A novel fault early warning method for centrifugal blowers based on stacked denoising autoencoder and transfer learning

Centrifugal blowers are easy to get faults due to the harsh working environment, and appropriate fault early warning is of great significance for predictive maintenance. Traditional fault early warning methods have poor resistance and feature learning ability in dealing with multivariate data with n...

Full description

Saved in:
Bibliographic Details
Published in:Journal of manufacturing systems Vol. 76; pp. 443 - 456
Main Authors: Zhang, You, Li, Congbo, Tang, Ying, Zhang, Xu, Zhou, Feng
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.10.2024
Subjects:
ISSN:0278-6125
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Centrifugal blowers are easy to get faults due to the harsh working environment, and appropriate fault early warning is of great significance for predictive maintenance. Traditional fault early warning methods have poor resistance and feature learning ability in dealing with multivariate data with noise, and cannot achieve domain adaptation in different working environments. Aimed at solving these problems, this paper proposes a novel fault early warning method for centrifugal blowers based on stacked denoising autoencoder with sliding window (SW-SDAE) and transfer learning. The developed SW-SDAE model can effectively learn representative degradation features and temporal dependence from multivariate time-series data with noise. The reconstruction errors of SW-SDAE are used to construct the health indicators, which accurately characterizes the health status of the centrifugal blower. Meanwhile, transfer learning is employed to solve the problem of domain adaptation for different working environments. The established source domain warning model is successfully transferred to the target domain by minimizing the maximum mean discrepancy. When the health indicator exceeds the warning threshold, a fault early warning is performed. Experimental results demonstrate that the developed SW-SDAE warning model integrating transfer learning significantly resists the interference of noise and improves the domain adaptability for different working conditions. The proposed method achieves fault early warning 5.67 h without false alarms before failure and shows superior warning performance compared with traditional warning methods. •A stacked denoising autoencoder model with sliding window is developed to construct health indicators and achieve fault early warning.•A transfer learning method for solving domain adaption is employed in the fault early warning.•The fault warning model fully learns representative degradation features and temporal dependencies from multivariate time-series data with noise.•The proposed method significantly improves the domain adaptability for different working conditions and shows superior warning performance.
AbstractList Centrifugal blowers are easy to get faults due to the harsh working environment, and appropriate fault early warning is of great significance for predictive maintenance. Traditional fault early warning methods have poor resistance and feature learning ability in dealing with multivariate data with noise, and cannot achieve domain adaptation in different working environments. Aimed at solving these problems, this paper proposes a novel fault early warning method for centrifugal blowers based on stacked denoising autoencoder with sliding window (SW-SDAE) and transfer learning. The developed SW-SDAE model can effectively learn representative degradation features and temporal dependence from multivariate time-series data with noise. The reconstruction errors of SW-SDAE are used to construct the health indicators, which accurately characterizes the health status of the centrifugal blower. Meanwhile, transfer learning is employed to solve the problem of domain adaptation for different working environments. The established source domain warning model is successfully transferred to the target domain by minimizing the maximum mean discrepancy. When the health indicator exceeds the warning threshold, a fault early warning is performed. Experimental results demonstrate that the developed SW-SDAE warning model integrating transfer learning significantly resists the interference of noise and improves the domain adaptability for different working conditions. The proposed method achieves fault early warning 5.67 h without false alarms before failure and shows superior warning performance compared with traditional warning methods. •A stacked denoising autoencoder model with sliding window is developed to construct health indicators and achieve fault early warning.•A transfer learning method for solving domain adaption is employed in the fault early warning.•The fault warning model fully learns representative degradation features and temporal dependencies from multivariate time-series data with noise.•The proposed method significantly improves the domain adaptability for different working conditions and shows superior warning performance.
Author Zhang, You
Zhou, Feng
Li, Congbo
Zhang, Xu
Tang, Ying
Author_xml – sequence: 1
  givenname: You
  surname: Zhang
  fullname: Zhang, You
  organization: State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, China
– sequence: 2
  givenname: Congbo
  surname: Li
  fullname: Li, Congbo
  email: congboli@cqu.edu.cn
  organization: State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, China
– sequence: 3
  givenname: Ying
  surname: Tang
  fullname: Tang, Ying
  organization: Department of Electrical and Computer Engineering, Rowan University, Glassboro, NJ 08028, USA
– sequence: 4
  givenname: Xu
  surname: Zhang
  fullname: Zhang, Xu
  organization: State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, China
– sequence: 5
  givenname: Feng
  surname: Zhou
  fullname: Zhou, Feng
  organization: State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, China
BookMark eNp9kMtOwzAQRb0oEi3wA6z8AwljJ81DYlNVvKRKbGBtOfa4OKQ2st1W_XsSlRWLrmZGmnOlexZk5rxDQu4Z5AxY9dDn_S6ecg68zKHJgRUzMgdeN1nF-PKaLGLsARgvgc_JcUWdP-BAjdwPiaIMw4keZXDWbekO05fX1PhAFboUrNlv5UC7wR8xRNrJiJp6R2OS6ntcNTpv40TKffLolNcYqHSapiBdNOMx4Dn7llwZOUS8-5s35PP56WP9mm3eX97Wq02mCoCUKVhWUEhTK9aZrq04N2VX6bZsUUssoW1Ba4awVONbA7XmhndlgV1XS11gW9yQ5pyrgo8xoBHKJpmsH-tIOwgGYpImejFJE5M0AY0YpY0o_4f-BLuT4XQZejxDOJY6WAwiKjuaQG0DqiS0t5fwX7Dxjic
CitedBy_id crossref_primary_10_1016_j_ymssp_2025_113282
crossref_primary_10_1016_j_rcim_2024_102943
crossref_primary_10_1016_j_hspr_2025_08_003
crossref_primary_10_1016_j_knosys_2025_113275
Cites_doi 10.1016/j.ymssp.2023.110109
10.1016/j.eswa.2023.120860
10.1109/TCYB.2020.3027549
10.1016/j.ress.2023.109608
10.1109/TCST.2020.2993068
10.1016/j.ymssp.2023.110239
10.1016/j.jmsy.2023.10.010
10.1016/j.eswa.2023.122215
10.1016/j.measurement.2019.06.029
10.1016/j.ress.2023.109740
10.1016/j.jmsy.2023.07.012
10.1109/TMECH.2017.2759301
10.1016/j.jmsy.2023.03.006
10.1109/TFUZZ.2020.3043673
10.1016/j.measurement.2023.113224
10.1109/TASE.2019.2913628
10.1007/s10845-023-02074-8
10.1016/j.measurement.2020.107570
10.1016/j.measurement.2023.112774
10.1016/j.eswa.2023.120002
10.1109/TIM.2020.2967113
10.1016/j.measurement.2022.110979
10.1109/TMECH.2020.3025615
10.1109/TSMC.2022.3180938
10.1016/j.ymssp.2023.110472
10.1109/TIM.2023.3323967
10.1109/TIE.2014.2301773
10.1109/TIE.2023.3234128
10.1109/TII.2009.2032654
10.1016/j.measurement.2021.109970
10.1016/j.ymssp.2020.107327
10.1109/TFUZZ.2022.3193456
10.1016/j.jmsy.2023.11.004
10.1109/TII.2020.2976752
10.1109/TASE.2020.2983061
10.1109/TIE.2019.2958297
10.1109/TSTE.2020.2989220
10.1109/TIE.2020.2988229
10.1016/j.ymssp.2018.12.051
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.jmsy.2024.08.013
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 456
ExternalDocumentID 10_1016_j_jmsy_2024_08_013
S0278612524001754
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29K
3EH
3V.
4.4
457
4G.
5GY
5VS
7-5
71M
7WY
883
88I
8AO
8FE
8FG
8FL
8FW
8G5
8P~
8R4
8R5
9JN
9M8
AACTN
AAEDT
AAEDW
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABFNM
ABJCF
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFJKZ
AFKRA
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BENPR
BEZIV
BGLVJ
BJAXD
BKOJK
BKOMP
BLXMC
BPHCQ
C1A
CCPQU
CS3
D-I
DU5
DWQXO
E3Z
EBS
EFJIC
EJD
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FRNLG
FYGXN
G-2
GBLVA
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K60
K6V
K6~
K7-
KOM
L6V
LY7
M0C
M0F
M0N
M2O
M2P
M41
M7S
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PTHSS
Q2X
Q38
R2-
RIG
ROL
RPZ
RWL
S0X
SDF
SES
SET
SPC
SPCBC
SST
SSZ
T5K
TAE
TN5
U5U
WH7
WUQ
ZHY
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFFHD
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
PHGZM
PHGZT
PQGLB
~HD
ID FETCH-LOGICAL-c300t-c05603af7c1bfb9622f4b6d949edae40990dd1e05c603807d2f2b43ebb7ad3e93
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001300179100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-6125
IngestDate Sat Nov 29 03:35:05 EST 2025
Tue Nov 18 21:58:12 EST 2025
Sat Oct 19 15:53:54 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Centrifugal blowers
Stacked denoising autoencoder
Transfer learning
Fault early warning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-c05603af7c1bfb9622f4b6d949edae40990dd1e05c603807d2f2b43ebb7ad3e93
PageCount 14
ParticipantIDs crossref_citationtrail_10_1016_j_jmsy_2024_08_013
crossref_primary_10_1016_j_jmsy_2024_08_013
elsevier_sciencedirect_doi_10_1016_j_jmsy_2024_08_013
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Journal of manufacturing systems
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zheng, Luan, Shardt (bib15) 2024; 241
Li, Dai, Zhu (bib12) 2023; 218
Kim, Yang, Ko (bib20) 2023; 68
Wu, Zhang, Cheng (bib23) 2021; 149
Deng, Deng, Miao (bib22) 2024; 242
Fu, Xue, Wu (bib36) 2022; 52
Fan, Hsu, Tsai (bib8) 2020; 17
Gienger, Wagner, Bohm (bib7) 2021; 29
Huang, Zhang, Qin (bib18) 2024; 72
Yin, Ding, Xie (bib40) 2014; 61
Chen, Ma, Hu (bib27) 2023; 214
Yang, Lei, Jia (bib34) 2019; 122
Li, Tang, Deng (bib35) 2020; 156
He, Wang, Zhang (bib14) 2022; 193
Langarica, Ruffelmacher, Nunez (bib17) 2020; 17
Brito, Susto, Brito (bib1) 2023; 232
Odiowei, Cao (bib38) 2010; 6
Chen, Fu, Zheng (bib3) 2023; 71
Jiang, Wang, Chen (bib9) 2024; 238
Li, Huang, He (bib29) 2021; 26
Ross, Sheeba, Shibi (bib31) 2024; 35
Chen, Huang, Chen (bib30) 2023; 193
Zhang, Li, Wang (bib19) 2021; 185
Sun, Huang, Mao (bib32) 2023; 72
Jin, Xu, Qiao (bib10) 2021; 12
Zhao, Ma (bib11) 2020; 69
Rao, Zuo, Tian (bib25) 2023; 189
Sun, Wang, Liu (bib39) 2019; 146
Li, Ding, Peng (bib6) 2022; 30
Min, Fang, Wu (bib33) 2023; 224
Wu, Wang, Zhang (bib24) 2023; 72
Wu, Zhao, Sun (bib26) 2020; 16
Xiao, Shao, Feng (bib2) 2023; 70
Yang, Fang (bib4) 2020; 67
Zuheros, Martínez-Cámara, Herrera-Viedma (bib21) 2023; 53
Jiang, Xie, He (bib16) 2018; 23
Shen, Hui, Yan (bib28) 2020; 67
Shiri, Zimroz, Wodecki (bib5) 2023; 200
Wei, Li (bib37) 2023; 70
Zhang, Yan, Wang (bib13) 2023; 31
Gienger (10.1016/j.jmsy.2024.08.013_bib7) 2021; 29
Langarica (10.1016/j.jmsy.2024.08.013_bib17) 2020; 17
Kim (10.1016/j.jmsy.2024.08.013_bib20) 2023; 68
Chen (10.1016/j.jmsy.2024.08.013_bib30) 2023; 193
Shiri (10.1016/j.jmsy.2024.08.013_bib5) 2023; 200
Huang (10.1016/j.jmsy.2024.08.013_bib18) 2024; 72
Wei (10.1016/j.jmsy.2024.08.013_bib37) 2023; 70
Wu (10.1016/j.jmsy.2024.08.013_bib24) 2023; 72
Chen (10.1016/j.jmsy.2024.08.013_bib27) 2023; 214
Zhang (10.1016/j.jmsy.2024.08.013_bib19) 2021; 185
Chen (10.1016/j.jmsy.2024.08.013_bib3) 2023; 71
Zhao (10.1016/j.jmsy.2024.08.013_bib11) 2020; 69
Li (10.1016/j.jmsy.2024.08.013_bib35) 2020; 156
Li (10.1016/j.jmsy.2024.08.013_bib12) 2023; 218
Jiang (10.1016/j.jmsy.2024.08.013_bib16) 2018; 23
Jiang (10.1016/j.jmsy.2024.08.013_bib9) 2024; 238
Jin (10.1016/j.jmsy.2024.08.013_bib10) 2021; 12
Xiao (10.1016/j.jmsy.2024.08.013_bib2) 2023; 70
Rao (10.1016/j.jmsy.2024.08.013_bib25) 2023; 189
Zhang (10.1016/j.jmsy.2024.08.013_bib13) 2023; 31
Yin (10.1016/j.jmsy.2024.08.013_bib40) 2014; 61
Li (10.1016/j.jmsy.2024.08.013_bib6) 2022; 30
Zheng (10.1016/j.jmsy.2024.08.013_bib15) 2024; 241
Sun (10.1016/j.jmsy.2024.08.013_bib39) 2019; 146
He (10.1016/j.jmsy.2024.08.013_bib14) 2022; 193
Min (10.1016/j.jmsy.2024.08.013_bib33) 2023; 224
Brito (10.1016/j.jmsy.2024.08.013_bib1) 2023; 232
Yang (10.1016/j.jmsy.2024.08.013_bib4) 2020; 67
Fu (10.1016/j.jmsy.2024.08.013_bib36) 2022; 52
Fan (10.1016/j.jmsy.2024.08.013_bib8) 2020; 17
Yang (10.1016/j.jmsy.2024.08.013_bib34) 2019; 122
Li (10.1016/j.jmsy.2024.08.013_bib29) 2021; 26
Shen (10.1016/j.jmsy.2024.08.013_bib28) 2020; 67
Zuheros (10.1016/j.jmsy.2024.08.013_bib21) 2023; 53
Odiowei (10.1016/j.jmsy.2024.08.013_bib38) 2010; 6
Deng (10.1016/j.jmsy.2024.08.013_bib22) 2024; 242
Ross (10.1016/j.jmsy.2024.08.013_bib31) 2024; 35
Wu (10.1016/j.jmsy.2024.08.013_bib23) 2021; 149
Sun (10.1016/j.jmsy.2024.08.013_bib32) 2023; 72
Wu (10.1016/j.jmsy.2024.08.013_bib26) 2020; 16
References_xml – volume: 17
  start-page: 1925
  year: 2020
  end-page: 1936
  ident: bib8
  article-title: Data-driven approach for fault detection and diagnostic in semiconductor manufacturing
  publication-title: IEEE Trans Autom Sci Eng
– volume: 242
  year: 2024
  ident: bib22
  article-title: Semi-supervised ensemble fault diagnosis method based on adversarial decoupled auto-encoder with extremely limited labels
  publication-title: Reliab Eng Syst Saf
– volume: 185
  year: 2021
  ident: bib19
  article-title: A novel fault diagnosis method based on multi-level information fusion and hierarchical adaptive convolutional neural networks for centrifugal blowers
  publication-title: Measurement
– volume: 72
  start-page: 93
  year: 2024
  end-page: 103
  ident: bib18
  article-title: Interpretable real-time monitoring of pipeline weld crack leakage based on wavelet multi-kernel network
  publication-title: J Manuf Syst
– volume: 23
  start-page: 89
  year: 2018
  end-page: 100
  ident: bib16
  article-title: Wind turbine fault detection using a denoising autoencoder with temporal information
  publication-title: IEEE/ASME Trans Mech
– volume: 68
  start-page: 117
  year: 2023
  end-page: 129
  ident: bib20
  article-title: Deep learning-based data registration of melt-pool-monitoring images for laser powder bed fusion additive manufacturing
  publication-title: J Manuf Syst
– volume: 72
  start-page: 3534610
  year: 2023
  ident: bib24
  article-title: Wind turbine blade breakage monitoring with mogrifier lstm autoencoder
  publication-title: IEEE Trans Instrum Meas
– volume: 72
  start-page: 3521712
  year: 2023
  ident: bib32
  article-title: Multiscale margin disparity adversarial network transfer learning for fault diagnosis
  publication-title: IEEE Trans Instrum Meas
– volume: 241
  year: 2024
  ident: bib15
  article-title: Dynamic-controlled principal component analysis for fault detection and automatic recovery
  publication-title: Reliab Eng Syst Saf
– volume: 149
  year: 2021
  ident: bib23
  article-title: A hybrid classification autoencoder for semi-supervised fault diagnosis in rotating machinery
  publication-title: Mech Syst Signal Process
– volume: 12
  start-page: 202
  year: 2021
  end-page: 210
  ident: bib10
  article-title: Condition monitoring of wind turbine generators using Scada data analysis
  publication-title: IEEE Trans Sustain Energy
– volume: 67
  start-page: 8743
  year: 2020
  end-page: 8754
  ident: bib28
  article-title: A new penalty domain selection machine enabled transfer learning for gearbox fault recognition
  publication-title: IEEE Trans Ind Electron
– volume: 218
  year: 2023
  ident: bib12
  article-title: A novel fault early warning method for mechanical equipment based on improved mset and ccpr
  publication-title: Measurement
– volume: 200
  year: 2023
  ident: bib5
  article-title: Using long-term condition monitoring data with non-Gaussian noise for online diagnostics
  publication-title: Mech Syst Signal Process
– volume: 53
  start-page: 369
  year: 2023
  end-page: 379
  ident: bib21
  article-title: Crowd decision making: sparse representation guided by sentiment analysis for leveraging the wisdom of the crowd
  publication-title: IEEE Trans Syst Man Cybern-Syst
– volume: 122
  start-page: 692
  year: 2019
  end-page: 706
  ident: bib34
  article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings
  publication-title: Mech Syst Signal Process
– volume: 31
  start-page: 970
  year: 2023
  end-page: 981
  ident: bib13
  article-title: Asynchronous fault detection filter design for t-s fuzzy singular systems via dynamic event-triggered scheme
  publication-title: IEEE Trans Fuzzy Syst
– volume: 238
  year: 2024
  ident: bib9
  article-title: An orbit-based encoder-forecaster deep learning method for condition monitoring of large turbomachines
  publication-title: Expert Syst Appl
– volume: 193
  year: 2023
  ident: bib30
  article-title: Transfer learning algorithms for bearing remaining useful life prediction: a comprehensive review from an industrial application perspective
  publication-title: Mech Syst Signal Process
– volume: 67
  start-page: 10856
  year: 2020
  end-page: 10864
  ident: bib4
  article-title: A new nonlinear model-based fault detection method using Mann-Whitney test
  publication-title: IEEE Trans Ind Electron
– volume: 214
  year: 2023
  ident: bib27
  article-title: An effective fault diagnosis approach for bearing using stacked de-noising auto-encoder with structure adaptive adjustment
  publication-title: Measurement
– volume: 6
  start-page: 36
  year: 2010
  end-page: 45
  ident: bib38
  article-title: Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations
  publication-title: IEEE Trans Ind Inform
– volume: 232
  year: 2023
  ident: bib1
  article-title: Fault diagnosis using explainable AI: a transfer learning-based approach for rotating machinery exploiting augmented synthetic data
  publication-title: Expert Syst Appl
– volume: 193
  year: 2022
  ident: bib14
  article-title: Anomaly detection and early warning via a novel multiblock-based method with applications to thermal power plants
  publication-title: Measurement
– volume: 146
  start-page: 305
  year: 2019
  end-page: 314
  ident: bib39
  article-title: A sparse stacked denoising autoencoder with optimized transfer learning applied to the fault diagnosis of rolling bearings
  publication-title: Measurement
– volume: 70
  start-page: 12851
  year: 2023
  end-page: 12859
  ident: bib37
  article-title: Spatiotemporal entropy for abnormality detection and localization of Li-ion battery packs
  publication-title: IEEE Trans Ind Electron
– volume: 61
  start-page: 6418
  year: 2014
  end-page: 6428
  ident: bib40
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Trans Ind Electron
– volume: 30
  start-page: 579
  year: 2022
  end-page: 590
  ident: bib6
  article-title: Optimal observer-based fault detection and estimation approaches for t-s fuzzy systems
  publication-title: IEEE Trans Fuzzy Syst
– volume: 69
  start-page: 6212
  year: 2020
  end-page: 6220
  ident: bib11
  article-title: From polynomial fitting to Kernel Ridge regression: A generalized difference filter for encoder signal analysis
  publication-title: IEEE Trans Instrum Meas
– volume: 52
  start-page: 5113
  year: 2022
  end-page: 5123
  ident: bib36
  article-title: A fault diagnosability evaluation method for dynamic systems without distribution knowledge
  publication-title: IEEE Trans Cybern
– volume: 71
  start-page: 581
  year: 2023
  end-page: 594
  ident: bib3
  article-title: The advance of digital twin for predictive maintenance: the role and function of machine learning
  publication-title: J Manuf Syst
– volume: 26
  start-page: 1591
  year: 2021
  end-page: 1601
  ident: bib29
  article-title: A two-stage transfer adversarial network for intelligent fault diagnosis of rotating machinery with multiple new faults
  publication-title: IEEE/ASME Trans Mech
– volume: 17
  start-page: 284
  year: 2020
  end-page: 295
  ident: bib17
  article-title: An industrial internet application for real-time fault diagnosis in industrial motors
  publication-title: IEEE Trans Autom Sci Eng
– volume: 189
  year: 2023
  ident: bib25
  article-title: A speed normalized autoencoder for rotating machinery fault detection under varying speed conditions
  publication-title: Mech Syst Signal Process
– volume: 224
  year: 2023
  ident: bib33
  article-title: A fault diagnosis framework for autonomous vehicles with sensor self-diagnosis
  publication-title: Expert Syst Appl
– volume: 16
  start-page: 7479
  year: 2020
  end-page: 7488
  ident: bib26
  article-title: Fault-attention generative probabilistic adversarial autoencoder for machine anomaly detection
  publication-title: IEEE Trans Ind Inform
– volume: 29
  start-page: 1131
  year: 2021
  end-page: 1146
  ident: bib7
  article-title: Robust fault diagnosis for adaptive structures with unknown stochastic disturbances
  publication-title: IEEE Trans Control Syst Technol
– volume: 70
  start-page: 186
  year: 2023
  end-page: 201
  ident: bib2
  article-title: Towards trustworthy rotating machinery fault diagnosis via attention uncertainty in transformer
  publication-title: J Manuf Syst
– volume: 35
  start-page: 757
  year: 2024
  end-page: 775
  ident: bib31
  article-title: A novel approach of tool condition monitoring in sustainable machining of Ni alloy with transfer learning models
  publication-title: J Intell Manuf
– volume: 156
  year: 2020
  ident: bib35
  article-title: Deep balanced domain adaptation neural networks for fault diagnosis of planetary gearboxes with limited labeled data
  publication-title: Measurement
– volume: 189
  year: 2023
  ident: 10.1016/j.jmsy.2024.08.013_bib25
  article-title: A speed normalized autoencoder for rotating machinery fault detection under varying speed conditions
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2023.110109
– volume: 232
  year: 2023
  ident: 10.1016/j.jmsy.2024.08.013_bib1
  article-title: Fault diagnosis using explainable AI: a transfer learning-based approach for rotating machinery exploiting augmented synthetic data
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.120860
– volume: 52
  start-page: 5113
  issue: 6
  year: 2022
  ident: 10.1016/j.jmsy.2024.08.013_bib36
  article-title: A fault diagnosability evaluation method for dynamic systems without distribution knowledge
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2020.3027549
– volume: 241
  year: 2024
  ident: 10.1016/j.jmsy.2024.08.013_bib15
  article-title: Dynamic-controlled principal component analysis for fault detection and automatic recovery
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109608
– volume: 29
  start-page: 1131
  issue: 3
  year: 2021
  ident: 10.1016/j.jmsy.2024.08.013_bib7
  article-title: Robust fault diagnosis for adaptive structures with unknown stochastic disturbances
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2020.2993068
– volume: 193
  year: 2023
  ident: 10.1016/j.jmsy.2024.08.013_bib30
  article-title: Transfer learning algorithms for bearing remaining useful life prediction: a comprehensive review from an industrial application perspective
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2023.110239
– volume: 71
  start-page: 581
  year: 2023
  ident: 10.1016/j.jmsy.2024.08.013_bib3
  article-title: The advance of digital twin for predictive maintenance: the role and function of machine learning
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2023.10.010
– volume: 238
  year: 2024
  ident: 10.1016/j.jmsy.2024.08.013_bib9
  article-title: An orbit-based encoder-forecaster deep learning method for condition monitoring of large turbomachines
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.122215
– volume: 146
  start-page: 305
  year: 2019
  ident: 10.1016/j.jmsy.2024.08.013_bib39
  article-title: A sparse stacked denoising autoencoder with optimized transfer learning applied to the fault diagnosis of rolling bearings
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.06.029
– volume: 242
  year: 2024
  ident: 10.1016/j.jmsy.2024.08.013_bib22
  article-title: Semi-supervised ensemble fault diagnosis method based on adversarial decoupled auto-encoder with extremely limited labels
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109740
– volume: 70
  start-page: 186
  year: 2023
  ident: 10.1016/j.jmsy.2024.08.013_bib2
  article-title: Towards trustworthy rotating machinery fault diagnosis via attention uncertainty in transformer
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2023.07.012
– volume: 23
  start-page: 89
  issue: 1
  year: 2018
  ident: 10.1016/j.jmsy.2024.08.013_bib16
  article-title: Wind turbine fault detection using a denoising autoencoder with temporal information
  publication-title: IEEE/ASME Trans Mech
  doi: 10.1109/TMECH.2017.2759301
– volume: 68
  start-page: 117
  year: 2023
  ident: 10.1016/j.jmsy.2024.08.013_bib20
  article-title: Deep learning-based data registration of melt-pool-monitoring images for laser powder bed fusion additive manufacturing
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2023.03.006
– volume: 30
  start-page: 579
  issue: 2
  year: 2022
  ident: 10.1016/j.jmsy.2024.08.013_bib6
  article-title: Optimal observer-based fault detection and estimation approaches for t-s fuzzy systems
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2020.3043673
– volume: 218
  year: 2023
  ident: 10.1016/j.jmsy.2024.08.013_bib12
  article-title: A novel fault early warning method for mechanical equipment based on improved mset and ccpr
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113224
– volume: 17
  start-page: 284
  issue: 1
  year: 2020
  ident: 10.1016/j.jmsy.2024.08.013_bib17
  article-title: An industrial internet application for real-time fault diagnosis in industrial motors
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2019.2913628
– volume: 35
  start-page: 757
  issue: 2
  year: 2024
  ident: 10.1016/j.jmsy.2024.08.013_bib31
  article-title: A novel approach of tool condition monitoring in sustainable machining of Ni alloy with transfer learning models
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-023-02074-8
– volume: 156
  year: 2020
  ident: 10.1016/j.jmsy.2024.08.013_bib35
  article-title: Deep balanced domain adaptation neural networks for fault diagnosis of planetary gearboxes with limited labeled data
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107570
– volume: 214
  year: 2023
  ident: 10.1016/j.jmsy.2024.08.013_bib27
  article-title: An effective fault diagnosis approach for bearing using stacked de-noising auto-encoder with structure adaptive adjustment
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.112774
– volume: 224
  year: 2023
  ident: 10.1016/j.jmsy.2024.08.013_bib33
  article-title: A fault diagnosis framework for autonomous vehicles with sensor self-diagnosis
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.120002
– volume: 69
  start-page: 6212
  issue: 9
  year: 2020
  ident: 10.1016/j.jmsy.2024.08.013_bib11
  article-title: From polynomial fitting to Kernel Ridge regression: A generalized difference filter for encoder signal analysis
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2020.2967113
– volume: 193
  year: 2022
  ident: 10.1016/j.jmsy.2024.08.013_bib14
  article-title: Anomaly detection and early warning via a novel multiblock-based method with applications to thermal power plants
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.110979
– volume: 26
  start-page: 1591
  issue: 3
  year: 2021
  ident: 10.1016/j.jmsy.2024.08.013_bib29
  article-title: A two-stage transfer adversarial network for intelligent fault diagnosis of rotating machinery with multiple new faults
  publication-title: IEEE/ASME Trans Mech
  doi: 10.1109/TMECH.2020.3025615
– volume: 53
  start-page: 369
  issue: 1
  year: 2023
  ident: 10.1016/j.jmsy.2024.08.013_bib21
  article-title: Crowd decision making: sparse representation guided by sentiment analysis for leveraging the wisdom of the crowd
  publication-title: IEEE Trans Syst Man Cybern-Syst
  doi: 10.1109/TSMC.2022.3180938
– volume: 200
  year: 2023
  ident: 10.1016/j.jmsy.2024.08.013_bib5
  article-title: Using long-term condition monitoring data with non-Gaussian noise for online diagnostics
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2023.110472
– volume: 72
  start-page: 3534610
  year: 2023
  ident: 10.1016/j.jmsy.2024.08.013_bib24
  article-title: Wind turbine blade breakage monitoring with mogrifier lstm autoencoder
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2023.3323967
– volume: 72
  start-page: 3521712
  year: 2023
  ident: 10.1016/j.jmsy.2024.08.013_bib32
  article-title: Multiscale margin disparity adversarial network transfer learning for fault diagnosis
  publication-title: IEEE Trans Instrum Meas
– volume: 61
  start-page: 6418
  issue: 11
  year: 2014
  ident: 10.1016/j.jmsy.2024.08.013_bib40
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2014.2301773
– volume: 70
  start-page: 12851
  issue: 12
  year: 2023
  ident: 10.1016/j.jmsy.2024.08.013_bib37
  article-title: Spatiotemporal entropy for abnormality detection and localization of Li-ion battery packs
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2023.3234128
– volume: 6
  start-page: 36
  issue: 1
  year: 2010
  ident: 10.1016/j.jmsy.2024.08.013_bib38
  article-title: Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2009.2032654
– volume: 185
  year: 2021
  ident: 10.1016/j.jmsy.2024.08.013_bib19
  article-title: A novel fault diagnosis method based on multi-level information fusion and hierarchical adaptive convolutional neural networks for centrifugal blowers
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109970
– volume: 149
  year: 2021
  ident: 10.1016/j.jmsy.2024.08.013_bib23
  article-title: A hybrid classification autoencoder for semi-supervised fault diagnosis in rotating machinery
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2020.107327
– volume: 31
  start-page: 970
  issue: 3
  year: 2023
  ident: 10.1016/j.jmsy.2024.08.013_bib13
  article-title: Asynchronous fault detection filter design for t-s fuzzy singular systems via dynamic event-triggered scheme
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2022.3193456
– volume: 72
  start-page: 93
  year: 2024
  ident: 10.1016/j.jmsy.2024.08.013_bib18
  article-title: Interpretable real-time monitoring of pipeline weld crack leakage based on wavelet multi-kernel network
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2023.11.004
– volume: 16
  start-page: 7479
  issue: 12
  year: 2020
  ident: 10.1016/j.jmsy.2024.08.013_bib26
  article-title: Fault-attention generative probabilistic adversarial autoencoder for machine anomaly detection
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2020.2976752
– volume: 17
  start-page: 1925
  issue: 4
  year: 2020
  ident: 10.1016/j.jmsy.2024.08.013_bib8
  article-title: Data-driven approach for fault detection and diagnostic in semiconductor manufacturing
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2020.2983061
– volume: 67
  start-page: 10856
  issue: 12
  year: 2020
  ident: 10.1016/j.jmsy.2024.08.013_bib4
  article-title: A new nonlinear model-based fault detection method using Mann-Whitney test
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2019.2958297
– volume: 12
  start-page: 202
  issue: 1
  year: 2021
  ident: 10.1016/j.jmsy.2024.08.013_bib10
  article-title: Condition monitoring of wind turbine generators using Scada data analysis
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2020.2989220
– volume: 67
  start-page: 8743
  issue: 10
  year: 2020
  ident: 10.1016/j.jmsy.2024.08.013_bib28
  article-title: A new penalty domain selection machine enabled transfer learning for gearbox fault recognition
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2020.2988229
– volume: 122
  start-page: 692
  year: 2019
  ident: 10.1016/j.jmsy.2024.08.013_bib34
  article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.12.051
SSID ssj0012402
Score 2.3810422
Snippet Centrifugal blowers are easy to get faults due to the harsh working environment, and appropriate fault early warning is of great significance for predictive...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 443
SubjectTerms Centrifugal blowers
Fault early warning
Stacked denoising autoencoder
Transfer learning
Title A novel fault early warning method for centrifugal blowers based on stacked denoising autoencoder and transfer learning
URI https://dx.doi.org/10.1016/j.jmsy.2024.08.013
Volume 76
WOSCitedRecordID wos001300179100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0278-6125
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0012402
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBaydIftMOyJtXtAh90MF7Yk1_YxKDpsOxQD1gG5GZIlFwlSu2jitPsR-88lJdkR9ii2AbsYiSGFgfiZoqmPJCHvaqa4ZAW2bzcqFkInsdJ1FpcZ041IiyaV0jabyE9Pi_m8_DyZfB9yYbarvG2Lm5vy8r-qGu6BsjF19i_UPf4o3IDPoHS4gtrh-keKn0VttzWrqJH9ahMZW8D42sc_XL9oSy20rMxF08MOgex17JUW4Zam8fgAXEZ4unUERqlb2GiC7Dcd1rzE0hOWdGkdXvji206c_8bLvZBtj8kTLhtyHdRHD6PVYHNGZpClFxx37bnqdmEFP2yQE86d92HkgomRA-fDaUNKzY6_hFaPwWstul2hic5DGytcXSe_XQtXl_ynncAFJZaHy4v1t0OUbiu1pny3741sxC8oE0UinxbcKXGP7LE8K4sp2Zt9PJl_Go-l8CjKBu38f_RZWI4w-KOkX3s6gfdy9pg88gqhMweXJ2Ri2qfkYVCM8hm5nlELHGqBQy1wqAcOdcChABwaAId64FALHNq11AOHjsChAXAoAIcOwKEDcJ6Tr-9Pzo4_xL4tR1zzJNnENfjMCZdNXqeqUeURY41QR7oUpdHSCDxp1To1SVbDsCLJNWuYEtwolUvNTclfkGnbteYloWXKUyOTVCWmEEoKKUWmc8Wxm1qdJ2afpMMSVrWvWY-tU1bVQE5cVrjsFS57hf1UU75PonHOpavYcufobNBM5X1O50tWAKQ75h3847xX5MHuUXhNppur3rwh9-vtZrG-euvxdgsi4605
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+fault+early+warning+method+for+centrifugal+blowers+based+on+stacked+denoising+autoencoder+and+transfer+learning&rft.jtitle=Journal+of+manufacturing+systems&rft.au=Zhang%2C+You&rft.au=Li%2C+Congbo&rft.au=Tang%2C+Ying&rft.au=Zhang%2C+Xu&rft.date=2024-10-01&rft.pub=Elsevier+Ltd&rft.issn=0278-6125&rft.volume=76&rft.spage=443&rft.epage=456&rft_id=info:doi/10.1016%2Fj.jmsy.2024.08.013&rft.externalDocID=S0278612524001754
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-6125&client=summon