Energy aware semi-automatic assembly line balancing problem considering ergonomic risk and uncertain processing time

The semiautomated assembly line balancing problem (SAALBP) is a complex planning problem in which the production process comprises human workers, robots, and human-robot collaboration. With increasing awareness of sustainable practices in the manufacturing environment, this study addresses a sustain...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 231; p. 120737
Main Authors: Rahman, Humyun Fuad, Janardhanan, Mukund Nilakantan, Ponnambalam, S.G.
Format: Journal Article
Language:English
Published: Elsevier Ltd 30.11.2023
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The semiautomated assembly line balancing problem (SAALBP) is a complex planning problem in which the production process comprises human workers, robots, and human-robot collaboration. With increasing awareness of sustainable practices in the manufacturing environment, this study addresses a sustainable SSALBP, where a mixed integer linear programming (MILP) model is formulated for the first time for this type of assembly systems. The model consists of three objectives and each of the objectives represents the three pillars of sustainability. The problem becomes more realistic by considering uncertainty in processing time and the influence of human workers’ age and skill in processing time. The uncertainty is adopted in the MILP model by using a chance-constraint programing approach. Since the problem is complex, Q-learning and Monte-Carlo simulation-assisted based genetic algorithm (GA) based memetic algorithm (MA) are proposed to solve the problem. The performance of MA is evaluated against the well-known non-dominated sorting GA-III (NSGA-III) and state-of-the-art algorithms for solving the problem. The experimental results show that MA surpasses its contest significantly in finding better Pareto-fronts.
AbstractList The semiautomated assembly line balancing problem (SAALBP) is a complex planning problem in which the production process comprises human workers, robots, and human-robot collaboration. With increasing awareness of sustainable practices in the manufacturing environment, this study addresses a sustainable SSALBP, where a mixed integer linear programming (MILP) model is formulated for the first time for this type of assembly systems. The model consists of three objectives and each of the objectives represents the three pillars of sustainability. The problem becomes more realistic by considering uncertainty in processing time and the influence of human workers’ age and skill in processing time. The uncertainty is adopted in the MILP model by using a chance-constraint programing approach. Since the problem is complex, Q-learning and Monte-Carlo simulation-assisted based genetic algorithm (GA) based memetic algorithm (MA) are proposed to solve the problem. The performance of MA is evaluated against the well-known non-dominated sorting GA-III (NSGA-III) and state-of-the-art algorithms for solving the problem. The experimental results show that MA surpasses its contest significantly in finding better Pareto-fronts.
ArticleNumber 120737
Author Janardhanan, Mukund Nilakantan
Ponnambalam, S.G.
Rahman, Humyun Fuad
Author_xml – sequence: 1
  givenname: Humyun Fuad
  surname: Rahman
  fullname: Rahman, Humyun Fuad
  email: frahman@cardiffmet.ac.uk
  organization: Cardiff School of Management, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
– sequence: 2
  givenname: Mukund Nilakantan
  surname: Janardhanan
  fullname: Janardhanan, Mukund Nilakantan
  email: mukund.janardhanan@leicester.ac.uk
  organization: School of Engineering, University of Leicester, Leicester LE1 7RH, UK
– sequence: 3
  givenname: S.G.
  orcidid: 0000-0003-4973-733X
  surname: Ponnambalam
  fullname: Ponnambalam, S.G.
  email: ponnambalam.g@vit.ac.in
  organization: School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India
BookMark eNp9kMtqwzAQRUVJoUnaH-hKP2BXsmXLgW5KSB8Q6KZdi7E0DkptKUhqQ_6-Numqi6wGLnMu3LMgM-cdEnLPWc4Zrx_2OcYj5AUrypwXTJbyisx5I8uslqtyRuZsVclMcCluyCLGPWNcMibnJG0cht2JwhEC0oiDzeA7-QGS1RTiGLT9ifbWIW2hB6et29FD8G2PA9XeRWswTNnY4p0fRirY-EXBGfrtNIYE1k2Axhinv2QHvCXXHfQR7_7uknw-bz7Wr9n2_eVt_bTNdMlYytquMk23qrisO9GISpqu5oCaF4LXBRNCykpzMAy6pmoRBC-6VgjDEUtT10W5JMW5VwcfY8BOHYIdIJwUZ2rypvZq8qYmb-rsbYSaf5C2adThXQpg-8vo4xnFcdSPxaCitjhaMDagTsp4ewn_BU64jjI
CitedBy_id crossref_primary_10_1016_j_cie_2023_109775
crossref_primary_10_1016_j_cie_2024_110795
crossref_primary_10_1016_j_ijpe_2024_109450
crossref_primary_10_1016_j_cie_2024_110254
crossref_primary_10_1016_j_simpat_2023_102839
crossref_primary_10_1016_j_jmsy_2025_02_009
crossref_primary_10_1111_itor_13610
crossref_primary_10_1016_j_cor_2024_106605
crossref_primary_10_1016_j_cie_2025_111154
crossref_primary_10_1016_j_cie_2025_111144
crossref_primary_10_1007_s10845_024_02443_x
crossref_primary_10_1016_j_cie_2025_111113
crossref_primary_10_1016_j_jii_2024_100676
crossref_primary_10_46465_endustrimuhendisligi_1329111
crossref_primary_10_1016_j_eswa_2023_121221
crossref_primary_10_1016_j_swevo_2024_101762
Cites_doi 10.1109/TNSM.2022.3224158
10.1016/j.swevo.2021.101021
10.1016/j.cirp.2019.04.006
10.1016/S0007-8506(07)62494-9
10.1007/s00500-016-2240-9
10.1016/j.apm.2019.02.019
10.1115/1.4014559
10.1016/j.jmsy.2015.02.007
10.1080/00207543.2019.1629669
10.1007/s12541-018-0074-3
10.1016/j.cor.2007.09.005
10.1007/s001700050166
10.1108/AA-03-2019-0057
10.1016/j.jmsy.2021.10.006
10.1007/3-540-44719-9_20
10.1016/j.cie.2020.106768
10.1016/j.jclepro.2018.09.100
10.1016/j.cie.2008.09.027
10.1016/j.cor.2022.105775
10.1016/j.ijpe.2021.108188
10.1016/j.cie.2015.08.006
10.1016/j.cie.2012.03.017
10.1080/00207543.2021.2015081
10.1080/00207543.2021.1884767
10.1016/j.jclepro.2019.01.030
10.1007/s10845-020-01641-7
10.1023/A:1022602019183
10.1016/j.cor.2018.07.001
10.1007/s10845-014-0984-6
10.1080/00207543.2015.1074299
10.1007/s10845-020-01598-7
10.1007/s10479-008-0367-5
10.1016/j.ijpe.2021.108292
10.1016/j.eswa.2022.119359
10.1016/j.ejor.2006.10.010
10.1016/j.cie.2013.03.004
10.1016/j.ejor.2015.06.018
10.1007/s00521-014-1811-x
10.1109/TEVC.2013.2281535
10.1016/S1474-6670(17)37702-9
10.1109/4235.797969
10.1016/j.ijpe.2021.108151
10.1016/j.eswa.2021.116446
10.1016/j.cie.2020.106778
10.1016/j.cor.2021.105674
10.1109/SSCI.2016.7850225
10.1016/j.cie.2011.01.003
10.1016/j.jclepro.2014.11.041
10.1007/s12293-008-0004-5
10.1016/j.swevo.2021.100985
10.1016/j.asoc.2022.109764
10.1177/1063293X16666204
10.1016/j.omega.2004.12.006
10.1108/AA-07-2014-068
10.1016/j.cie.2021.107363
10.1109/CEC.2000.870296
10.1016/0003-6870(90)90202-9
10.1016/j.eswa.2019.112902
10.1016/j.jclepro.2016.06.131
10.1109/4235.996017
10.1016/j.ejor.2004.07.030
10.1016/j.ejor.2004.07.022
10.1016/j.ejor.2021.11.043
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.120737
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_120737
S0957417423012393
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-bf5d8f95176f48457df61aec124162044775c1ad0af85bea412fb44d1ee3d6623
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001024851200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 07:06:41 EST 2025
Tue Nov 18 22:29:01 EST 2025
Fri Feb 23 02:37:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ergonomic risks
Chance constraint programming
Memetic algorithm
Energy
Semi-automated assembly line
Cycle time
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-bf5d8f95176f48457df61aec124162044775c1ad0af85bea412fb44d1ee3d6623
ORCID 0000-0003-4973-733X
ParticipantIDs crossref_primary_10_1016_j_eswa_2023_120737
crossref_citationtrail_10_1016_j_eswa_2023_120737
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_120737
PublicationCentury 2000
PublicationDate 2023-11-30
PublicationDateYYYYMMDD 2023-11-30
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-30
  day: 30
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chutima, P., Khotsaenlee, A. J. C., & Research, O. (2022). Multi-objective parallel adjacent U-shaped assembly line balancing collaborated by robots and normal and disabled workers.
GUROBI. (2023).
Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning.
Koltai, Dimény, Gallina, Gaal, Sepe (b0150) 2021; 242
Rahman, H. F., Sarker, R., & Essam, D. (2015a). A genetic algorithm for permutation flow shop scheduling under make to stock production system.
Sun, Zheng, Song, Cheng, Lang, Yuan, Wang (b0305) 2023; 215
Ozdemir, Sarigol, AlMutairi, AlMeea, Murad, Naqi, AlNasser (b0210) 2021; 239
Westkämper, E., Spingler, J. C., & Beumelburg, K. J. I. P. V. (2003). Skill Oriented Planning of Semi Automated Assembly Systems.
105674.
Scholl, A., & Becker, C. J. E. J. o. O. R. (2006). State-of-the-art exact and heuristic solution procedures for simple assembly line balancing.
Deb, Pratap, Agarwal, Meyarivan (b0085) 2002; 6
Salveson, M. E. J. T. J. o. I. E. (1955). The assembly line balancing problem. 18-25.
Zhang, Z., Tang, Q., & Zhang, L. J. J. o. C. P. (2019). Mathematical model and grey wolf optimization for low-carbon and low-noise U-shaped robotic assembly line balancing problem.
Tang, Q., Meng, K., Cheng, L., Zhang, Z. J. S., & Computation, E. (2022). An improved multi-objective multifactorial evolutionary algorithm for assembly line balancing problem considering regular production and preventive maintenance scenarios.
Rahman, Chakrabortty, Elsawah, Ryan (b0235) 2022; 193
(4), 989–1007.
508–522.
Qin, S., Pi, D., Shao, Z., Xu, Y. J. I. T. o. N., & Management, S. (2022). A Discrete Interval-based Multi-objective Memetic Algorithm for Scheduling Workflow with Uncertainty in Cloud Environment.
Triki, H., Mellouli, A., & Masmoudi, F. J. J. o. I. M. (2017). A multi-objective genetic algorithm for assembly line resource assignment and balancing problem of type 2 (ALRABP-2).
Chen, Yang, Li, Wang (b0050) 2020; 149
,
.
311-325.
Savino, M. M., & Mazza, A. J. A. A. (2015). Kanban-driven parts feeding within a semi-automated O-shaped assembly line: a case study in the automotive industry.
Li, Z., Tang, Q., & Zhang, L. J. J. o. C. P. (2016). Minimizing energy consumption and cycle time in two-sided robotic assembly line systems using restarted simulated annealing algorithm.
Rubinovitz, J., Bukchin, J., & Lenz, E. J. C. a. (1993). RALB–A heuristic algorithm for design and balancing of robotic assembly lines.
Boysen, N., Schulze, P., & Scholl, A. J. E. J. o. O. R. (2021). Assembly line balancing: What happened in the last fifteen years?.
Zhang, Xu, Zhang (b0335) 2020; 149
Manzini, Demeulemeester, Urgo, Manufacturing (b0180) 2022; 73
Zhong, Y.-g., & Ai, B. J. S. C. (2017). A modified ant colony optimization algorithm for multi-objective assembly line balancing.
Mukund, Ponnambalam, Jawahar, Kanagaraj (b0185) 2015; 26
101021.
(2), 503–512.
744-756.
Gong, Chiong, Deng, Han, Zhang, Lin, Li (b0110) 2020; 141
(4), 613-624.
Deb, K., Pratap, A., & Meyarivan, T. (2001). Constrained test problems for multi-objective evolutionary optimization. International conference on evolutionary multi-criterion optimization.
Deb, Jain (b0080) 2013; 18
Xu, Lu, Vogel-Heuser, Wang (b0330) 2021; 61
Rahman, Sarker, Essam (b0260) 2015; 247
Abdous, M.-A., Delorme, X., Battini, D., Sgarbossa, F., & Berger-Douce, S. J. I. J. o. P. R. (2022). Assembly Line Balancing Problem with ergonomics: a new fatigue and recovery model. 1–14.
Hasan, Sarker, Essam, Cornforth (b0120) 2009; 1
Li, Gong, Lu, Wang (b0160) 2022
(22), 111–116.
Berti, Finco, Battaïa, Delorme (b0020) 2021; 237
Chen, Chen, Chen, Lin (b0045) 2022; 108240
Dalle Mura, Dini (b0075) 2019; 68
Ponnambalam, Aravindan, Mogileeswar Naidu (b0220) 2000; 16
Hazır, Dolgui (b0125) 2013; 65
Samouei, P., & Ashayeri, J. J. A. M. M. (2019). Developing optimization & robust models for a mixed-model assembly line balancing problem with semi-automated operations.
(1), 30-40.
116446.
(2), 674–693.
105775.
Van Veldhuizen, D. A., & Lamont, G. B. (2000). On measuring multiobjective evolutionary algorithm performance. Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512).
Gao, J., Sun, L., Wang, L., Gen, M. J. C., & Engineering, I. (2009). An efficient approach for type II robotic assembly line balancing problems.
866-883.
Battini, D., Delorme, X., Dolgui, A., Persona, A., & Sgarbossa, F. J. I. J. o. P. R. (2016). Ergonomics in assembly line balancing based on energy expenditure: a multi-objective model.
Rahman, Janardhanan, Nielsen (b0250) 2020
(Supplement C), 12-24. https://doi.org/https://doi.org/10.1016/j.cie.2015.08.006.
(1), 497-500.
Ruiz, Maroto, Alcaraz (b0275) 2006; 34
Cheshmehgaz, H. R., Haron, H., Kazemipour, F., Desa, M. I. J. C., & Engineering, I. (2012). Accumulated risk of body postures in assembly line balancing problem and modeling through a multi-criteria fuzzy-genetic algorithm.
(4), 257-271.
Campana, Iori, Moreira (b0040) 2022; 60
249-261.
Rahman, H. F., Chakrabortty, R. K., Elsawah, S., & Ryan, M. J. J. E. S. w. A. (2022b). Energy-efficient project scheduling with supplier selection in manufacturing projects.
He, Chaudhry, Lei, Baohua (b0130) 2009; 168
(22), 6881-6894.
Jiang, S., Yang, S., & Li, M. (2016). On the use of hypervolume for diversity measurement of Pareto front approximations. 2016 IEEE symposium series on computational intelligence (SSCI).
(3), 666-693.
46–54.
Boysen, N., Fliedner, M., & Scholl, A. J. E. j. o. o. r. (2007). A classification of assembly line balancing problems.
Akbar, M., & Irohara, T. J. J. o. c. p. (2018). Scheduling for sustainable manufacturing: A review.
Mukund Nilakantan, J., Ponnambalam, S. G., Jawahar, N., Kanagaraj, G. J. N. C., & Applications. (2015). Bio-inspired search algorithms to solve robotic assembly line balancing problems.
Techn. Hochsch., Inst. für Betriebswirtschaftslehre.
Li, Z., Janardhanan, M. N., & Ponnambalam, S. J. J. o. I. M. (2021). Cost-oriented robotic assembly line balancing problem with setup times: multi-objective algorithms.
Ogan, D., & Azizoglu, M. J. J. o. M. S. (2015). A branch and bound method for the line balancing problem in U-shaped assembly lines with equipment requirements.
Nourmohammadi, A., Fathi, M., & Ng, A. H. (2022). Balancing and scheduling assembly lines with human-robot collaboration tasks.
Rahman, Servranckx, Chakrabortty, Vanhoucke, El Sawah (b0265) 2022; 131
Chutima (b0065) 2022; 33
(2), 371–385.
Rahman, Chakrabortty, Ryan (b0245) 2021; 157
259-275.
Gao, Zhang, Zhang, Li (b0100) 2011; 60
(3), 824–845.
Nilakantan, J. M., Huang, G. Q., & Ponnambalam, S. G. J. J. o. C. P. (2015). An investigation on minimizing cycle time and total energy consumption in robotic assembly line systems.
(6), 1379–1393.
Price (b0225) 1990; 21
Pereira, J., Ritt, M., Vásquez, Ó. C. J. C., & Research, O. (2018). A memetic algorithm for the cost-oriented robotic assembly line balancing problem.
Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach.
Zhang, Tang, Chica, Li (b0345) 2023
Hu, Di Paolo (b0135) 2009; 36
Bryton (b0035) 1954
Scholl, A. (1995).
Cheng, Tang, Zhang, Zhang (b0055) 2022; 69
Levitin, Rubinovitz, Shnits (b0155) 2006; 168
Zhang, L., Zhang, B., Bao, H., Huang, H. J. I. J. o. P. E., & Manufacturing. (2018). Optimization of cutting parameters for minimizing environmental impact: considering energy efficiency, noise emission and economic dimension.
Jack. (2023). https://resources.sw.siemens.com/en-US/download-tecnomatix-jack-student-download.
Zhong, Y.-g. J. C. E. (2017). Hull mixed-model assembly line balancing using a multi-objective genetic algorithm simulated annealing optimization approach.
(3), 1065–1080.
Liu, Liu, Deng (b0175) 2020; 58
Rahman (10.1016/j.eswa.2023.120737_b0260) 2015; 247
Bryton (10.1016/j.eswa.2023.120737_b0035) 1954
Koltai (10.1016/j.eswa.2023.120737_b0150) 2021; 242
Rahman (10.1016/j.eswa.2023.120737_b0245) 2021; 157
Hazır (10.1016/j.eswa.2023.120737_b0125) 2013; 65
10.1016/j.eswa.2023.120737_b0070
Deb (10.1016/j.eswa.2023.120737_b0080) 2013; 18
10.1016/j.eswa.2023.120737_b0190
Xu (10.1016/j.eswa.2023.120737_b0330) 2021; 61
Hasan (10.1016/j.eswa.2023.120737_b0120) 2009; 1
10.1016/j.eswa.2023.120737_b0270
10.1016/j.eswa.2023.120737_b0030
10.1016/j.eswa.2023.120737_b0195
Sun (10.1016/j.eswa.2023.120737_b0305) 2023; 215
10.1016/j.eswa.2023.120737_b0230
10.1016/j.eswa.2023.120737_b0350
Dalle Mura (10.1016/j.eswa.2023.120737_b0075) 2019; 68
Deb (10.1016/j.eswa.2023.120737_b0085) 2002; 6
10.1016/j.eswa.2023.120737_b0355
10.1016/j.eswa.2023.120737_b0310
10.1016/j.eswa.2023.120737_b0115
Ruiz (10.1016/j.eswa.2023.120737_b0275) 2006; 34
10.1016/j.eswa.2023.120737_b0315
10.1016/j.eswa.2023.120737_b0090
10.1016/j.eswa.2023.120737_b0280
10.1016/j.eswa.2023.120737_b0360
10.1016/j.eswa.2023.120737_b0285
10.1016/j.eswa.2023.120737_b0240
10.1016/j.eswa.2023.120737_b0320
10.1016/j.eswa.2023.120737_b0165
10.1016/j.eswa.2023.120737_b0200
10.1016/j.eswa.2023.120737_b0365
10.1016/j.eswa.2023.120737_b0005
10.1016/j.eswa.2023.120737_b0205
10.1016/j.eswa.2023.120737_b0325
Chutima (10.1016/j.eswa.2023.120737_b0065) 2022; 33
Chen (10.1016/j.eswa.2023.120737_b0050) 2020; 149
Zhang (10.1016/j.eswa.2023.120737_b0345) 2023
Gao (10.1016/j.eswa.2023.120737_b0100) 2011; 60
Zhang (10.1016/j.eswa.2023.120737_b0335) 2020; 149
Rahman (10.1016/j.eswa.2023.120737_b0250) 2020
10.1016/j.eswa.2023.120737_b0290
10.1016/j.eswa.2023.120737_b0170
Cheng (10.1016/j.eswa.2023.120737_b0055) 2022; 69
10.1016/j.eswa.2023.120737_b0095
10.1016/j.eswa.2023.120737_b0010
Hu (10.1016/j.eswa.2023.120737_b0135) 2009; 36
10.1016/j.eswa.2023.120737_b0295
Chen (10.1016/j.eswa.2023.120737_b0045) 2022; 108240
10.1016/j.eswa.2023.120737_b0255
Li (10.1016/j.eswa.2023.120737_b0160) 2022
10.1016/j.eswa.2023.120737_b0015
Rahman (10.1016/j.eswa.2023.120737_b0235) 2022; 193
Mukund (10.1016/j.eswa.2023.120737_b0185) 2015; 26
10.1016/j.eswa.2023.120737_b0215
Price (10.1016/j.eswa.2023.120737_b0225) 1990; 21
Berti (10.1016/j.eswa.2023.120737_b0020) 2021; 237
Campana (10.1016/j.eswa.2023.120737_b0040) 2022; 60
Rahman (10.1016/j.eswa.2023.120737_b0265) 2022; 131
Liu (10.1016/j.eswa.2023.120737_b0175) 2020; 58
Ponnambalam (10.1016/j.eswa.2023.120737_b0220) 2000; 16
Gong (10.1016/j.eswa.2023.120737_b0110) 2020; 141
He (10.1016/j.eswa.2023.120737_b0130) 2009; 168
10.1016/j.eswa.2023.120737_b0060
10.1016/j.eswa.2023.120737_b0140
Levitin (10.1016/j.eswa.2023.120737_b0155) 2006; 168
Ozdemir (10.1016/j.eswa.2023.120737_b0210) 2021; 239
10.1016/j.eswa.2023.120737_b0340
10.1016/j.eswa.2023.120737_b0025
10.1016/j.eswa.2023.120737_b0300
10.1016/j.eswa.2023.120737_b0145
Manzini (10.1016/j.eswa.2023.120737_b0180) 2022; 73
10.1016/j.eswa.2023.120737_b0105
References_xml – volume: 247
  start-page: 488
  year: 2015
  end-page: 503
  ident: b0260
  article-title: A real-time order acceptance and scheduling approach for permutation flow shop problems
  publication-title: European Journal of Operational Research
– volume: 65
  start-page: 261
  year: 2013
  end-page: 267
  ident: b0125
  article-title: Assembly line balancing under uncertainty: Robust optimization models and exact solution method
  publication-title: Computers & Industrial Engineering
– reference: , 46–54.
– reference: Salveson, M. E. J. T. J. o. I. E. (1955). The assembly line balancing problem. 18-25.
– reference: , 259-275.
– reference: , 105775.
– reference: Li, Z., Janardhanan, M. N., & Ponnambalam, S. J. J. o. I. M. (2021). Cost-oriented robotic assembly line balancing problem with setup times: multi-objective algorithms.
– volume: 36
  start-page: 245
  year: 2009
  end-page: 259
  ident: b0135
  article-title: An efficient genetic algorithm with uniform crossover for air traffic control
  publication-title: Computers & Operations Research
– reference: Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach.
– reference: Qin, S., Pi, D., Shao, Z., Xu, Y. J. I. T. o. N., & Management, S. (2022). A Discrete Interval-based Multi-objective Memetic Algorithm for Scheduling Workflow with Uncertainty in Cloud Environment.
– volume: 131
  year: 2022
  ident: b0265
  article-title: Manufacturing project scheduling considering human factors to minimize total cost and carbon footprints
  publication-title: Applied Soft Computing
– volume: 21
  start-page: 311
  year: 1990
  end-page: 317
  ident: b0225
  article-title: Calculating relaxation allowances for construction operatives—Part 1: Metabolic cost
  publication-title: Applied ergonomics
– reference: Pereira, J., Ritt, M., Vásquez, Ó. C. J. C., & Research, O. (2018). A memetic algorithm for the cost-oriented robotic assembly line balancing problem.
– volume: 16
  start-page: 341
  year: 2000
  end-page: 352
  ident: b0220
  article-title: A multi-objective genetic algorithm for solving assembly line balancing problem
  publication-title: The International Journal of Advanced Manufacturing Technology
– reference: Rahman, H. F., Sarker, R., & Essam, D. (2015a). A genetic algorithm for permutation flow shop scheduling under make to stock production system.
– reference: Abdous, M.-A., Delorme, X., Battini, D., Sgarbossa, F., & Berger-Douce, S. J. I. J. o. P. R. (2022). Assembly Line Balancing Problem with ergonomics: a new fatigue and recovery model. 1–14.
– reference: Mukund Nilakantan, J., Ponnambalam, S. G., Jawahar, N., Kanagaraj, G. J. N. C., & Applications. (2015). Bio-inspired search algorithms to solve robotic assembly line balancing problems.
– volume: 34
  start-page: 461
  year: 2006
  end-page: 476
  ident: b0275
  article-title: Two new robust genetic algorithms for the flowshop scheduling problem
  publication-title: Omega
– volume: 149
  year: 2020
  ident: b0335
  article-title: Developing mathematical model and optimization algorithm for designing energy efficient semi-automated assembly line
  publication-title: Computers & Industrial Engineering
– year: 2022
  ident: b0160
  article-title: A learning-based memetic algorithm for energy-efficient flexible job shop scheduling with type-2 fuzzy processing time
  publication-title: IEEE transactions on evolutionary computation
– reference: Zhong, Y.-g., & Ai, B. J. S. C. (2017). A modified ant colony optimization algorithm for multi-objective assembly line balancing.
– reference: Savino, M. M., & Mazza, A. J. A. A. (2015). Kanban-driven parts feeding within a semi-automated O-shaped assembly line: a case study in the automotive industry.
– volume: 157
  year: 2021
  ident: b0245
  article-title: Scheduling project with stochastic durations and time-varying resource requests: A metaheuristic approach
  publication-title: Computers & Industrial Engineering
– volume: 149
  year: 2020
  ident: b0050
  article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem
  publication-title: Computers & Industrial Engineering
– reference: Zhong, Y.-g. J. C. E. (2017). Hull mixed-model assembly line balancing using a multi-objective genetic algorithm simulated annealing optimization approach.
– reference: Boysen, N., Fliedner, M., & Scholl, A. J. E. j. o. o. r. (2007). A classification of assembly line balancing problems.
– reference: , 101021.
– reference: Zhang, Z., Tang, Q., & Zhang, L. J. J. o. C. P. (2019). Mathematical model and grey wolf optimization for low-carbon and low-noise U-shaped robotic assembly line balancing problem.
– reference: , 311-325.
– reference: Samouei, P., & Ashayeri, J. J. A. M. M. (2019). Developing optimization & robust models for a mixed-model assembly line balancing problem with semi-automated operations.
– reference: Tang, Q., Meng, K., Cheng, L., Zhang, Z. J. S., & Computation, E. (2022). An improved multi-objective multifactorial evolutionary algorithm for assembly line balancing problem considering regular production and preventive maintenance scenarios.
– reference: ,
– reference: , 744-756.
– reference: (4), 257-271.
– reference: Deb, K., Pratap, A., & Meyarivan, T. (2001). Constrained test problems for multi-objective evolutionary optimization. International conference on evolutionary multi-criterion optimization.
– reference: Rubinovitz, J., Bukchin, J., & Lenz, E. J. C. a. (1993). RALB–A heuristic algorithm for design and balancing of robotic assembly lines.
– reference: Zhang, L., Zhang, B., Bao, H., Huang, H. J. I. J. o. P. E., & Manufacturing. (2018). Optimization of cutting parameters for minimizing environmental impact: considering energy efficiency, noise emission and economic dimension.
– reference: Chutima, P., Khotsaenlee, A. J. C., & Research, O. (2022). Multi-objective parallel adjacent U-shaped assembly line balancing collaborated by robots and normal and disabled workers.
– reference: (Supplement C), 12-24. https://doi.org/https://doi.org/10.1016/j.cie.2015.08.006.
– reference: (3), 666-693.
– reference: (2), 674–693.
– reference: Nourmohammadi, A., Fathi, M., & Ng, A. H. (2022). Balancing and scheduling assembly lines with human-robot collaboration tasks.
– reference: Cheshmehgaz, H. R., Haron, H., Kazemipour, F., Desa, M. I. J. C., & Engineering, I. (2012). Accumulated risk of body postures in assembly line balancing problem and modeling through a multi-criteria fuzzy-genetic algorithm.
– reference: (4), 989–1007.
– volume: 69
  year: 2022
  ident: b0055
  article-title: Multi-objective Q-learning-based hyper-heuristic with Bi-criteria selection for energy-aware mixed shop scheduling
  publication-title: Swarm and Evolutionary Computation
– volume: 242
  year: 2021
  ident: b0150
  article-title: An analysis of task assignment and cycle times when robots are added to human-operated assembly lines, using mathematical programming models
  publication-title: International Journal of Production Economics
– reference: GUROBI. (2023).
– volume: 168
  start-page: 169
  year: 2009
  end-page: 179
  ident: b0130
  article-title: Stochastic vendor selection problem: Chance-constrained model and genetic algorithms
  publication-title: Annals of Operations Research
– reference: Scholl, A., & Becker, C. J. E. J. o. O. R. (2006). State-of-the-art exact and heuristic solution procedures for simple assembly line balancing.
– reference: Van Veldhuizen, D. A., & Lamont, G. B. (2000). On measuring multiobjective evolutionary algorithm performance. Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512).
– reference: Boysen, N., Schulze, P., & Scholl, A. J. E. J. o. O. R. (2021). Assembly line balancing: What happened in the last fifteen years?.
– reference: Westkämper, E., Spingler, J. C., & Beumelburg, K. J. I. P. V. (2003). Skill Oriented Planning of Semi Automated Assembly Systems.
– reference: (22), 111–116.
– reference: Nilakantan, J. M., Huang, G. Q., & Ponnambalam, S. G. J. J. o. C. P. (2015). An investigation on minimizing cycle time and total energy consumption in robotic assembly line systems.
– reference: (1), 497-500.
– volume: 239
  year: 2021
  ident: b0210
  article-title: Fuzzy multi-objective model for assembly line balancing with ergonomic risks consideration
  publication-title: International Journal of Production Economics
– reference: Jack. (2023). https://resources.sw.siemens.com/en-US/download-tecnomatix-jack-student-download.
– reference: , 508–522.
– reference: (22), 6881-6894.
– reference: (2), 503–512.
– reference: Scholl, A. (1995).
– volume: 1
  start-page: 69
  year: 2009
  end-page: 83
  ident: b0120
  article-title: Memetic algorithms for solving job-shop scheduling problems
  publication-title: Memetic Computing
– volume: 141
  year: 2020
  ident: b0110
  article-title: Energy-efficient flexible flow shop scheduling with worker flexibility
  publication-title: Expert Systems with Applications
– reference: , 105674.
– volume: 26
  start-page: 1379
  year: 2015
  end-page: 1393
  ident: b0185
  article-title: Bio-inspired search algorithms to solve robotic assembly line balancing problems
  publication-title: Neural Computing and Applications
– year: 2020
  ident: b0250
  article-title: An integrated approach for line balancing and AGV scheduling towards smart assembly systems
  publication-title: Assembly Automation
– reference: Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning.
– volume: 73
  year: 2022
  ident: b0180
  publication-title: A predictive–reactive approach for the sequencing of assembly operations in an automated assembly line.
– reference: (2), 371–385.
– reference: Akbar, M., & Irohara, T. J. J. o. c. p. (2018). Scheduling for sustainable manufacturing: A review.
– reference: (3), 1065–1080.
– reference: Battini, D., Delorme, X., Dolgui, A., Persona, A., & Sgarbossa, F. J. I. J. o. P. R. (2016). Ergonomics in assembly line balancing based on energy expenditure: a multi-objective model.
– reference: , 866-883.
– year: 2023
  ident: b0345
  article-title: Reinforcement Learning-Based Multiobjective Evolutionary Algorithm for Mixed-Model Multimanned Assembly Line Balancing Under Uncertain Demand
  publication-title: IEEE Transactions on Cybernetics.
– reference: (6), 1379–1393.
– reference: , 249-261.
– volume: 33
  start-page: 1
  year: 2022
  end-page: 34
  ident: b0065
  article-title: A comprehensive review of robotic assembly line balancing problem
  publication-title: Journal of Intelligent Manufacturing
– reference: .
– reference: . Techn. Hochsch., Inst. für Betriebswirtschaftslehre.
– volume: 61
  start-page: 530
  year: 2021
  end-page: 535
  ident: b0330
  article-title: Industry 4.0 and Industry 5.0—Inception, conception and perception
  publication-title: Journal of Manufacturing Systems
– volume: 215
  year: 2023
  ident: b0305
  article-title: Hybrid genetic algorithm with variable neighborhood search for flexible job shop scheduling problem in a machining system
  publication-title: Expert Systems with Applications
– volume: 60
  start-page: 2193
  year: 2022
  end-page: 2211
  ident: b0040
  article-title: Mathematical models and heuristic methods for the assembly line balancing problem with hierarchical worker assignment
  publication-title: International Journal of Production Research
– reference: Ogan, D., & Azizoglu, M. J. J. o. M. S. (2015). A branch and bound method for the line balancing problem in U-shaped assembly lines with equipment requirements.
– volume: 193
  year: 2022
  ident: b0235
  article-title: Energy-efficient project scheduling with supplier selection in manufacturing projects
  publication-title: Expert Systems with Applications
– volume: 60
  start-page: 699
  year: 2011
  end-page: 705
  ident: b0100
  article-title: An efficient memetic algorithm for solving the job shop scheduling problem
  publication-title: Computers & Industrial Engineering
– reference: , 116446.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0085
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: Rahman, H. F., Chakrabortty, R. K., Elsawah, S., & Ryan, M. J. J. E. S. w. A. (2022b). Energy-efficient project scheduling with supplier selection in manufacturing projects.
– reference: Triki, H., Mellouli, A., & Masmoudi, F. J. J. o. I. M. (2017). A multi-objective genetic algorithm for assembly line resource assignment and balancing problem of type 2 (ALRABP-2).
– volume: 108240
  year: 2022
  ident: b0045
  article-title: Multi-Project Scheduling with Multi-Skilled Workforce Assignment Considering Uncertainty and Learning Effect for Large-Scale Equipment Manufacturer
  publication-title: Computers & Industrial Engineering
– volume: 168
  start-page: 811
  year: 2006
  end-page: 825
  ident: b0155
  article-title: A genetic algorithm for robotic assembly line balancing
  publication-title: European Journal of Operational Research
– reference: (1), 30-40.
– reference: Gao, J., Sun, L., Wang, L., Gen, M. J. C., & Engineering, I. (2009). An efficient approach for type II robotic assembly line balancing problems.
– reference: .
– volume: 18
  start-page: 577
  year: 2013
  end-page: 601
  ident: b0080
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 237
  year: 2021
  ident: b0020
  article-title: Ageing workforce effects in Dual-Resource Constrained job-shop scheduling
  publication-title: International Journal of Production Economics
– year: 1954
  ident: b0035
  article-title: Balancing of a continuous production line
– volume: 68
  start-page: 1
  year: 2019
  end-page: 4
  ident: b0075
  article-title: Designing assembly lines with humans and collaborative robots: A genetic approach
  publication-title: CIRP Annals
– reference: (4), 613-624.
– reference: Jiang, S., Yang, S., & Li, M. (2016). On the use of hypervolume for diversity measurement of Pareto front approximations. 2016 IEEE symposium series on computational intelligence (SSCI).
– reference: Li, Z., Tang, Q., & Zhang, L. J. J. o. C. P. (2016). Minimizing energy consumption and cycle time in two-sided robotic assembly line systems using restarted simulated annealing algorithm.
– volume: 58
  start-page: 3090
  year: 2020
  end-page: 3109
  ident: b0175
  article-title: Modelling, analysis and improvement of an integrated chance-constrained model for level of repair analysis and spare parts supply control
  publication-title: International Journal of Production Research
– reference: (3), 824–845.
– ident: 10.1016/j.eswa.2023.120737_b0230
  doi: 10.1109/TNSM.2022.3224158
– ident: 10.1016/j.eswa.2023.120737_b0310
  doi: 10.1016/j.swevo.2021.101021
– year: 2022
  ident: 10.1016/j.eswa.2023.120737_b0160
  article-title: A learning-based memetic algorithm for energy-efficient flexible job shop scheduling with type-2 fuzzy processing time
– volume: 68
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2023.120737_b0075
  article-title: Designing assembly lines with humans and collaborative robots: A genetic approach
  publication-title: CIRP Annals
  doi: 10.1016/j.cirp.2019.04.006
– ident: 10.1016/j.eswa.2023.120737_b0270
  doi: 10.1016/S0007-8506(07)62494-9
– ident: 10.1016/j.eswa.2023.120737_b0355
  doi: 10.1007/s00500-016-2240-9
– ident: 10.1016/j.eswa.2023.120737_b0285
  doi: 10.1016/j.apm.2019.02.019
– ident: 10.1016/j.eswa.2023.120737_b0280
  doi: 10.1115/1.4014559
– ident: 10.1016/j.eswa.2023.120737_b0205
  doi: 10.1016/j.jmsy.2015.02.007
– volume: 58
  start-page: 3090
  issue: 10
  year: 2020
  ident: 10.1016/j.eswa.2023.120737_b0175
  article-title: Modelling, analysis and improvement of an integrated chance-constrained model for level of repair analysis and spare parts supply control
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2019.1629669
– ident: 10.1016/j.eswa.2023.120737_b0340
  doi: 10.1007/s12541-018-0074-3
– volume: 36
  start-page: 245
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2023.120737_b0135
  article-title: An efficient genetic algorithm with uniform crossover for air traffic control
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2007.09.005
– volume: 16
  start-page: 341
  issue: 5
  year: 2000
  ident: 10.1016/j.eswa.2023.120737_b0220
  article-title: A multi-objective genetic algorithm for solving assembly line balancing problem
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s001700050166
– ident: 10.1016/j.eswa.2023.120737_b0295
– year: 2020
  ident: 10.1016/j.eswa.2023.120737_b0250
  article-title: An integrated approach for line balancing and AGV scheduling towards smart assembly systems
  publication-title: Assembly Automation
  doi: 10.1108/AA-03-2019-0057
– volume: 61
  start-page: 530
  year: 2021
  ident: 10.1016/j.eswa.2023.120737_b0330
  article-title: Industry 4.0 and Industry 5.0—Inception, conception and perception
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2021.10.006
– ident: 10.1016/j.eswa.2023.120737_b0090
  doi: 10.1007/3-540-44719-9_20
– ident: 10.1016/j.eswa.2023.120737_b0140
– volume: 149
  year: 2020
  ident: 10.1016/j.eswa.2023.120737_b0335
  article-title: Developing mathematical model and optimization algorithm for designing energy efficient semi-automated assembly line
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106768
– volume: 73
  year: 2022
  ident: 10.1016/j.eswa.2023.120737_b0180
  publication-title: A predictive–reactive approach for the sequencing of assembly operations in an automated assembly line.
– ident: 10.1016/j.eswa.2023.120737_b0010
  doi: 10.1016/j.jclepro.2018.09.100
– ident: 10.1016/j.eswa.2023.120737_b0095
  doi: 10.1016/j.cie.2008.09.027
– ident: 10.1016/j.eswa.2023.120737_b0070
  doi: 10.1016/j.cor.2022.105775
– volume: 239
  year: 2021
  ident: 10.1016/j.eswa.2023.120737_b0210
  article-title: Fuzzy multi-objective model for assembly line balancing with ergonomic risks consideration
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2021.108188
– ident: 10.1016/j.eswa.2023.120737_b0255
  doi: 10.1016/j.cie.2015.08.006
– ident: 10.1016/j.eswa.2023.120737_b0060
  doi: 10.1016/j.cie.2012.03.017
– ident: 10.1016/j.eswa.2023.120737_b0005
  doi: 10.1080/00207543.2021.2015081
– volume: 60
  start-page: 2193
  issue: 7
  year: 2022
  ident: 10.1016/j.eswa.2023.120737_b0040
  article-title: Mathematical models and heuristic methods for the assembly line balancing problem with hierarchical worker assignment
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2021.1884767
– ident: 10.1016/j.eswa.2023.120737_b0350
  doi: 10.1016/j.jclepro.2019.01.030
– volume: 33
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2023.120737_b0065
  article-title: A comprehensive review of robotic assembly line balancing problem
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-020-01641-7
– ident: 10.1016/j.eswa.2023.120737_b0105
  doi: 10.1023/A:1022602019183
– ident: 10.1016/j.eswa.2023.120737_b0215
  doi: 10.1016/j.cor.2018.07.001
– ident: 10.1016/j.eswa.2023.120737_b0315
  doi: 10.1007/s10845-014-0984-6
– ident: 10.1016/j.eswa.2023.120737_b0015
  doi: 10.1080/00207543.2015.1074299
– ident: 10.1016/j.eswa.2023.120737_b0165
  doi: 10.1007/s10845-020-01598-7
– volume: 168
  start-page: 169
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2023.120737_b0130
  article-title: Stochastic vendor selection problem: Chance-constrained model and genetic algorithms
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-008-0367-5
– volume: 242
  year: 2021
  ident: 10.1016/j.eswa.2023.120737_b0150
  article-title: An analysis of task assignment and cycle times when robots are added to human-operated assembly lines, using mathematical programming models
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2021.108292
– volume: 215
  year: 2023
  ident: 10.1016/j.eswa.2023.120737_b0305
  article-title: Hybrid genetic algorithm with variable neighborhood search for flexible job shop scheduling problem in a machining system
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.119359
– ident: 10.1016/j.eswa.2023.120737_b0025
  doi: 10.1016/j.ejor.2006.10.010
– volume: 65
  start-page: 261
  issue: 2
  year: 2013
  ident: 10.1016/j.eswa.2023.120737_b0125
  article-title: Assembly line balancing under uncertainty: Robust optimization models and exact solution method
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2013.03.004
– volume: 247
  start-page: 488
  issue: 2
  year: 2015
  ident: 10.1016/j.eswa.2023.120737_b0260
  article-title: A real-time order acceptance and scheduling approach for permutation flow shop problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.06.018
– year: 2023
  ident: 10.1016/j.eswa.2023.120737_b0345
  article-title: Reinforcement Learning-Based Multiobjective Evolutionary Algorithm for Mixed-Model Multimanned Assembly Line Balancing Under Uncertain Demand
  publication-title: IEEE Transactions on Cybernetics.
– volume: 26
  start-page: 1379
  issue: 6
  year: 2015
  ident: 10.1016/j.eswa.2023.120737_b0185
  article-title: Bio-inspired search algorithms to solve robotic assembly line balancing problems
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-014-1811-x
– volume: 18
  start-page: 577
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2023.120737_b0080
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281535
– ident: 10.1016/j.eswa.2023.120737_b0325
  doi: 10.1016/S1474-6670(17)37702-9
– ident: 10.1016/j.eswa.2023.120737_b0365
  doi: 10.1109/4235.797969
– volume: 237
  year: 2021
  ident: 10.1016/j.eswa.2023.120737_b0020
  article-title: Ageing workforce effects in Dual-Resource Constrained job-shop scheduling
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2021.108151
– ident: 10.1016/j.eswa.2023.120737_b0240
  doi: 10.1016/j.eswa.2021.116446
– volume: 149
  year: 2020
  ident: 10.1016/j.eswa.2023.120737_b0050
  article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106778
– ident: 10.1016/j.eswa.2023.120737_b0190
  doi: 10.1007/s00521-014-1811-x
– ident: 10.1016/j.eswa.2023.120737_b0200
  doi: 10.1016/j.cor.2021.105674
– ident: 10.1016/j.eswa.2023.120737_b0145
  doi: 10.1109/SSCI.2016.7850225
– volume: 60
  start-page: 699
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2023.120737_b0100
  article-title: An efficient memetic algorithm for solving the job shop scheduling problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2011.01.003
– ident: 10.1016/j.eswa.2023.120737_b0195
  doi: 10.1016/j.jclepro.2014.11.041
– volume: 1
  start-page: 69
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2023.120737_b0120
  article-title: Memetic algorithms for solving job-shop scheduling problems
  publication-title: Memetic Computing
  doi: 10.1007/s12293-008-0004-5
– volume: 69
  year: 2022
  ident: 10.1016/j.eswa.2023.120737_b0055
  article-title: Multi-objective Q-learning-based hyper-heuristic with Bi-criteria selection for energy-aware mixed shop scheduling
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2021.100985
– volume: 131
  year: 2022
  ident: 10.1016/j.eswa.2023.120737_b0265
  article-title: Manufacturing project scheduling considering human factors to minimize total cost and carbon footprints
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2022.109764
– ident: 10.1016/j.eswa.2023.120737_b0360
  doi: 10.1177/1063293X16666204
– ident: 10.1016/j.eswa.2023.120737_b0115
– volume: 34
  start-page: 461
  issue: 5
  year: 2006
  ident: 10.1016/j.eswa.2023.120737_b0275
  article-title: Two new robust genetic algorithms for the flowshop scheduling problem
  publication-title: Omega
  doi: 10.1016/j.omega.2004.12.006
– ident: 10.1016/j.eswa.2023.120737_b0290
  doi: 10.1108/AA-07-2014-068
– volume: 157
  year: 2021
  ident: 10.1016/j.eswa.2023.120737_b0245
  article-title: Scheduling project with stochastic durations and time-varying resource requests: A metaheuristic approach
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107363
– volume: 108240
  year: 2022
  ident: 10.1016/j.eswa.2023.120737_b0045
  article-title: Multi-Project Scheduling with Multi-Skilled Workforce Assignment Considering Uncertainty and Learning Effect for Large-Scale Equipment Manufacturer
  publication-title: Computers & Industrial Engineering
– ident: 10.1016/j.eswa.2023.120737_b0320
  doi: 10.1109/CEC.2000.870296
– volume: 21
  start-page: 311
  issue: 4
  year: 1990
  ident: 10.1016/j.eswa.2023.120737_b0225
  article-title: Calculating relaxation allowances for construction operatives—Part 1: Metabolic cost
  publication-title: Applied ergonomics
  doi: 10.1016/0003-6870(90)90202-9
– volume: 141
  year: 2020
  ident: 10.1016/j.eswa.2023.120737_b0110
  article-title: Energy-efficient flexible flow shop scheduling with worker flexibility
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.112902
– ident: 10.1016/j.eswa.2023.120737_b0170
  doi: 10.1016/j.jclepro.2016.06.131
– volume: 193
  year: 2022
  ident: 10.1016/j.eswa.2023.120737_b0235
  article-title: Energy-efficient project scheduling with supplier selection in manufacturing projects
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.116446
– year: 1954
  ident: 10.1016/j.eswa.2023.120737_b0035
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.eswa.2023.120737_b0085
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 168
  start-page: 811
  issue: 3
  year: 2006
  ident: 10.1016/j.eswa.2023.120737_b0155
  article-title: A genetic algorithm for robotic assembly line balancing
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2004.07.030
– ident: 10.1016/j.eswa.2023.120737_b0300
  doi: 10.1016/j.ejor.2004.07.022
– ident: 10.1016/j.eswa.2023.120737_b0030
  doi: 10.1016/j.ejor.2021.11.043
SSID ssj0017007
Score 2.510528
Snippet The semiautomated assembly line balancing problem (SAALBP) is a complex planning problem in which the production process comprises human workers, robots, and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 120737
SubjectTerms Chance constraint programming
Cycle time
Energy
Ergonomic risks
Memetic algorithm
Semi-automated assembly line
Title Energy aware semi-automatic assembly line balancing problem considering ergonomic risk and uncertain processing time
URI https://dx.doi.org/10.1016/j.eswa.2023.120737
Volume 231
WOSCitedRecordID wos001024851200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3JbtswEEAJN-mhlybdkLRJwUNvhgwtlCkdg8LpAtQI0BTwTaC4IE4c2oilLP_Sj-1QJCU5SIPm0ItgECIle55Ho-EsCH1iCSepUCLIyowZ1w0P8rGUIJCSgT2SloTZZhN0Os1ms_xkMPjtc2GuF1Tr7PY2X_1XUcMYCNukzj5B3O2iMACfQehwBLHD8Z8EP7HZfOzGxHSt5eU8YHW1dJVZ1zBQLu6GjXFZmrBGbtPRm7YyJga9ad9pxmAVm7Nsw8-Ngx2egTaCYLiy-QVNrtV8s95BUzy5ciWiffJcb5u821k6c95XQOqu1sPjmok2oIdpQPeMue7JP-qLGq4_nS_YBaDQEX2y1Jpdmi_ScP1z9GXU92PEia-f2HNI0oBEtmeP182xe0RY7RrFoJDog4rf-iDOR3J9Y6pJxcmoO3mzyva9p18bk-jD3c4Ls0Zh1ijsGs_QdkzTHNT-9tG3yex7u0tFQ5uO7-_cJWXZ-MH7d_Kw4dMzZk530Uv3FoKPLD2v0EDq12jHd_jATuG_QZWFCTcw4U2YsIcJG5hwCxN2MOEeTLiFCRuYMMCEW5hwBxM2ML1Fv44np5-_Bq5PR8CTMKyCUqUiU2Cq07EiGUmpUOOISQ6mY2TaHRBKUx4xETKVpaVkJIpVSYiIpEzEGOzvd2hLL7XcQ5grMN9zxmRIEgKzmEiEUrmME7AjFSH7KPI_YsFdEXvTS2VR_F18-2jYzlnZEi6Pnp162RTOCLXGZQGoPTLv_ZOu8gG96P4DB2iruqrlIXrOr6v5-uqj4-wP50Cv2g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+aware+semi-automatic+assembly+line+balancing+problem+considering+ergonomic+risk+and+uncertain+processing+time&rft.jtitle=Expert+systems+with+applications&rft.au=Rahman%2C+Humyun+Fuad&rft.au=Janardhanan%2C+Mukund+Nilakantan&rft.au=Ponnambalam%2C+S.G.&rft.date=2023-11-30&rft.issn=0957-4174&rft.volume=231&rft.spage=120737&rft_id=info:doi/10.1016%2Fj.eswa.2023.120737&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_120737
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon