
Biological-inspired optimization algorithm
Optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-c3dbddcd176345881b030714fa8af91311a6e63d2c3cb455d346af7de548dbca3
PageCount 18
ParticipantIDs crossref_primary_10_1016_j_asoc_2016_05_007
crossref_citationtrail_10_1016_j_asoc_2016_05_007
elsevier_sciencedirect_doi_10_1016_j_asoc_2016_05_007
PublicationCentury 2000
PublicationDate September 2016
2016-09-00
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhu, Kwong (bib0135) 2010; 217
Sun, Lu, Betti (bib0100) 2013; 116
Price (bib0065) 1996
Zhang, Lee, Choy, Ho, Ip (bib0185) 2014; 31
Karaboga, Basturk (bib0070) 2008; 8
Imanian, Shiri, Moradi (bib0005) 2014; 36
Storn, Price (bib0055) 1995
Moeini, Afshar (bib0050) 2012; 51
Gao, Liu, Huang (bib0155) 2012; 236
Li, Niu, Xiao (bib0140) 2012; 12
Karaboga, Basturk (bib0075) 2007; 39
Kennedy, Eberhart (bib0020) 1995
Das, Biswas, Kundu (bib0085) 2013; 13
Gao, Liu (bib0145) 2012; 39
Karaboga, Latifoglu (bib0045) 2013; 23
Xiang, An (bib0160) 2013; 40
Karaboga, Akay (bib0080) 2009; 214
Tang, Man, Kwong, He (bib0015) 1996; 13
Sabat, Udgata, Abraham (bib0120) 2010; 23
Uzlu, Akpnar, zturk, Nacar, Kankal (bib0180) 2014; 69
Banharnsakun, Sirinaovakul, Achalakul (bib0165) 2013; 116
Luo, Wang, Xiao (bib0170) 2013; 219
Ahirwal, Kumar, Singh (bib0125) 2014; 25
Trelea (bib0190) 2003; 85
Dorigo, Stutzle (bib0025) 2004
Szeto, Jiang (bib0110) 2014; 67
Biswas, Chatterjee, Goswami (bib0130) 2013; 13
Chang (bib0040) 2013; 31
Tsai (bib0090) 2014; 258
Zhang, Tang, Guan (bib0095) 2014; 40
Chen, Sarosh, Dong (bib0150) 2012; 219
Vesterstrom, Thomsen (bib0200) 2004
Holland (bib0010) 1992
Karaboga (bib0035) 2005
Ma, Liang, Guo, Fan, Yin (bib0105) 2011; 11
Akay, Karaboga (bib0175) 2012; 192
Pham, Ghanbarzadeh, Koc, Otri, Rahim, Zaidi (bib0030) 2005
Bäck, Fogel, Michalewicz (bib0195) 1997
Storn, Price (bib0060) 1997; 11
Li, Pan, Tasgetiren (bib0115) 2014; 38
Toksari (bib0205) 2006; 176
Karaboga (10.1016/j.asoc.2016.05.007_bib0080) 2009; 214
Akay (10.1016/j.asoc.2016.05.007_bib0175) 2012; 192
Li (10.1016/j.asoc.2016.05.007_bib0115) 2014; 38
Moeini (10.1016/j.asoc.2016.05.007_bib0050) 2012; 51
Price (10.1016/j.asoc.2016.05.007_bib0065) 1996
Zhang (10.1016/j.asoc.2016.05.007_bib0095) 2014; 40
Storn (10.1016/j.asoc.2016.05.007_bib0060) 1997; 11
Zhu (10.1016/j.asoc.2016.05.007_bib0135) 2010; 217
Luo (10.1016/j.asoc.2016.05.007_bib0170) 2013; 219
Chen (10.1016/j.asoc.2016.05.007_bib0150) 2012; 219
Uzlu (10.1016/j.asoc.2016.05.007_bib0180) 2014; 69
Toksari (10.1016/j.asoc.2016.05.007_bib0205) 2006; 176
Karaboga (10.1016/j.asoc.2016.05.007_bib0070) 2008; 8
Dorigo (10.1016/j.asoc.2016.05.007_bib0025) 2004
Chang (10.1016/j.asoc.2016.05.007_bib0040) 2013; 31
Sabat (10.1016/j.asoc.2016.05.007_bib0120) 2010; 23
Vesterstrom (10.1016/j.asoc.2016.05.007_bib0200) 2004
Biswas (10.1016/j.asoc.2016.05.007_bib0130) 2013; 13
Storn (10.1016/j.asoc.2016.05.007_bib0055) 1995
Xiang (10.1016/j.asoc.2016.05.007_bib0160) 2013; 40
Das (10.1016/j.asoc.2016.05.007_bib0085) 2013; 13
Trelea (10.1016/j.asoc.2016.05.007_bib0190) 2003; 85
Szeto (10.1016/j.asoc.2016.05.007_bib0110) 2014; 67
Banharnsakun (10.1016/j.asoc.2016.05.007_bib0165) 2013; 116
Holland (10.1016/j.asoc.2016.05.007_bib0010) 1992
Bäck (10.1016/j.asoc.2016.05.007_bib0195) 1997
Sun (10.1016/j.asoc.2016.05.007_bib0100) 2013; 116
Pham (10.1016/j.asoc.2016.05.007_bib0030) 2005
Tsai (10.1016/j.asoc.2016.05.007_bib0090) 2014; 258
Imanian (10.1016/j.asoc.2016.05.007_bib0005) 2014; 36
Ma (10.1016/j.asoc.2016.05.007_bib0105) 2011; 11
Gao (10.1016/j.asoc.2016.05.007_bib0155) 2012; 236
Tang (10.1016/j.asoc.2016.05.007_bib0015) 1996; 13
Li (10.1016/j.asoc.2016.05.007_bib0140) 2012; 12
Gao (10.1016/j.asoc.2016.05.007_bib0145) 2012; 39
Ahirwal (10.1016/j.asoc.2016.05.007_bib0125) 2014; 25
Kennedy (10.1016/j.asoc.2016.05.007_bib0020) 1995
Karaboga (10.1016/j.asoc.2016.05.007_bib0035) 2005
Karaboga (10.1016/j.asoc.2016.05.007_bib0075) 2007; 39
Karaboga (10.1016/j.asoc.2016.05.007_bib0045) 2013; 23
Zhang (10.1016/j.asoc.2016.05.007_bib0185) 2014; 31
References_xml – volume: 39
  start-page: 687
  year: 2012
  end-page: 697
  ident: bib0145
  article-title: A modified artificial bee colony algorithm
  publication-title: Comput. Oper. Res.
– volume: 12
  start-page: 320
  year: 2012
  end-page: 332
  ident: bib0140
  article-title: Development and investigation of efficient artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Soft Comput.
– volume: 69
  start-page: 638
  year: 2014
  end-page: 647
  ident: bib0180
  article-title: Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey
  publication-title: Energy
– volume: 23
  start-page: 1051
  year: 2013
  end-page: 1058
  ident: bib0045
  article-title: Elimination of noise on transcranial Doppler signal using IIR filters designed with artificial bee colony ABC-algorithm
  publication-title: Digit. Signal Process.
– volume: 13
  start-page: 4676
  year: 2013
  end-page: 4694
  ident: bib0085
  article-title: Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization
  publication-title: Appl. Soft Comput.
– volume: 40
  start-page: 973
  year: 2014
  end-page: 979
  ident: bib0095
  article-title: Optimum design of fractional order PID controller for an AVR system using an improved artificial bee colony algorithm
  publication-title: Acta Autom. Sin.
– volume: 176
  start-page: 308
  year: 2006
  end-page: 316
  ident: bib0205
  article-title: Ant colony optimization for finding the global minimum
  publication-title: Appl. Math. Comput.
– start-page: 524
  year: 1996
  end-page: 527
  ident: bib0065
  article-title: Differential evolution: a fast and simple numerical optimizer
  publication-title: Proceedings of Biennial Conference of the North American Fuzzy Information Processing Society
– volume: 236
  start-page: 2741
  year: 2012
  end-page: 2753
  ident: bib0155
  article-title: A global best artificial bee colony algorithm for global optimization
  publication-title: J. Comput. Appl. Math.
– year: 1997
  ident: bib0195
  article-title: Handbook of Evolutionary Computation
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib0060
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
– volume: 219
  start-page: 3575
  year: 2012
  end-page: 3589
  ident: bib0150
  article-title: Simulated annealing based artificial bee colony algorithm for global numerical optimization
  publication-title: Appl. Math. Comput.
– volume: 116
  start-page: 355
  year: 2013
  end-page: 366
  ident: bib0165
  article-title: The best-so-far ABC with multiple patrilines for clustering problems
  publication-title: Neurocomputing
– volume: 67
  start-page: 235
  year: 2014
  end-page: 263
  ident: bib0110
  article-title: Transit route and frequency design: bi-level modeling and hybrid artificial bee colony algorithm approach
  publication-title: Transp. Res. B: Methodol.
– start-page: 1980
  year: 2004
  end-page: 1987
  ident: bib0200
  article-title: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems
  publication-title: Congress on Evolutionary Computation, 2004. CEC2004, vol. 2
– volume: 116
  start-page: 59
  year: 2013
  end-page: 74
  ident: bib0100
  article-title: Identification of structural models using a modified artificial bee colony algorithm
  publication-title: Comput. Struct.
– volume: 11
  start-page: 5205
  year: 2011
  end-page: 5214
  ident: bib0105
  article-title: SAR image segmentation based on artificial bee colony algorithm
  publication-title: Appl. Soft Comput.
– volume: 219
  start-page: 10253
  year: 2013
  end-page: 10262
  ident: bib0170
  article-title: A modified artificial bee colony algorithm based on converge-onlookers approach for global optimization
  publication-title: Appl. Math. Comput.
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0020
  article-title: Particle swarm optimization
  publication-title: Proceedings of IEEE International Conference on Neural Networks, vol. 4
– volume: 25
  start-page: 164
  year: 2014
  end-page: 172
  ident: bib0125
  article-title: Adaptive filtering of EEG/ERP through bounded range artificial bee colony (BR-ABC) algorithm
  publication-title: Digit. Signal Process.
– volume: 23
  start-page: 689
  year: 2010
  end-page: 694
  ident: bib0120
  article-title: Artificial bee colony algorithm for small signal model parameter extraction of MESFET
  publication-title: Eng. Appl. Artif. Intell.
– volume: 40
  start-page: 1256
  year: 2013
  end-page: 1265
  ident: bib0160
  article-title: An efficient and robust artificial bee colony algorithm for numerical optimization
  publication-title: Comput. Oper. Res.
– year: 2005
  ident: bib0030
  article-title: The Bees Algorithm – A Novel Tool for Complex Optimization Problems
– volume: 258
  start-page: 80
  year: 2014
  end-page: 93
  ident: bib0090
  article-title: Integrating the artificial bee colony and bees algorithm to face constrained optimization problems
  publication-title: Inf. Sci.
– volume: 217
  start-page: 3166
  year: 2010
  end-page: 3173
  ident: bib0135
  article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Math. Comput.
– volume: 192
  start-page: 120
  year: 2012
  end-page: 142
  ident: bib0175
  article-title: A modified artificial bee colony algorithm for real-parameter optimization
  publication-title: Inf. Sci.
– volume: 31
  start-page: 85
  year: 2014
  end-page: 99
  ident: bib0185
  article-title: Design and development of a hybrid artificial bee colony algorithm for the environmental vehicle routing problem
  publication-title: Transp. Res. D: Transp. Environ.
– volume: 36
  start-page: 148
  year: 2014
  end-page: 163
  ident: bib0005
  article-title: Velocity based artificial bee colony algorithm for high dimensional continuous optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: bib0075
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Glob. Optim.
– year: 1992
  ident: bib0010
  article-title: Adaptation in Natural and Artificial Systems
– year: 2004
  ident: bib0025
  article-title: Ant Colony Optimization
– year: 1995
  ident: bib0055
  article-title: Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces
  publication-title: Technical Report TR-95-012 (1995)
– volume: 214
  start-page: 108
  year: 2009
  end-page: 132
  ident: bib0080
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Appl. Math. Comput.
– volume: 38
  start-page: 1111
  year: 2014
  end-page: 1132
  ident: bib0115
  article-title: A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities
  publication-title: Appl. Math. Model.
– volume: 13
  start-page: 2343
  year: 2013
  end-page: 2355
  ident: bib0130
  article-title: An artificial bee colony-least square algorithm for solving harmonic estimation problems
  publication-title: Appl. Soft Comput.
– year: 2005
  ident: bib0035
  article-title: An idea based on honey bee swarm for numerical optimization
– volume: 85
  start-page: 317
  year: 2003
  end-page: 325
  ident: bib0190
  article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection
  publication-title: Inf. Process. Lett.
– volume: 31
  start-page: 1
  year: 2013
  end-page: 9
  ident: bib0040
  article-title: Nonlinear CSTR control system design using an artificial bee colony algorithm
  publication-title: Simul. Model. Pract. Theory
– volume: 13
  start-page: 22
  year: 1996
  end-page: 37
  ident: bib0015
  article-title: Genetic algorithms and their applications
  publication-title: IEEE Signal Process. Mag.
– volume: 51
  start-page: 49
  year: 2012
  end-page: 62
  ident: bib0050
  article-title: Layout and size optimization of sanitary sewer network using intelligent ants
  publication-title: Adv. Eng. Softw.
– volume: 8
  start-page: 687
  year: 2008
  end-page: 697
  ident: bib0070
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.asoc.2016.05.007_bib0060
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 23
  start-page: 1051
  issue: 3
  year: 2013
  ident: 10.1016/j.asoc.2016.05.007_bib0045
  article-title: Elimination of noise on transcranial Doppler signal using IIR filters designed with artificial bee colony ABC-algorithm
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2012.09.015
– year: 1997
  ident: 10.1016/j.asoc.2016.05.007_bib0195
– volume: 214
  start-page: 108
  year: 2009
  ident: 10.1016/j.asoc.2016.05.007_bib0080
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.03.090
– volume: 40
  start-page: 1256
  issue: 5
  year: 2013
  ident: 10.1016/j.asoc.2016.05.007_bib0160
  article-title: An efficient and robust artificial bee colony algorithm for numerical optimization
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2012.12.006
– volume: 36
  start-page: 148
  year: 2014
  ident: 10.1016/j.asoc.2016.05.007_bib0005
  article-title: Velocity based artificial bee colony algorithm for high dimensional continuous optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2014.07.012
– volume: 12
  start-page: 320
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2016.05.007_bib0140
  article-title: Development and investigation of efficient artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.08.040
– volume: 116
  start-page: 59
  year: 2013
  ident: 10.1016/j.asoc.2016.05.007_bib0100
  article-title: Identification of structural models using a modified artificial bee colony algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.10.017
– volume: 25
  start-page: 164
  year: 2014
  ident: 10.1016/j.asoc.2016.05.007_bib0125
  article-title: Adaptive filtering of EEG/ERP through bounded range artificial bee colony (BR-ABC) algorithm
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2013.10.019
– year: 2005
  ident: 10.1016/j.asoc.2016.05.007_bib0030
– volume: 38
  start-page: 1111
  issue: 3
  year: 2014
  ident: 10.1016/j.asoc.2016.05.007_bib0115
  article-title: A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.07.038
– volume: 69
  start-page: 638
  year: 2014
  ident: 10.1016/j.asoc.2016.05.007_bib0180
  article-title: Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey
  publication-title: Energy
  doi: 10.1016/j.energy.2014.03.059
– volume: 11
  start-page: 5205
  issue: 8
  year: 2011
  ident: 10.1016/j.asoc.2016.05.007_bib0105
  article-title: SAR image segmentation based on artificial bee colony algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.05.039
– volume: 217
  start-page: 3166
  issue: 7
  year: 2010
  ident: 10.1016/j.asoc.2016.05.007_bib0135
  article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2010.08.049
– volume: 51
  start-page: 49
  year: 2012
  ident: 10.1016/j.asoc.2016.05.007_bib0050
  article-title: Layout and size optimization of sanitary sewer network using intelligent ants
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2012.05.003
– volume: 13
  start-page: 2343
  issue: 5
  year: 2013
  ident: 10.1016/j.asoc.2016.05.007_bib0130
  article-title: An artificial bee colony-least square algorithm for solving harmonic estimation problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.12.006
– volume: 258
  start-page: 80
  year: 2014
  ident: 10.1016/j.asoc.2016.05.007_bib0090
  article-title: Integrating the artificial bee colony and bees algorithm to face constrained optimization problems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.09.015
– volume: 23
  start-page: 689
  issue: 5
  year: 2010
  ident: 10.1016/j.asoc.2016.05.007_bib0120
  article-title: Artificial bee colony algorithm for small signal model parameter extraction of MESFET
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2010.01.020
– volume: 31
  start-page: 1
  year: 2013
  ident: 10.1016/j.asoc.2016.05.007_bib0040
  article-title: Nonlinear CSTR control system design using an artificial bee colony algorithm
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2012.11.002
– volume: 85
  start-page: 317
  year: 2003
  ident: 10.1016/j.asoc.2016.05.007_bib0190
  article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection
  publication-title: Inf. Process. Lett.
  doi: 10.1016/S0020-0190(02)00447-7
– start-page: 524
  year: 1996
  ident: 10.1016/j.asoc.2016.05.007_bib0065
  article-title: Differential evolution: a fast and simple numerical optimizer
– volume: 39
  start-page: 459
  year: 2007
  ident: 10.1016/j.asoc.2016.05.007_bib0075
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-007-9149-x
– volume: 192
  start-page: 120
  year: 2012
  ident: 10.1016/j.asoc.2016.05.007_bib0175
  article-title: A modified artificial bee colony algorithm for real-parameter optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.07.015
– volume: 176
  start-page: 308
  year: 2006
  ident: 10.1016/j.asoc.2016.05.007_bib0205
  article-title: Ant colony optimization for finding the global minimum
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2005.09.043
– volume: 219
  start-page: 10253
  issue: 20
  year: 2013
  ident: 10.1016/j.asoc.2016.05.007_bib0170
  article-title: A modified artificial bee colony algorithm based on converge-onlookers approach for global optimization
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2013.04.001
– start-page: 1942
  year: 1995
  ident: 10.1016/j.asoc.2016.05.007_bib0020
  article-title: Particle swarm optimization
– year: 2004
  ident: 10.1016/j.asoc.2016.05.007_bib0025
– volume: 40
  start-page: 973
  issue: 5
  year: 2014
  ident: 10.1016/j.asoc.2016.05.007_bib0095
  article-title: Optimum design of fractional order PID controller for an AVR system using an improved artificial bee colony algorithm
  publication-title: Acta Autom. Sin.
  doi: 10.1016/S1874-1029(14)60010-0
– volume: 13
  start-page: 4676
  issue: 12
  year: 2013
  ident: 10.1016/j.asoc.2016.05.007_bib0085
  article-title: Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.07.009
– volume: 13
  start-page: 22
  year: 1996
  ident: 10.1016/j.asoc.2016.05.007_bib0015
  article-title: Genetic algorithms and their applications
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.543973
– volume: 39
  start-page: 687
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2016.05.007_bib0145
  article-title: A modified artificial bee colony algorithm
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2011.06.007
– volume: 67
  start-page: 235
  year: 2014
  ident: 10.1016/j.asoc.2016.05.007_bib0110
  article-title: Transit route and frequency design: bi-level modeling and hybrid artificial bee colony algorithm approach
  publication-title: Transp. Res. B: Methodol.
  doi: 10.1016/j.trb.2014.05.008
– year: 2005
  ident: 10.1016/j.asoc.2016.05.007_bib0035
– volume: 31
  start-page: 85
  year: 2014
  ident: 10.1016/j.asoc.2016.05.007_bib0185
  article-title: Design and development of a hybrid artificial bee colony algorithm for the environmental vehicle routing problem
  publication-title: Transp. Res. D: Transp. Environ.
  doi: 10.1016/j.trd.2014.05.015
– volume: 236
  start-page: 2741
  issue: 11
  year: 2012
  ident: 10.1016/j.asoc.2016.05.007_bib0155
  article-title: A global best artificial bee colony algorithm for global optimization
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.01.013
– year: 1992
  ident: 10.1016/j.asoc.2016.05.007_bib0010
– volume: 116
  start-page: 355
  issue: 20
  year: 2013
  ident: 10.1016/j.asoc.2016.05.007_bib0165
  article-title: The best-so-far ABC with multiple patrilines for clustering problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.047
– year: 1995
  ident: 10.1016/j.asoc.2016.05.007_bib0055
  article-title: Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces
– start-page: 1980
  year: 2004
  ident: 10.1016/j.asoc.2016.05.007_bib0200
  article-title: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems
– volume: 8
  start-page: 687
  year: 2008
  ident: 10.1016/j.asoc.2016.05.007_bib0070
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.05.007
– volume: 219
  start-page: 3575
  issue: 8
  year: 2012
  ident: 10.1016/j.asoc.2016.05.007_bib0150
  article-title: Simulated annealing based artificial bee colony algorithm for global numerical optimization
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2012.09.052
SSID ssj0016928
Score 2.2903726
Snippet [Display omitted] •A modified ABC algorithm is proposed for global optimization problems.•Improved global-best-guided term with nonlinear adjusting factors is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 469
SubjectTerms Artificial bee colony
Biological-inspired optimization algorithm
Optimization
Swarm intelligence
Title A modified ABC algorithm based on improved-global-best-guided approach and adaptive-limit strategy for global optimization
URI https://dx.doi.org/10.1016/j.asoc.2016.05.007
Volume 46
WOSCitedRecordID wos000377999900035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKx4EL34iND_nArQpKYseJj2EaAg4T0obUW2THzpapTao2mSb-BP7qPcd2KCuqAImL1bp-reX363vPL-8DoXdhGRPCiQoklzqgIqoCnsHbpIyqSDPGlQiHZhPp6Wk2n_Ovk8kPnwtzvUibJru54av_ymqYA2ab1Nm_YPf4pTABr4HpMALbYfwjxuemu01dGdMy_3A8E4uLdl13l8uZUVjKPByoB0eCNvHqphpIIEEzBBd9reBjX2PcFnFVYmXEYbAwaVCzja1ka0M8XSWRFhYsXS7ntqHrrdsNiPkhbr3vvJIc3NQuEhhuwPUYE2QbaPf1zqqzy7ZfenLnoojYGIPl_GY7uTNW1LIsoNw5ILWdy9I44Mw2cfHymW4LWGobuzhdTW0Z7R01YD0SV-8FINyE77GhOqttr3unvPaZ2YfZBhimpmEpuYcO4jTh2RQd5J9P5l_GZ1KMD516x327FCwbLXj3l35v5myZLueP0UN358C5xcoTNNHNU_TI9_PATrw_Q99z7KGDATp4hA4eoIPbBu-BDvbQwQAd_Ct0sIcOBuhgS4u3ofMcfft4cn78KXC9OYKShGEHo5JKlSoC_WSSnSNptEVEK5GJipsaToJpRlRcklLSJFGEMlGlSsMNWclSkBdo2rSNfomwVCTmIpIJ45KmTPOUlLGmmQRyHVbyEEX-KIvSFa43_VMWhY9QvCrM8Rfm-IswKeD4D9FspFnZsi17VyeeQ4UzPK1BWQCg9tAd_SPdK_Tg59_kNZp2616_QffL667erN863N0CuAisPg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+ABC+algorithm+based+on+improved-global-best-guided+approach+and+adaptive-limit+strategy+for+global+optimization&rft.jtitle=Applied+soft+computing&rft.au=Zhong%2C+Fuli&rft.au=Li%2C+Hui&rft.au=Zhong%2C+Shouming&rft.date=2016-09-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=46&rft.spage=469&rft.epage=486&rft_id=info:doi/10.1016%2Fj.asoc.2016.05.007&rft.externalDocID=S1568494616302083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon