An adaptive mixture prior in Bayesian convolutional autoencoder for early detecting anomalous degradation behaviors in lithium-ion batteries

Accurate and timely detection of anomalies in lithium-ion batteries is crucial for ensuring their reliability and safety. Complex degradation patterns and limited availability of labeled data pose significant challenges in identifying abnormal behaviors in battery usage. This paper proposes an unsup...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reliability engineering & system safety Jg. 259; S. 110926
Hauptverfasser: Chae, Sun Geu, Bae, Suk Joo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.07.2025
Schlagworte:
ISSN:0951-8320
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accurate and timely detection of anomalies in lithium-ion batteries is crucial for ensuring their reliability and safety. Complex degradation patterns and limited availability of labeled data pose significant challenges in identifying abnormal behaviors in battery usage. This paper proposes an unsupervised adaptive mixture distribution-based Bayesian convolutional autoencoder (AMDBCAE) method for detecting anomalous degradation behaviors in lithium-ion batteries at earlier cycles of reliability test. As the prior for the model parameters, we propose a mixture of the Laplace and Student’s t distributions by taking uncertainties in the weights of the convolutional network and their heavy-tailed characteristics into account. Using a modified form of the Bayes by backprop algorithm, the parameter of mixture proportion is adaptively updated to capture diverse and complex degradation patterns in battery degradation data more efficiently. Extracted latent features are then processed through unsupervised clustering algorithms to identify abnormal degradation behaviors of lithium-ion batteries. The analyses of two real-world lithium-ion battery datasets demonstrate the efficiency and accuracy of the proposed unsupervised framework with limited number of testing data. The proposed method addresses the limitations of manual feature extraction and the need for extensive experimental knowledge by leveraging the adaptive BCAE model to automatically extract latent features as a virtual health indicator in sparse data environments. •Aim to detect anomalies of lithium-ion batteries at earlier stages of cycling test.•Address the limitations of manual feature extraction in a sparse data environment.•Propose an unsupervised adaptive Bayesian convolutional autoencoder (BCAE) method.•Propose a mixture of the Laplace and Student’s t distributions as the prior.
AbstractList Accurate and timely detection of anomalies in lithium-ion batteries is crucial for ensuring their reliability and safety. Complex degradation patterns and limited availability of labeled data pose significant challenges in identifying abnormal behaviors in battery usage. This paper proposes an unsupervised adaptive mixture distribution-based Bayesian convolutional autoencoder (AMDBCAE) method for detecting anomalous degradation behaviors in lithium-ion batteries at earlier cycles of reliability test. As the prior for the model parameters, we propose a mixture of the Laplace and Student’s t distributions by taking uncertainties in the weights of the convolutional network and their heavy-tailed characteristics into account. Using a modified form of the Bayes by backprop algorithm, the parameter of mixture proportion is adaptively updated to capture diverse and complex degradation patterns in battery degradation data more efficiently. Extracted latent features are then processed through unsupervised clustering algorithms to identify abnormal degradation behaviors of lithium-ion batteries. The analyses of two real-world lithium-ion battery datasets demonstrate the efficiency and accuracy of the proposed unsupervised framework with limited number of testing data. The proposed method addresses the limitations of manual feature extraction and the need for extensive experimental knowledge by leveraging the adaptive BCAE model to automatically extract latent features as a virtual health indicator in sparse data environments. •Aim to detect anomalies of lithium-ion batteries at earlier stages of cycling test.•Address the limitations of manual feature extraction in a sparse data environment.•Propose an unsupervised adaptive Bayesian convolutional autoencoder (BCAE) method.•Propose a mixture of the Laplace and Student’s t distributions as the prior.
ArticleNumber 110926
Author Chae, Sun Geu
Bae, Suk Joo
Author_xml – sequence: 1
  givenname: Sun Geu
  orcidid: 0009-0003-1952-1957
  surname: Chae
  fullname: Chae, Sun Geu
  email: sgchae@psm.hanyang.ac.kr
– sequence: 2
  givenname: Suk Joo
  orcidid: 0000-0002-9938-7406
  surname: Bae
  fullname: Bae, Suk Joo
  email: sjbae@hanyang.ac.kr
BookMark eNp9kMtOwzAQRb0oEm3hB1j5BxLsvCOxKRUvqRIbWFtTZ9K6SuzKdiL6D3w0DmXFoquRZuZc6Z4FmWmjkZA7zmLOeHF_iC06FycsyWPOWZ0UMzJndc6jKk3YNVk4d2CMZXVezsn3SlNo4OjViLRXX36wSI9WGUuVpo9wQqdAU2n0aLrBK6OhozB4g1qaBi1twyeC7U60QY_SK72joE0PnRlc2O1siJ84usU9jCHYTcmd8ns19NHvAbxHq9DdkKsWOoe3f3NJPp-fPtav0eb95W292kQyZcxH27aElCPLGGZNhXVRQdnWvJaQbDlWpazaLAvrOi1Ca0yKNGdt1jKs0qooZJYuSXLOldY4Z7EVoXEP9iQ4E5NDcRCTQzE5FGeHAar-QVL532beguouow9nFEOpUaEVTqogEBtlgzLRGHUJ_wHI5pWC
CitedBy_id crossref_primary_10_1016_j_ress_2025_111462
crossref_primary_10_1016_j_ress_2025_111115
crossref_primary_10_1016_j_energy_2025_138229
Cites_doi 10.1016/j.est.2016.01.003
10.1016/j.jclepro.2019.05.401
10.1038/s41586-020-1994-5
10.1016/j.apenergy.2023.120841
10.1016/j.ress.2023.109603
10.1038/35104644
10.1016/j.jpowsour.2020.228964
10.1016/j.compeleceng.2022.108095
10.1016/j.ress.2024.109978
10.1016/j.apenergy.2022.120204
10.1109/TIE.2018.2880701
10.1109/TSMCC.2009.2014642
10.1016/j.nanoen.2017.12.006
10.1016/j.jpowsour.2011.03.101
10.1016/j.ress.2023.109753
10.1038/s41560-019-0356-8
10.1155/2012/395838
10.1016/j.energy.2021.121022
10.1109/TIE.2020.2972468
10.1016/j.jpowsour.2014.10.009
10.1016/j.est.2018.05.002
10.1109/MIM.2008.4579269
10.1016/j.jpowsour.2019.03.008
10.1016/j.jenvman.2020.110500
10.1016/j.est.2018.07.003
10.1016/j.egyai.2020.100006
10.1016/j.ress.2022.108978
10.1016/j.ress.2018.11.013
10.1109/TTE.2023.3304670
10.1016/j.est.2020.101710
10.1109/TIE.2017.2733475
10.1016/j.ress.2022.108717
10.1016/j.ress.2022.108758
10.1016/j.apenergy.2014.04.013
10.1016/j.apenergy.2021.118172
10.1149/2.F10223IF
10.1016/j.ress.2022.108482
10.1016/j.ress.2024.110014
10.36001/phmconf.2016.v8i1.2587
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ress.2025.110926
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ress_2025_110926
S0951832025001292
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
SPC
~HD
ID FETCH-LOGICAL-c300t-bf7a31e040e4d8e968a7f919ca2b1e87c8f44e96936951e26350f4f0e83866c43
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001435735500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Sat Nov 29 08:07:14 EST 2025
Tue Nov 18 22:12:20 EST 2025
Sat Mar 22 15:52:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Latent features
Reliability test
Deep autoencoder
Unsupervised clustering
Virtual health indicator
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-bf7a31e040e4d8e968a7f919ca2b1e87c8f44e96936951e26350f4f0e83866c43
ORCID 0000-0002-9938-7406
0009-0003-1952-1957
ParticipantIDs crossref_primary_10_1016_j_ress_2025_110926
crossref_citationtrail_10_1016_j_ress_2025_110926
elsevier_sciencedirect_doi_10_1016_j_ress_2025_110926
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle Reliability engineering & system safety
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Deutschen, Gasser, Schaller, Siehr (b3) 2018; 19
Bach, Schuster, Fleder (b20) 2016; 5
Blundell, Cornebise, Kavukcuoglu, Wierstra (b40) 2015
Zhu, Chen, Peng, Ye (b47) 2022; 228
Beaulieu, Jha, Garnier, Cerbah (b35) 2022; Vol. 7
Saxena, Kang, Xing, Pecht (b59) 2018
Bai, Tan, Wang (b33) 2019; 233
Neal, Hinton (b48) 1998
Goebel, Saha, Saxena, Celaya, Christophersen (b16) 2008; 11
González-Muñiz, Diaz, Cuadrado, García-Pérez (b39) 2022; 224
Fortuin, Garriga-Alonso, Ober (b42) 2021
Sarve, Phadke (b12) 2023; 14
Hu Y, Palmé T, Fink O. Deep health indicator extraction: A method based on auto-encoders and extreme learning machines. In: Annual conference of the PHM society. Vol. 8, 2016.
Sohn, Byun, Lee (b31) 2022; 328
Smith, Saxon, Keyser, Lundstrom, Cao, Roc (b18) 2017
Li, Liu, Mei (b7) 2018
Ester, Kriegel, Sander, Xu (b52) 1996; Vol. 96
Guo, Feng, Sun (b15) 2024; 245
Maddison, Tarlow, Minka (b50) 2014
Lee, Jo, Kwon, Pecht (b26) 2020; 68
Jang, Gu, Poole (b49) 2016
Attia, Grover, Jin (b55) 2020; 578
Severson, Attia, Jin (b54) 2019; 4
Che, Zheng, Forest, Sui, Hu, Teodorescu (b57) 2024; 241
Bae, Xi (b34) 2022; 226
Cheng, Wang, He (b22) 2021; 232
Park, Baek, Jeong, Bae (b24) 2009; 39
Xue, Li, Zhang, Shen, Chen, Liu (b29) 2021; 482
Wang, Chen, Zhang, Zhu (b19) 2023; 336
Salimans, Kingma, Welling (b41) 2015
Zhang (b44) 2018
Ng, Jordan, Weiss (b53) 2001
Ni, Ji, Feng, Zhang, Lin, Zheng (b38) 2024; 242
Lin, You, Wang, Wu (b6) 2023; 230
Barrera, Bond, Bradley (b13) 2022; 31
Catelani, Ciani, Grasso, Patrizi, Reatti (b9) 2022
Guo, Wang, Li (b36) 2024; 245
Sun, Han, Wang (b30) 2022; 307
Li, Min, Zhang (b32) 2022; 2022
Capasso, Veneri (b10) 2014; 136
Ranzato, Huang, Boureau, LeCun (b45) 2007
Alias, Mohamad (b5) 2015; 274
Xiong, Zhang, He, Zhou, Pecht (b14) 2017; 65
Santhanagopalan, White (b21) 2012; 2012
Fang, Chen, Zhou (b28) 2022; 102
Diao, Naqvi, Pecht (b25) 2020; 32
Ke, Jiang, Zhu (b56) 2023; 10
Johnson, Kotz, Balakrishnan (b46) 1995
Tarascon, Armand (b4) 2001; 414
LeCun, Boser, Denker (b43) 1989
Liu, Li, Zhu (b8) 2018; 44
Zhang, Lee (b17) 2011; 196
Yu, Deng, Yu, Deng (b51) 2016; vol. 1
Fermín-Cueto, McTurk, Allerhand (b58) 2020; 1
Gandoman, Ahmadi, Van den Bossche (b11) 2019; 183
Li, Wang, Yan (b27) 2019; 421
Lee, Kwon, Pecht (b23) 2018; 66
Mossali, Picone, Gentilini, Rodrìguez, Pérez, Colledani (b2) 2020; 264
Kwasi-Effah, Rabczuk (b1) 2018; 18
Li (10.1016/j.ress.2025.110926_b32) 2022; 2022
Bach (10.1016/j.ress.2025.110926_b20) 2016; 5
Sun (10.1016/j.ress.2025.110926_b30) 2022; 307
Liu (10.1016/j.ress.2025.110926_b8) 2018; 44
LeCun (10.1016/j.ress.2025.110926_b43) 1989
Deutschen (10.1016/j.ress.2025.110926_b3) 2018; 19
Bae (10.1016/j.ress.2025.110926_b34) 2022; 226
Severson (10.1016/j.ress.2025.110926_b54) 2019; 4
Smith (10.1016/j.ress.2025.110926_b18) 2017
Yu (10.1016/j.ress.2025.110926_b51) 2016; vol. 1
Lin (10.1016/j.ress.2025.110926_b6) 2023; 230
Wang (10.1016/j.ress.2025.110926_b19) 2023; 336
Ranzato (10.1016/j.ress.2025.110926_b45) 2007
Blundell (10.1016/j.ress.2025.110926_b40) 2015
Che (10.1016/j.ress.2025.110926_b57) 2024; 241
Xue (10.1016/j.ress.2025.110926_b29) 2021; 482
Sohn (10.1016/j.ress.2025.110926_b31) 2022; 328
Xiong (10.1016/j.ress.2025.110926_b14) 2017; 65
Alias (10.1016/j.ress.2025.110926_b5) 2015; 274
Lee (10.1016/j.ress.2025.110926_b23) 2018; 66
Barrera (10.1016/j.ress.2025.110926_b13) 2022; 31
Diao (10.1016/j.ress.2025.110926_b25) 2020; 32
Zhang (10.1016/j.ress.2025.110926_b44) 2018
Johnson (10.1016/j.ress.2025.110926_b46) 1995
Goebel (10.1016/j.ress.2025.110926_b16) 2008; 11
Sarve (10.1016/j.ress.2025.110926_b12) 2023; 14
Tarascon (10.1016/j.ress.2025.110926_b4) 2001; 414
Maddison (10.1016/j.ress.2025.110926_b50) 2014
Jang (10.1016/j.ress.2025.110926_b49) 2016
Guo (10.1016/j.ress.2025.110926_b36) 2024; 245
Ni (10.1016/j.ress.2025.110926_b38) 2024; 242
Salimans (10.1016/j.ress.2025.110926_b41) 2015
Li (10.1016/j.ress.2025.110926_b7) 2018
Bai (10.1016/j.ress.2025.110926_b33) 2019; 233
González-Muñiz (10.1016/j.ress.2025.110926_b39) 2022; 224
Capasso (10.1016/j.ress.2025.110926_b10) 2014; 136
Ke (10.1016/j.ress.2025.110926_b56) 2023; 10
Fortuin (10.1016/j.ress.2025.110926_b42) 2021
Fermín-Cueto (10.1016/j.ress.2025.110926_b58) 2020; 1
Ester (10.1016/j.ress.2025.110926_b52) 1996; Vol. 96
Lee (10.1016/j.ress.2025.110926_b26) 2020; 68
Kwasi-Effah (10.1016/j.ress.2025.110926_b1) 2018; 18
Neal (10.1016/j.ress.2025.110926_b48) 1998
Saxena (10.1016/j.ress.2025.110926_b59) 2018
Li (10.1016/j.ress.2025.110926_b27) 2019; 421
Santhanagopalan (10.1016/j.ress.2025.110926_b21) 2012; 2012
Catelani (10.1016/j.ress.2025.110926_b9) 2022
Fang (10.1016/j.ress.2025.110926_b28) 2022; 102
Attia (10.1016/j.ress.2025.110926_b55) 2020; 578
Zhu (10.1016/j.ress.2025.110926_b47) 2022; 228
Gandoman (10.1016/j.ress.2025.110926_b11) 2019; 183
Zhang (10.1016/j.ress.2025.110926_b17) 2011; 196
Park (10.1016/j.ress.2025.110926_b24) 2009; 39
10.1016/j.ress.2025.110926_b37
Mossali (10.1016/j.ress.2025.110926_b2) 2020; 264
Ng (10.1016/j.ress.2025.110926_b53) 2001
Cheng (10.1016/j.ress.2025.110926_b22) 2021; 232
Guo (10.1016/j.ress.2025.110926_b15) 2024; 245
Beaulieu (10.1016/j.ress.2025.110926_b35) 2022; Vol. 7
References_xml – volume: 241
  year: 2024
  ident: b57
  article-title: Predictive health assessment for lithium-ion batteries with probabilistic degradation prediction and accelerating aging detection
  publication-title: Reliab Eng Syst Saf
– volume: 10
  year: 2023
  ident: b56
  article-title: Early prediction of knee point and knee capacity for fast-charging lithium-ion battery with uncertainty quantification and calibration
  publication-title: IEEE Trans Transp Electrification
– volume: 224
  year: 2022
  ident: b39
  article-title: Health indicator for machine condition monitoring built in the latent space of a deep autoencoder
  publication-title: Reliab Eng Syst Saf
– volume: vol. 1
  year: 2016
  ident: b51
  article-title: Gaussian mixture models
  publication-title: Automatic speech recognition
– volume: 328
  year: 2022
  ident: b31
  article-title: Two-stage deep learning for online prediction of knee-point in Li-ion battery capacity degradation
  publication-title: Appl Energy
– volume: 136
  start-page: 921
  year: 2014
  end-page: 930
  ident: b10
  article-title: Experimental analysis on the performance of lithium based batteries for road full electric and hybrid vehicles
  publication-title: Appl Energy
– year: 2021
  ident: b42
  article-title: Bayesian neural network priors revisited
– volume: 183
  start-page: 1
  year: 2019
  end-page: 16
  ident: b11
  article-title: Status and future perspectives of reliability assessment for electric vehicles
  publication-title: Reliab Eng Syst Saf
– volume: 232
  year: 2021
  ident: b22
  article-title: Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network
  publication-title: Energy
– year: 2016
  ident: b49
  article-title: Categorical reparameterization with gumbel-softmax
– volume: 32
  year: 2020
  ident: b25
  article-title: Early detection of anomalous degradation behavior in lithium-ion batteries
  publication-title: J Energy Storage
– volume: 421
  start-page: 56
  year: 2019
  end-page: 67
  ident: b27
  article-title: Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression
  publication-title: J Power Sources
– volume: 102
  year: 2022
  ident: b28
  article-title: Fault diagnosis for cell voltage inconsistency of a battery pack in electric vehicles based on real-world driving data
  publication-title: Comput Electr Eng
– volume: 414
  start-page: 359
  year: 2001
  end-page: 367
  ident: b4
  article-title: Issues and challenges facing rechargeable lithium batteries
  publication-title: Nat
– year: 2018
  ident: b7
  article-title: Predicting smartphone battery life based on comprehensive and real-time usage data
– volume: 578
  start-page: 397
  year: 2020
  end-page: 402
  ident: b55
  article-title: Closed-loop optimization of fast-charging protocols for batteries with machine learning
  publication-title: Nat
– start-page: 4062
  year: 2017
  end-page: 4068
  ident: b18
  article-title: Life prediction model for grid-connected Li-ion battery energy storage system
  publication-title: 2017 American control conference
– volume: 66
  start-page: 7310
  year: 2018
  end-page: 7315
  ident: b23
  article-title: Reduction of Li-ion battery qualification time based on prognostics and health management
  publication-title: IEEE Trans Ind Electron
– volume: 19
  start-page: 113
  year: 2018
  end-page: 119
  ident: b3
  article-title: Modeling the self-discharge by voltage decay of a NMC/graphite lithium-ion cell
  publication-title: J Energy Storage
– volume: 230
  year: 2023
  ident: b6
  article-title: Battery health prognosis with gated recurrent unit neural networks and hidden Markov model considering uncertainty quantification
  publication-title: Reliab Eng Syst Saf
– year: 1995
  ident: b46
  article-title: Continuous univeriate distributions
– volume: 65
  start-page: 1526
  year: 2017
  end-page: 1538
  ident: b14
  article-title: A double-scale, particle-filtering, energy state prediction algorithm for lithium-ion batteries
  publication-title: IEEE Trans Ind Electron
– year: 2018
  ident: b44
  article-title: A better autoencoder for image: Convolutional autoencoder
  publication-title: ICONIP17-dCEC
– volume: 245
  year: 2024
  ident: b15
  article-title: Integrated assessment of reliability and health status of multi-microgrids based on multiagent
  publication-title: Reliab Eng Syst Saf
– start-page: 1
  year: 2007
  end-page: 8
  ident: b45
  article-title: Unsupervised learning of invariant feature hierarchies with applications to object recognition
  publication-title: 2007 IEEE conference on computer vision and pattern recognition
– volume: 196
  start-page: 6007
  year: 2011
  end-page: 6014
  ident: b17
  article-title: A review on prognostics and health monitoring of Li-ion battery
  publication-title: J Power Sources
– volume: 11
  start-page: 33
  year: 2008
  end-page: 40
  ident: b16
  article-title: Prognostics in battery health management
  publication-title: IEEE Instrum Meas Mag
– volume: 39
  start-page: 480
  year: 2009
  end-page: 485
  ident: b24
  article-title: Dual features functional support vector machines for fault detection of rechargeable batteries
  publication-title: IEEE Trans Syst Man Cybern C: Appl Rev
– volume: 228
  year: 2022
  ident: b47
  article-title: Bayesian deep-learning for RUL prediction: An active learning perspective
  publication-title: Reliab Eng Syst Saf
– volume: 14
  start-page: 1
  year: 2023
  end-page: xx
  ident: b12
  article-title: A survey on techniques of remaining useful life assessment for predictive maintenance of the system
  publication-title: Int J Comput Digit Syst
– volume: Vol. 96
  start-page: 226
  year: 1996
  end-page: 231
  ident: b52
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: KDD
– volume: Vol. 7
  start-page: 193
  year: 2022
  end-page: 199
  ident: b35
  article-title: Unsupervised prognostics based on deep virtual health index prediction
  publication-title: PHM society European conference
– start-page: 14
  year: 2001
  ident: b53
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: Adv Neural Inf Process Syst
– volume: 482
  year: 2021
  ident: b29
  article-title: Fault diagnosis and abnormality detection of lithium-ion battery packs based on statistical distribution
  publication-title: J Power Sources
– volume: 1
  year: 2020
  ident: b58
  article-title: Identification and machine learning prediction of knee-point and knee-onset in capacity degradation curves of lithium-ion cells
  publication-title: Energy AI
– volume: 31
  start-page: 69
  year: 2022
  ident: b13
  article-title: Next-generation aviation Li-ion battery technologies—enabling electrified aircraft
  publication-title: Electrochem Soc Interface
– volume: 307
  year: 2022
  ident: b30
  article-title: Detection of voltage fault in the battery system of electric vehicles using statistical analysis
  publication-title: Appl Energy
– volume: 44
  start-page: 164
  year: 2018
  end-page: 173
  ident: b8
  article-title: Towards wearable electronic devices: A quasi-solid-state aqueous lithium-ion battery with outstanding stability, flexibility, safety and breathability
  publication-title: Nano Energy
– volume: 2022
  year: 2022
  ident: b32
  article-title: A novel method for lithium-ion battery fault diagnosis of electric vehicle based on real-time voltage
  publication-title: Wirel Commun Mob Comput
– start-page: 2
  year: 1989
  ident: b43
  article-title: Handwritten digit recognition with a back-propagation network
  publication-title: Adv Neural Inf Process Syst
– volume: 226
  year: 2022
  ident: b34
  article-title: Learning of physical health timestep using the LSTM network for remaining useful life estimation
  publication-title: Reliab Eng Syst Saf
– volume: 264
  year: 2020
  ident: b2
  article-title: Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments
  publication-title: J Env Manag
– volume: 2012
  year: 2012
  ident: b21
  article-title: Quantifying cell-to-cell variations in lithium ion batteries
  publication-title: Int J Electrochem
– volume: 233
  start-page: 429
  year: 2019
  end-page: 445
  ident: b33
  article-title: Study on distributed lithium-ion power battery grouping scheme for efficiency and consistency improvement
  publication-title: J Clean Prod
– start-page: 1613
  year: 2015
  end-page: 1622
  ident: b40
  article-title: Weight uncertainty in neural network
  publication-title: International conference on machine learning
– volume: 245
  year: 2024
  ident: b36
  article-title: A hybrid prognosis scheme for rolling bearings based on a novel health indicator and nonlinear Wiener process
  publication-title: Reliab Eng Syst Saf
– volume: 242
  year: 2024
  ident: b38
  article-title: Data-driven bearing health management using a novel multi-scale fused feature and gated recurrent unit
  publication-title: Reliab Eng Syst Saf
– reference: Hu Y, Palmé T, Fink O. Deep health indicator extraction: A method based on auto-encoders and extreme learning machines. In: Annual conference of the PHM society. Vol. 8, 2016.
– volume: 4
  start-page: 383
  year: 2019
  end-page: 391
  ident: b54
  article-title: Data-driven prediction of battery cycle life before capacity degradation
  publication-title: Nat Energy
– start-page: 1218
  year: 2015
  end-page: 1226
  ident: b41
  article-title: Markov chain Monte Carlo and variational inference: Bridging the gap
  publication-title: International conference on machine learning
– volume: 68
  start-page: 2659
  year: 2020
  end-page: 2666
  ident: b26
  article-title: Capacity-fading behavior analysis for early detection of unhealthy Li-ion batteries
  publication-title: IEEE Trans Ind Electron
– volume: 274
  start-page: 237
  year: 2015
  end-page: 251
  ident: b5
  article-title: Advances of aqueous rechargeable lithium-ion battery: A review
  publication-title: J Power Sources
– start-page: 1
  year: 2018
  end-page: 6
  ident: b59
  article-title: Anomaly detection during lithium-ion battery qualification testing
  publication-title: 2018 IEEE international conference on prognostics and health management
– start-page: 27
  year: 2014
  ident: b50
  article-title: A* sampling
  publication-title: Adv Neural Inf Process Syst
– volume: 336
  year: 2023
  ident: b19
  article-title: Dynamic early recognition of abnormal lithium-ion batteries before capacity drops using self-adaptive quantum clustering
  publication-title: Appl Energy
– start-page: 82
  year: 2022
  end-page: 87
  ident: b9
  article-title: Remaining useful life estimation for electric vehicle batteries using a similarity-based approach
  publication-title: 2022 IEEE international workshop on metrology for automotive
– start-page: 355
  year: 1998
  end-page: 368
  ident: b48
  article-title: A view of the EM algorithm that justifies incremental, sparse, and other variants
  publication-title: Learning in graphical models
– volume: 5
  start-page: 212
  year: 2016
  end-page: 223
  ident: b20
  article-title: Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression
  publication-title: J Energy Storage
– volume: 18
  start-page: 308
  year: 2018
  end-page: 315
  ident: b1
  article-title: Dimensional analysis and modelling of energy density of lithium-ion battery
  publication-title: J Energy Storage
– volume: 5
  start-page: 212
  year: 2016
  ident: 10.1016/j.ress.2025.110926_b20
  article-title: Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2016.01.003
– start-page: 82
  year: 2022
  ident: 10.1016/j.ress.2025.110926_b9
  article-title: Remaining useful life estimation for electric vehicle batteries using a similarity-based approach
– volume: 233
  start-page: 429
  year: 2019
  ident: 10.1016/j.ress.2025.110926_b33
  article-title: Study on distributed lithium-ion power battery grouping scheme for efficiency and consistency improvement
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.05.401
– volume: 578
  start-page: 397
  issue: 7795
  year: 2020
  ident: 10.1016/j.ress.2025.110926_b55
  article-title: Closed-loop optimization of fast-charging protocols for batteries with machine learning
  publication-title: Nat
  doi: 10.1038/s41586-020-1994-5
– volume: 336
  year: 2023
  ident: 10.1016/j.ress.2025.110926_b19
  article-title: Dynamic early recognition of abnormal lithium-ion batteries before capacity drops using self-adaptive quantum clustering
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.120841
– volume: 241
  year: 2024
  ident: 10.1016/j.ress.2025.110926_b57
  article-title: Predictive health assessment for lithium-ion batteries with probabilistic degradation prediction and accelerating aging detection
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109603
– volume: 414
  start-page: 359
  issue: 6861
  year: 2001
  ident: 10.1016/j.ress.2025.110926_b4
  article-title: Issues and challenges facing rechargeable lithium batteries
  publication-title: Nat
  doi: 10.1038/35104644
– volume: 482
  year: 2021
  ident: 10.1016/j.ress.2025.110926_b29
  article-title: Fault diagnosis and abnormality detection of lithium-ion battery packs based on statistical distribution
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.228964
– volume: vol. 1
  year: 2016
  ident: 10.1016/j.ress.2025.110926_b51
  article-title: Gaussian mixture models
– volume: 102
  year: 2022
  ident: 10.1016/j.ress.2025.110926_b28
  article-title: Fault diagnosis for cell voltage inconsistency of a battery pack in electric vehicles based on real-world driving data
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2022.108095
– volume: 245
  year: 2024
  ident: 10.1016/j.ress.2025.110926_b15
  article-title: Integrated assessment of reliability and health status of multi-microgrids based on multiagent
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2024.109978
– volume: 328
  year: 2022
  ident: 10.1016/j.ress.2025.110926_b31
  article-title: Two-stage deep learning for online prediction of knee-point in Li-ion battery capacity degradation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120204
– year: 1995
  ident: 10.1016/j.ress.2025.110926_b46
– volume: 66
  start-page: 7310
  issue: 9
  year: 2018
  ident: 10.1016/j.ress.2025.110926_b23
  article-title: Reduction of Li-ion battery qualification time based on prognostics and health management
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2018.2880701
– volume: 39
  start-page: 480
  issue: 4
  year: 2009
  ident: 10.1016/j.ress.2025.110926_b24
  article-title: Dual features functional support vector machines for fault detection of rechargeable batteries
  publication-title: IEEE Trans Syst Man Cybern C: Appl Rev
  doi: 10.1109/TSMCC.2009.2014642
– volume: 14
  start-page: 1
  issue: 1
  year: 2023
  ident: 10.1016/j.ress.2025.110926_b12
  article-title: A survey on techniques of remaining useful life assessment for predictive maintenance of the system
  publication-title: Int J Comput Digit Syst
– volume: 44
  start-page: 164
  year: 2018
  ident: 10.1016/j.ress.2025.110926_b8
  article-title: Towards wearable electronic devices: A quasi-solid-state aqueous lithium-ion battery with outstanding stability, flexibility, safety and breathability
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.006
– volume: 196
  start-page: 6007
  issue: 15
  year: 2011
  ident: 10.1016/j.ress.2025.110926_b17
  article-title: A review on prognostics and health monitoring of Li-ion battery
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2011.03.101
– start-page: 1
  year: 2007
  ident: 10.1016/j.ress.2025.110926_b45
  article-title: Unsupervised learning of invariant feature hierarchies with applications to object recognition
– volume: Vol. 7
  start-page: 193
  year: 2022
  ident: 10.1016/j.ress.2025.110926_b35
  article-title: Unsupervised prognostics based on deep virtual health index prediction
– volume: 242
  year: 2024
  ident: 10.1016/j.ress.2025.110926_b38
  article-title: Data-driven bearing health management using a novel multi-scale fused feature and gated recurrent unit
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109753
– volume: 4
  start-page: 383
  issue: 5
  year: 2019
  ident: 10.1016/j.ress.2025.110926_b54
  article-title: Data-driven prediction of battery cycle life before capacity degradation
  publication-title: Nat Energy
  doi: 10.1038/s41560-019-0356-8
– start-page: 2
  year: 1989
  ident: 10.1016/j.ress.2025.110926_b43
  article-title: Handwritten digit recognition with a back-propagation network
  publication-title: Adv Neural Inf Process Syst
– volume: 2012
  year: 2012
  ident: 10.1016/j.ress.2025.110926_b21
  article-title: Quantifying cell-to-cell variations in lithium ion batteries
  publication-title: Int J Electrochem
  doi: 10.1155/2012/395838
– volume: 232
  year: 2021
  ident: 10.1016/j.ress.2025.110926_b22
  article-title: Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121022
– volume: 68
  start-page: 2659
  issue: 3
  year: 2020
  ident: 10.1016/j.ress.2025.110926_b26
  article-title: Capacity-fading behavior analysis for early detection of unhealthy Li-ion batteries
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2020.2972468
– volume: 274
  start-page: 237
  year: 2015
  ident: 10.1016/j.ress.2025.110926_b5
  article-title: Advances of aqueous rechargeable lithium-ion battery: A review
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.10.009
– volume: 18
  start-page: 308
  year: 2018
  ident: 10.1016/j.ress.2025.110926_b1
  article-title: Dimensional analysis and modelling of energy density of lithium-ion battery
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2018.05.002
– year: 2018
  ident: 10.1016/j.ress.2025.110926_b44
  article-title: A better autoencoder for image: Convolutional autoencoder
– volume: 11
  start-page: 33
  issue: 4
  year: 2008
  ident: 10.1016/j.ress.2025.110926_b16
  article-title: Prognostics in battery health management
  publication-title: IEEE Instrum Meas Mag
  doi: 10.1109/MIM.2008.4579269
– start-page: 355
  year: 1998
  ident: 10.1016/j.ress.2025.110926_b48
  article-title: A view of the EM algorithm that justifies incremental, sparse, and other variants
– year: 2018
  ident: 10.1016/j.ress.2025.110926_b7
– volume: 421
  start-page: 56
  year: 2019
  ident: 10.1016/j.ress.2025.110926_b27
  article-title: Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2019.03.008
– year: 2016
  ident: 10.1016/j.ress.2025.110926_b49
– volume: 264
  year: 2020
  ident: 10.1016/j.ress.2025.110926_b2
  article-title: Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments
  publication-title: J Env Manag
  doi: 10.1016/j.jenvman.2020.110500
– volume: 19
  start-page: 113
  year: 2018
  ident: 10.1016/j.ress.2025.110926_b3
  article-title: Modeling the self-discharge by voltage decay of a NMC/graphite lithium-ion cell
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2018.07.003
– year: 2021
  ident: 10.1016/j.ress.2025.110926_b42
– start-page: 1218
  year: 2015
  ident: 10.1016/j.ress.2025.110926_b41
  article-title: Markov chain Monte Carlo and variational inference: Bridging the gap
– start-page: 4062
  year: 2017
  ident: 10.1016/j.ress.2025.110926_b18
  article-title: Life prediction model for grid-connected Li-ion battery energy storage system
– start-page: 1613
  year: 2015
  ident: 10.1016/j.ress.2025.110926_b40
  article-title: Weight uncertainty in neural network
– volume: 1
  year: 2020
  ident: 10.1016/j.ress.2025.110926_b58
  article-title: Identification and machine learning prediction of knee-point and knee-onset in capacity degradation curves of lithium-ion cells
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2020.100006
– volume: 230
  year: 2023
  ident: 10.1016/j.ress.2025.110926_b6
  article-title: Battery health prognosis with gated recurrent unit neural networks and hidden Markov model considering uncertainty quantification
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108978
– volume: 183
  start-page: 1
  year: 2019
  ident: 10.1016/j.ress.2025.110926_b11
  article-title: Status and future perspectives of reliability assessment for electric vehicles
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.11.013
– volume: 2022
  year: 2022
  ident: 10.1016/j.ress.2025.110926_b32
  article-title: A novel method for lithium-ion battery fault diagnosis of electric vehicle based on real-time voltage
  publication-title: Wirel Commun Mob Comput
– start-page: 27
  year: 2014
  ident: 10.1016/j.ress.2025.110926_b50
  article-title: A* sampling
  publication-title: Adv Neural Inf Process Syst
– volume: 10
  issue: 2
  year: 2023
  ident: 10.1016/j.ress.2025.110926_b56
  article-title: Early prediction of knee point and knee capacity for fast-charging lithium-ion battery with uncertainty quantification and calibration
  publication-title: IEEE Trans Transp Electrification
  doi: 10.1109/TTE.2023.3304670
– volume: 32
  year: 2020
  ident: 10.1016/j.ress.2025.110926_b25
  article-title: Early detection of anomalous degradation behavior in lithium-ion batteries
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2020.101710
– volume: 65
  start-page: 1526
  issue: 2
  year: 2017
  ident: 10.1016/j.ress.2025.110926_b14
  article-title: A double-scale, particle-filtering, energy state prediction algorithm for lithium-ion batteries
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2017.2733475
– volume: 226
  year: 2022
  ident: 10.1016/j.ress.2025.110926_b34
  article-title: Learning of physical health timestep using the LSTM network for remaining useful life estimation
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108717
– volume: 228
  year: 2022
  ident: 10.1016/j.ress.2025.110926_b47
  article-title: Bayesian deep-learning for RUL prediction: An active learning perspective
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108758
– volume: 136
  start-page: 921
  year: 2014
  ident: 10.1016/j.ress.2025.110926_b10
  article-title: Experimental analysis on the performance of lithium based batteries for road full electric and hybrid vehicles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.04.013
– volume: 307
  year: 2022
  ident: 10.1016/j.ress.2025.110926_b30
  article-title: Detection of voltage fault in the battery system of electric vehicles using statistical analysis
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.118172
– volume: 31
  start-page: 69
  issue: 3
  year: 2022
  ident: 10.1016/j.ress.2025.110926_b13
  article-title: Next-generation aviation Li-ion battery technologies—enabling electrified aircraft
  publication-title: Electrochem Soc Interface
  doi: 10.1149/2.F10223IF
– volume: 224
  year: 2022
  ident: 10.1016/j.ress.2025.110926_b39
  article-title: Health indicator for machine condition monitoring built in the latent space of a deep autoencoder
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108482
– volume: Vol. 96
  start-page: 226
  year: 1996
  ident: 10.1016/j.ress.2025.110926_b52
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– start-page: 14
  year: 2001
  ident: 10.1016/j.ress.2025.110926_b53
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: Adv Neural Inf Process Syst
– volume: 245
  year: 2024
  ident: 10.1016/j.ress.2025.110926_b36
  article-title: A hybrid prognosis scheme for rolling bearings based on a novel health indicator and nonlinear Wiener process
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2024.110014
– start-page: 1
  year: 2018
  ident: 10.1016/j.ress.2025.110926_b59
  article-title: Anomaly detection during lithium-ion battery qualification testing
– ident: 10.1016/j.ress.2025.110926_b37
  doi: 10.36001/phmconf.2016.v8i1.2587
SSID ssj0004957
Score 2.4808593
Snippet Accurate and timely detection of anomalies in lithium-ion batteries is crucial for ensuring their reliability and safety. Complex degradation patterns and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110926
SubjectTerms Deep autoencoder
Latent features
Reliability test
Unsupervised clustering
Virtual health indicator
Title An adaptive mixture prior in Bayesian convolutional autoencoder for early detecting anomalous degradation behaviors in lithium-ion batteries
URI https://dx.doi.org/10.1016/j.ress.2025.110926
Volume 259
WOSCitedRecordID wos001435735500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004957
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECXcpIf2UHRF0w089CbI0EJJ5NEt0iWHoIcU8E2gKBJValOGYwfOLxT56HCXkrZBc-hFEGhpTGieRqPRm0cA3ouG47TMaNzinMaI4yJuhEhUMMwZVWGxQUVrFpuojo_xfE6-TSa_fC_M-aKSEu92ZPVfXa3GlLN16-wd3B2MqgG1r5yutsrtavtPjp_JiLZ0ZShBy25nvhCs1p3hnUcf6AU3bZOabe6modUCtpteK1pqYQmjAW5kj1uuvzDYLsZ-SReaLdtqcQm7DlNo8TeUWpXO_-i2y9j8YEQ7PT3Ry3_zRWdFwS8iPqggGuxZPenojAonS-IYB444JKPPfDvUXN3oz-io78dVi6wIDNeh_JjGKpok40icOXFwG0u1Fqrtpv8tzNuKw-lUVySm2vx0OPi6pvaNZ11gIHpy22mtbdTaRm1t3AP7WVUQFeT3Z18P50dDly2xurF-5q4Fy7IFb87kz2nOKHU5eQweuXcOOLNYeQImXD4FD0dKlM_A5UxCjxroUAMNamAnoUcNvIYaOEINVKiBBjUwoAYG1MARamBAjbY8Qg0MqHkOvn86PPn4JXYLdcQsT5KNursrmqdcPQ84ajEnJaaVIClhNGtSjiuGBUJqWC8eWaRc6x8lAomE4xyXJUP5C7Ane8lfAlg1qGGIkrwlJWqyhJYFIw0RZV5luCj5AUj9da2ZU7HXi6ks6r979ABE4ZyV1XC59ejCu6t2WajNLmuFvlvOe3Wnf3kNHgy3xRuwt1lv-Vtwn51vurP1Owe9K_gZsDM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+mixture+prior+in+Bayesian+convolutional+autoencoder+for+early+detecting+anomalous+degradation+behaviors+in+lithium-ion+batteries&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Chae%2C+Sun+Geu&rft.au=Bae%2C+Suk+Joo&rft.date=2025-07-01&rft.issn=0951-8320&rft.volume=259&rft.spage=110926&rft_id=info:doi/10.1016%2Fj.ress.2025.110926&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2025_110926
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon