M-Net based stacked autoencoder for ransomware detection using blockchain data

Ransomware is a kind of malevolent program software that encrypts the items on the hard disc and prevents the clients from accessing them until they are paid a ransom. Associations like monetary establishments and medical care areas (i.e., smart medical care) are mostly targeted by ransomware attack...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 167; s. 112460
Hlavní autoři: Nathan, Uma Devi Gurumuni, Vadivu, P. Balashanmuga, Maram, Balajee, Gopisetty, Guru Kesava Dasu, Das, Smritilekha, T, Daniya
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2024
Témata:
ISSN:1568-4946
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Ransomware is a kind of malevolent program software that encrypts the items on the hard disc and prevents the clients from accessing them until they are paid a ransom. Associations like monetary establishments and medical care areas (i.e., smart medical care) are mostly targeted by ransomware attacks. Ransomware assaults are crucial holes still in blockchain technology and prevent effective data communication in networks. This study aims to introduce an efficient system, named M-Net-based Stacked Autoencoder (M-Net_SA) for ransomware detection using blockchain data. Initially, the input data is taken from a dataset and then sent to the feature extraction process, which utilizes sequence-based statistical features. After that, data transformation is completed using the Yeo-Johnson transformation to transform the data into a usable format. After that, feature fusion is executed using a Deep Q-network (DQN) with Lorentzian similarity to enhance the representativeness of the target features. Finally, ransomware detection is accomplished by the proposed M-Net_SA, which is the integration of MobileNet and Deep Stacked Autoencoder (DSAE). The experimental validation of the proposed M-Net_SA is compared with other conventional techniques and the proposed model attained maximum accuracy, sensitivity, and specificity of 0.959, 0.967, and 0.957 respectively. •Data transformation is processed utilizing the Yeo-Johnson transformation.•Feature fusion is executed using a Deep Q-network.•Ransomware detection is effectuated using the M-Net-based Stacked Autoencoder.
AbstractList Ransomware is a kind of malevolent program software that encrypts the items on the hard disc and prevents the clients from accessing them until they are paid a ransom. Associations like monetary establishments and medical care areas (i.e., smart medical care) are mostly targeted by ransomware attacks. Ransomware assaults are crucial holes still in blockchain technology and prevent effective data communication in networks. This study aims to introduce an efficient system, named M-Net-based Stacked Autoencoder (M-Net_SA) for ransomware detection using blockchain data. Initially, the input data is taken from a dataset and then sent to the feature extraction process, which utilizes sequence-based statistical features. After that, data transformation is completed using the Yeo-Johnson transformation to transform the data into a usable format. After that, feature fusion is executed using a Deep Q-network (DQN) with Lorentzian similarity to enhance the representativeness of the target features. Finally, ransomware detection is accomplished by the proposed M-Net_SA, which is the integration of MobileNet and Deep Stacked Autoencoder (DSAE). The experimental validation of the proposed M-Net_SA is compared with other conventional techniques and the proposed model attained maximum accuracy, sensitivity, and specificity of 0.959, 0.967, and 0.957 respectively. •Data transformation is processed utilizing the Yeo-Johnson transformation.•Feature fusion is executed using a Deep Q-network.•Ransomware detection is effectuated using the M-Net-based Stacked Autoencoder.
ArticleNumber 112460
Author Nathan, Uma Devi Gurumuni
T, Daniya
Maram, Balajee
Das, Smritilekha
Vadivu, P. Balashanmuga
Gopisetty, Guru Kesava Dasu
Author_xml – sequence: 1
  givenname: Uma Devi Gurumuni
  surname: Nathan
  fullname: Nathan, Uma Devi Gurumuni
  organization: Computer Science and Engineering, University of Engineering and Management, Jaipur, Rajasthan, India
– sequence: 2
  givenname: P. Balashanmuga
  surname: Vadivu
  fullname: Vadivu, P. Balashanmuga
  organization: Department of ECE, Mahendra Engineering College, Namakkal, Tamil Nadu, India
– sequence: 3
  givenname: Balajee
  surname: Maram
  fullname: Maram, Balajee
  organization: School of Computer Science and Artificial Intelligence, SR University, Warangal, Telangana, 506371
– sequence: 4
  givenname: Guru Kesava Dasu
  surname: Gopisetty
  fullname: Gopisetty, Guru Kesava Dasu
  organization: Department of Information Technology, KKR & KSR Institute of Technology and Sciences, Guntur, Andhra Pradesh, India
– sequence: 5
  givenname: Smritilekha
  surname: Das
  fullname: Das, Smritilekha
  organization: Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
– sequence: 6
  givenname: Daniya
  surname: T
  fullname: T, Daniya
  email: daniya.t@gmrit.edu.in
  organization: Department of CSE (AI&ML), GMR Institute of Technology, Rajam-532127, Andhra Pradesh, India
BookMark eNp9kLtOwzAYhT0UibbwAkx-gQTbdZxEYkEVN6mUBWbrj_0H3IuNbBfE25OoTAydznK-I51vRiY-eCTkirOSM66uNyWkYErBhCw5F1KxCZnySjWFbKU6J7OUNmwotqKZkvVzscZMO0hoacpgtkPCIQf0JliMtA-RRvAp7L8hIrWY0WQXPD0k599ptwtmaz7AeWohwwU562GX8PIv5-Tt_u51-VisXh6elrerwiwYy4Xh2PCa25r1LYLgVS2bSllmlOGVUKZXXCqUFpWpQfWqrWS3qG0FwnYds7iYE3HcNTGkFLHXn9HtIf5ozvRoQW_0aEGPFvTRwgA1_yDjMoxncgS3O43eHFEcTn05jDoZNyhC6-LgQ9vgTuG_sxR9MQ
CitedBy_id crossref_primary_10_1016_j_engappai_2025_110538
crossref_primary_10_1016_j_eswa_2025_129225
Cites_doi 10.24963/ijcai.2020/612
10.1016/j.future.2018.07.052
10.1155/2019/2674684
10.1155/2014/396529
10.1109/ACCESS.2018.2805783
10.3390/s23094467
10.1109/ACCESS.2019.2922706
10.1038/s41598-022-19443-7
10.3390/info11010051
10.1016/j.cose.2022.102659
10.1007/s10207-019-00443-0
10.1016/j.future.2020.02.037
10.1007/s12652-017-0558-5
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2024.112460
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_asoc_2024_112460
S1568494624012341
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-c1e8171d70f9ea21574856d0c6c1526cf6146e4de6c7a6f6954b37d5a2dbb0de3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001361854000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 22:23:43 EST 2025
Sat Nov 29 03:06:06 EST 2025
Wed Dec 04 16:47:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lorentzian Similarity
Yeo-Johnson Transformation
Deep Stacked Autoencoder
MobileNet
Deep Q-network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-c1e8171d70f9ea21574856d0c6c1526cf6146e4de6c7a6f6954b37d5a2dbb0de3
ParticipantIDs crossref_primary_10_1016_j_asoc_2024_112460
crossref_citationtrail_10_1016_j_asoc_2024_112460
elsevier_sciencedirect_doi_10_1016_j_asoc_2024_112460
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – sequence: 0
  name: Elsevier B.V
References Lv, Wang, Cheng, Duan (bib21) 2019; 7
Maniath, Ashok, Poornachandran, Sujadevi, AU, Jan (bib11) 2017
Weisberg (bib20) 2003; 1
Cha, S.H., “Comprehensive survey on distance/similarity measures between probability density functions”, City, vol.1(2), p.1, 2007.
The Aktaion Example Labeled Data is taken from
Lee, Kim (bib19) 2008; 2
CryptoMalware Dataset is taken from
Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. and Adam, H., “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv preprint arXiv:1704.04861, 2017.
Delgado-Mohatar, Sierra-Cámara, Anguiano (bib5) 2020; 112
Akcora, C.G., Li, Y., Gel, Y.R. and Kantarcioglu, M., “Bitcoinheist: Topological data analysis for ransomware detection on the bitcoin blockchain”, arXiv preprint arXiv:1906.07852, 2019.
Bitcoin, N.S., Bitcoin: A peer-to-peer electronic cash system, 2008.
Bhaladhare, Jinwala (bib26) 2014
Gu, Sun, Du, Wang, Zhuang, Wang (bib9) 2018; 6
Tran, Sato, Kubo (bib16) 2020; 11
Learning/blob/master/data.csv”, accessed on August 2023.
Azmoodeh, Dehghantanha, Conti, Choo (bib10) 2018; 9
Zhang, Xiao, Xiao, Sangaiah, Zhang, Zhang (bib13) 2019
Fernando, Komninos (bib8) 2022; 116
Yu, Li, Li, Xia, Ding, Samali (bib24) 2023; 14
Onwuegbuche, Jurcut, Pasquale (bib7) 2023
Zhao, Bo, Feng, Xu, Yu (bib18) 2019
Zahoora, Khan, Rajarajan, Khan, Asam, Jamal (bib17) 2022; 12
The Ransomware-Detection-Dataset is taken from
Almomani, Alkhayer, El-Shafai (bib14) 2023; 23
Karapapas, Pittaras, Fotiou, Polyzos (bib3) 2020
Zhang, Xiao, Mercaldo, Ni, Martinelli, Sangaiah (bib12) 2019; 90
Sgandurra, D., Muñoz-González, L., Mohsen, R. and Lupu, E.C., “Automated dynamic analysis of ransomware: Benefits, limitations and use for detection”, arXiv preprint arXiv:1609.03020, 2016.
accessed on July 2024.
Sasaki, Horiuchi, Kato (bib25) 2017
Kok, Abdullah, Jhanjhi, Supramaniam (bib1) 2019; 9
Patsakis, Casino (bib15) 2019; 18
accessed on August 2023.
Maniath (10.1016/j.asoc.2024.112460_bib11) 2017
Zhang (10.1016/j.asoc.2024.112460_bib12) 2019; 90
Fernando (10.1016/j.asoc.2024.112460_bib8) 2022; 116
Kok (10.1016/j.asoc.2024.112460_bib1) 2019; 9
Zhao (10.1016/j.asoc.2024.112460_bib18) 2019
10.1016/j.asoc.2024.112460_bib22
10.1016/j.asoc.2024.112460_bib23
10.1016/j.asoc.2024.112460_bib6
Lv (10.1016/j.asoc.2024.112460_bib21) 2019; 7
Patsakis (10.1016/j.asoc.2024.112460_bib15) 2019; 18
Zahoora (10.1016/j.asoc.2024.112460_bib17) 2022; 12
Azmoodeh (10.1016/j.asoc.2024.112460_bib10) 2018; 9
Weisberg (10.1016/j.asoc.2024.112460_bib20) 2003; 1
10.1016/j.asoc.2024.112460_bib2
Zhang (10.1016/j.asoc.2024.112460_bib13) 2019
10.1016/j.asoc.2024.112460_bib4
Almomani (10.1016/j.asoc.2024.112460_bib14) 2023; 23
Sasaki (10.1016/j.asoc.2024.112460_bib25) 2017
Delgado-Mohatar (10.1016/j.asoc.2024.112460_bib5) 2020; 112
Karapapas (10.1016/j.asoc.2024.112460_bib3) 2020
Yu (10.1016/j.asoc.2024.112460_bib24) 2023; 14
10.1016/j.asoc.2024.112460_bib27
Gu (10.1016/j.asoc.2024.112460_bib9) 2018; 6
10.1016/j.asoc.2024.112460_bib28
10.1016/j.asoc.2024.112460_bib29
Bhaladhare (10.1016/j.asoc.2024.112460_bib26) 2014
Lee (10.1016/j.asoc.2024.112460_bib19) 2008; 2
Tran (10.1016/j.asoc.2024.112460_bib16) 2020; 11
Onwuegbuche (10.1016/j.asoc.2024.112460_bib7) 2023
References_xml – start-page: 285
  year: 2023
  end-page: 295
  ident: bib7
  article-title: Enhancing Ransomware Classification with Multi-Stage Feature Selection and Data Imbalance Correction
  publication-title: In International Symposium on Cyber Security, Cryptology, and Machine Learning
– volume: 116
  year: 2022
  ident: bib8
  article-title: “FeSA: Feature selection architecture for ransomware detection under concept drift”
  publication-title: Comput. Secur.
– volume: 90
  start-page: 211
  year: 2019
  end-page: 221
  ident: bib12
  article-title: Classification of ransomware families with machine learning based onN-gram of opcodes
  publication-title: Future Gener. Comput. Syst.
– year: 2019
  ident: bib13
  article-title: Ransomware classification using patch-based CNN and self-attention network on embedded N-grams of opcodes
  publication-title: Future Gener. Comput. Syst.
– volume: 112
  start-page: 589
  year: 2020
  end-page: 603
  ident: bib5
  article-title: Blockchain-based semi-autonomous ransomware
  publication-title: Future Gener. Comput. Syst.
– reference: Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. and Adam, H., “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv preprint arXiv:1704.04861, 2017.
– volume: 2
  start-page: 554
  year: 2008
  end-page: 559
  ident: bib19
  article-title: News keyword extraction for topic tracking
  publication-title: In Proceedings of 2008 Fourth International Conference on networked computing and advanced information management
– volume: 14
  year: 2023
  ident: bib24
  article-title: Automated damage diagnosis of concrete jack arch beam using optimized deep stacked autoencoders and multi-sensor fusion
  publication-title: Dev. Built Environ.
– volume: 9
  start-page: 1141
  year: 2018
  end-page: 1152
  ident: bib10
  article-title: Detecting crypto-ransomware in IoT networks based on energy consumption footprint
  publication-title: J. Ambient Intell. Humaniz. Comput.
– reference: The Aktaion Example Labeled Data is taken from “
– start-page: 1
  year: 2020
  end-page: 5
  ident: bib3
  article-title: Ransomware as a service using smart contracts and IPFS
  publication-title: Proc. 2020 IEEE Int. Conf. Block Cryptocurrency (ICBC)
– volume: 18
  start-page: 787
  year: 2019
  end-page: 799
  ident: bib15
  article-title: Hydras and IPFS: a decentralised playground for malware
  publication-title: Int. J. Inf. Secur.
– reference: ”, accessed on July 2024.
– reference: Cha, S.H., “Comprehensive survey on distance/similarity measures between probability density functions”, City, vol.1(2), p.1, 2007.
– start-page: 799
  year: 2017
  end-page: 804
  ident: bib25
  article-title: A study on vision-based mobile robot learning by deep Q-network
  publication-title: In Proceedings of 2017 56th annual Conference of the Society of Instrument and Control Engineers of Japan (SICE)
– reference: Bitcoin, N.S., Bitcoin: A peer-to-peer electronic cash system, 2008.
– reference: CryptoMalware Dataset is taken from “
– reference: ” accessed on August 2023.
– volume: 9
  start-page: 136
  year: 2019
  ident: bib1
  article-title: Ransomware, threat and detection techniques: a review
  publication-title: Int. J. Comput. Sci. Netw. Secur
– reference: Akcora, C.G., Li, Y., Gel, Y.R. and Kantarcioglu, M., “Bitcoinheist: Topological data analysis for ransomware detection on the bitcoin blockchain”, arXiv preprint arXiv:1906.07852, 2019.
– volume: 6
  start-page: 12118
  year: 2018
  end-page: 12128
  ident: bib9
  article-title: “Consortium blockchain-based malware detection in mobile devices”
  publication-title: IEEE Access
– volume: 23
  start-page: 4467
  year: 2023
  ident: bib14
  article-title: E2E-RDS: Efficient End-to-End Ransomware Detection System Based on Static-Based ML and Vision-Based DL Approaches
  publication-title: Sensors
– reference: Sgandurra, D., Muñoz-González, L., Mohsen, R. and Lupu, E.C., “Automated dynamic analysis of ransomware: Benefits, limitations and use for detection”, arXiv preprint arXiv:1609.03020, 2016.
– start-page: 442
  year: 2017
  end-page: 446
  ident: bib11
  article-title: “Deep learning LSTM based ransomware detection”
  publication-title: Proceedings of 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE)
– volume: 11
  start-page: 51
  year: 2020
  ident: bib16
  article-title: MANNWARE: A malware classification approach with a few samples using a memory augmented neural network
  publication-title: Information
– volume: 12
  start-page: 15647
  year: 2022
  ident: bib17
  article-title: Ransomware detection using deep learning based unsupervised feature extraction and a cost-sensitive Pareto Ensemble classifier
  publication-title: Sci. Rep.
– volume: 1
  year: 2003
  ident: bib20
  publication-title: Yeo-Johnson power transformations
– reference: Learning/blob/master/data.csv”, accessed on August 2023.
– year: 2014
  ident: bib26
  article-title: A clustering approach for the-diversity model in privacy preserving data mining using fractional calculus-bacterial foraging optimization algorithm
  publication-title: Adv. Comput. Eng.
– volume: 7
  start-page: 79446
  year: 2019
  end-page: 79454
  ident: bib21
  article-title: “Stochastic double deep q-network”
  publication-title: IEEE Access
– reference: The Ransomware-Detection-Dataset is taken from “
– year: 2019
  ident: bib18
  article-title: A feature extraction method of a hybrid gram for malicious behaviour based on machine learning
  publication-title: Secur. Commun. Netw.
– start-page: 285
  year: 2023
  ident: 10.1016/j.asoc.2024.112460_bib7
  article-title: Enhancing Ransomware Classification with Multi-Stage Feature Selection and Data Imbalance Correction
– ident: 10.1016/j.asoc.2024.112460_bib4
– ident: 10.1016/j.asoc.2024.112460_bib6
  doi: 10.24963/ijcai.2020/612
– volume: 90
  start-page: 211
  year: 2019
  ident: 10.1016/j.asoc.2024.112460_bib12
  article-title: Classification of ransomware families with machine learning based onN-gram of opcodes
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.07.052
– year: 2019
  ident: 10.1016/j.asoc.2024.112460_bib18
  article-title: A feature extraction method of a hybrid gram for malicious behaviour based on machine learning
  publication-title: Secur. Commun. Netw.
  doi: 10.1155/2019/2674684
– volume: 14
  year: 2023
  ident: 10.1016/j.asoc.2024.112460_bib24
  article-title: Automated damage diagnosis of concrete jack arch beam using optimized deep stacked autoencoders and multi-sensor fusion
  publication-title: Dev. Built Environ.
– ident: 10.1016/j.asoc.2024.112460_bib28
– year: 2014
  ident: 10.1016/j.asoc.2024.112460_bib26
  article-title: A clustering approach for the-diversity model in privacy preserving data mining using fractional calculus-bacterial foraging optimization algorithm
  publication-title: Adv. Comput. Eng.
  doi: 10.1155/2014/396529
– volume: 6
  start-page: 12118
  year: 2018
  ident: 10.1016/j.asoc.2024.112460_bib9
  article-title: “Consortium blockchain-based malware detection in mobile devices”
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2805783
– volume: 23
  start-page: 4467
  issue: 9
  year: 2023
  ident: 10.1016/j.asoc.2024.112460_bib14
  article-title: E2E-RDS: Efficient End-to-End Ransomware Detection System Based on Static-Based ML and Vision-Based DL Approaches
  publication-title: Sensors
  doi: 10.3390/s23094467
– ident: 10.1016/j.asoc.2024.112460_bib22
– volume: 7
  start-page: 79446
  year: 2019
  ident: 10.1016/j.asoc.2024.112460_bib21
  article-title: “Stochastic double deep q-network”
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2922706
– volume: 9
  start-page: 136
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2024.112460_bib1
  article-title: Ransomware, threat and detection techniques: a review
  publication-title: Int. J. Comput. Sci. Netw. Secur
– start-page: 442
  year: 2017
  ident: 10.1016/j.asoc.2024.112460_bib11
  article-title: “Deep learning LSTM based ransomware detection”
– volume: 12
  start-page: 15647
  issue: 1
  year: 2022
  ident: 10.1016/j.asoc.2024.112460_bib17
  article-title: Ransomware detection using deep learning based unsupervised feature extraction and a cost-sensitive Pareto Ensemble classifier
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-19443-7
– volume: 11
  start-page: 51
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2024.112460_bib16
  article-title: MANNWARE: A malware classification approach with a few samples using a memory augmented neural network
  publication-title: Information
  doi: 10.3390/info11010051
– start-page: 799
  year: 2017
  ident: 10.1016/j.asoc.2024.112460_bib25
  article-title: A study on vision-based mobile robot learning by deep Q-network
– volume: 116
  year: 2022
  ident: 10.1016/j.asoc.2024.112460_bib8
  article-title: “FeSA: Feature selection architecture for ransomware detection under concept drift”
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2022.102659
– ident: 10.1016/j.asoc.2024.112460_bib29
– ident: 10.1016/j.asoc.2024.112460_bib27
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2024.112460_bib3
  article-title: Ransomware as a service using smart contracts and IPFS
  publication-title: Proc. 2020 IEEE Int. Conf. Block Cryptocurrency (ICBC)
– year: 2019
  ident: 10.1016/j.asoc.2024.112460_bib13
  article-title: Ransomware classification using patch-based CNN and self-attention network on embedded N-grams of opcodes
  publication-title: Future Gener. Comput. Syst.
– ident: 10.1016/j.asoc.2024.112460_bib23
– ident: 10.1016/j.asoc.2024.112460_bib2
– volume: 18
  start-page: 787
  year: 2019
  ident: 10.1016/j.asoc.2024.112460_bib15
  article-title: Hydras and IPFS: a decentralised playground for malware
  publication-title: Int. J. Inf. Secur.
  doi: 10.1007/s10207-019-00443-0
– volume: 112
  start-page: 589
  year: 2020
  ident: 10.1016/j.asoc.2024.112460_bib5
  article-title: Blockchain-based semi-autonomous ransomware
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.02.037
– volume: 2
  start-page: 554
  year: 2008
  ident: 10.1016/j.asoc.2024.112460_bib19
  article-title: News keyword extraction for topic tracking
– volume: 9
  start-page: 1141
  year: 2018
  ident: 10.1016/j.asoc.2024.112460_bib10
  article-title: Detecting crypto-ransomware in IoT networks based on energy consumption footprint
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-017-0558-5
– volume: 1
  year: 2003
  ident: 10.1016/j.asoc.2024.112460_bib20
SSID ssj0016928
Score 2.4366076
Snippet Ransomware is a kind of malevolent program software that encrypts the items on the hard disc and prevents the clients from accessing them until they are paid a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112460
SubjectTerms Deep Q-network
Deep Stacked Autoencoder
Lorentzian Similarity
MobileNet
Yeo-Johnson Transformation
Title M-Net based stacked autoencoder for ransomware detection using blockchain data
URI https://dx.doi.org/10.1016/j.asoc.2024.112460
Volume 167
WOSCitedRecordID wos001361854000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016928
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgcuvBHLSz5wi1IljRPHxwUt76047KLeIsd22JZtWrVJ2T_Bf2YmttOywIo9cImq1J5Ema8zX6bzIORlJE2qSi3DkokkZBVjoYhyGWJrs4rFPBOy667_iY_H-WQiPg8GP3wtzOac13V-cSGW_1XVcA6UjaWz11B3LxROwGdQOhxB7XD8J8Ufh2PTBOidNAYK4FeqA9k2C-xYiY0jMK8QHdRi_h2zvrRpjB0X3nZhgxK82zd1JjFL1tat9eTVM9Y1mO4uF71tvOPDcHIXhUeVnc4lJiNNAX-rFstP_JIvUk83bUdch8ErrOCEHfP2a-8ajuXKAhS_nJkedG8Xy-naNHaAAUoNPpq13MBlpB3c4gMXI7aTBOJsbZaHTLgIpDfGdjiHM6dABpkdN_CbpbdBh9lQAoiHKH64XfxrW-1L7q5PQvT5bbMCZRQoo7AybpD9EU8F2Pn9w_dHkw_931KZ6Ib19nfuqrBswuDlO_kz09lhLyd3yW332kEPLVzukYGp75M7fqQHdRb-ARl36KEdeqhDD91BDwX00C16aI8e2qGHbtFDET0Pyembo5PX70I3ciNUSRQ1oYpNHvNY86gSRgId5CxPMx2pTAHRy1QFbC4zTJtMcZlVmUhZmXCdypEuy0ib5BHZqxe1eUwoMFFeAUFkWigGxFSMpIGXja5UW_GkOiCxfzyFcv3ocSzKefF3xRyQoN-ztN1Yrlyd-qdeOD5peWIBILpi35NrXeUpubVF9zOy16xa85zcVJtmul69cAj6Ce5Flvs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=M-Net+based+stacked+autoencoder+for+ransomware+detection+using+blockchain+data&rft.jtitle=Applied+soft+computing&rft.au=Nathan%2C+Uma+Devi+Gurumuni&rft.au=Vadivu%2C+P.+Balashanmuga&rft.au=Maram%2C+Balajee&rft.au=Gopisetty%2C+Guru+Kesava+Dasu&rft.date=2024-12-01&rft.issn=1568-4946&rft.volume=167&rft.spage=112460&rft_id=info:doi/10.1016%2Fj.asoc.2024.112460&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2024_112460
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon