A novel fault early warning method for centrifugal blowers based on stacked denoising autoencoder and transfer learning
Centrifugal blowers are easy to get faults due to the harsh working environment, and appropriate fault early warning is of great significance for predictive maintenance. Traditional fault early warning methods have poor resistance and feature learning ability in dealing with multivariate data with n...
Uložené v:
| Vydané v: | Journal of manufacturing systems Ročník 76; s. 443 - 456 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.10.2024
|
| Predmet: | |
| ISSN: | 0278-6125 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!