A locational false data injection attack detection method in smart grid based on adversarial variational autoencoders
Stealthy FDIA (False Data Injection Attack) is a serious cyber threat that can modify state estimation of smart grid through maliciously altering the measurement data, but can’t be detected by traditional bad data detection system in smart grid. There exist two weakpoints for numerous deep neural ne...
Uloženo v:
| Vydáno v: | Applied soft computing Ročník 151; s. 111169 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.01.2024
|
| Témata: | |
| ISSN: | 1568-4946, 1872-9681 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Stealthy FDIA (False Data Injection Attack) is a serious cyber threat that can modify state estimation of smart grid through maliciously altering the measurement data, but can’t be detected by traditional bad data detection system in smart grid. There exist two weakpoints for numerous deep neural networks (DNNs) based data-driven schemes against FDIA. First, they mainly focus on detecting the presence of FDIA, but fail to localize the specific bus/nodes affected. Second, their performance is not sufficiently desirable under small attack, i.e., anomalies caused by the attack closely resemble normal data. To address the above issues, this paper proposes an effective locational FDIA detection framework based on data reconstruction, AT-GVAE, which seamlessly integrates the variational autoencoders (VAEs) and generative adversarial network paradigm. Specifically, our contributions are threefold. First, the proposed AT-GVAE framework is novelly composed of two main modules: the generative VAE_G and discriminative VAE_D that both play dual roles: reconstruct data from jointly learning distributions of data and latent feature space, and meanwhile play Minmax game with adversarial way. Second, multiple-layer gated recurrent units (GRUs) are utilized as the basic structure of the encoder and decoders in both VAEs, to characterize the temporal correlations of measurement data sequence. Additionally, the self-attention mechanism is used to enhance the expressive ability of GRU based VAEs. Then, the anomaly score for each busbar in the smart grid is determined by comparing the residual between the observed measurement and the outputs of VAE_G and VAE_D, enabling the localization of FDIA. Finally, thorough experiments on multiple power systems with series data of total 3456 measurements demonstrate that, in terms of multiple typical metrics, including false alarm rate vs. detection probability, AUC-ROC, and AUC-PR, our proposed framework outperforms the state-of-the-art GRU, VAE and adversarial training based FDIA detection schemes.
•Propose a novel locational FDIA detection framework, seamlessly integrating the VAEs and GAN paradigm.•The generative and discriminative VAEs both have dual roles: reconstruct data and play minmax game with adversarial way.•Multiple-layer gated recurrent units are utilized as the basic structure of the encoder and decoders in both VAEs.•Demonstrate our proposal outperforms SOTA VAE and adversarial training based FDIA schemes on multiple power systems. |
|---|---|
| AbstractList | Stealthy FDIA (False Data Injection Attack) is a serious cyber threat that can modify state estimation of smart grid through maliciously altering the measurement data, but can’t be detected by traditional bad data detection system in smart grid. There exist two weakpoints for numerous deep neural networks (DNNs) based data-driven schemes against FDIA. First, they mainly focus on detecting the presence of FDIA, but fail to localize the specific bus/nodes affected. Second, their performance is not sufficiently desirable under small attack, i.e., anomalies caused by the attack closely resemble normal data. To address the above issues, this paper proposes an effective locational FDIA detection framework based on data reconstruction, AT-GVAE, which seamlessly integrates the variational autoencoders (VAEs) and generative adversarial network paradigm. Specifically, our contributions are threefold. First, the proposed AT-GVAE framework is novelly composed of two main modules: the generative VAE_G and discriminative VAE_D that both play dual roles: reconstruct data from jointly learning distributions of data and latent feature space, and meanwhile play Minmax game with adversarial way. Second, multiple-layer gated recurrent units (GRUs) are utilized as the basic structure of the encoder and decoders in both VAEs, to characterize the temporal correlations of measurement data sequence. Additionally, the self-attention mechanism is used to enhance the expressive ability of GRU based VAEs. Then, the anomaly score for each busbar in the smart grid is determined by comparing the residual between the observed measurement and the outputs of VAE_G and VAE_D, enabling the localization of FDIA. Finally, thorough experiments on multiple power systems with series data of total 3456 measurements demonstrate that, in terms of multiple typical metrics, including false alarm rate vs. detection probability, AUC-ROC, and AUC-PR, our proposed framework outperforms the state-of-the-art GRU, VAE and adversarial training based FDIA detection schemes.
•Propose a novel locational FDIA detection framework, seamlessly integrating the VAEs and GAN paradigm.•The generative and discriminative VAEs both have dual roles: reconstruct data and play minmax game with adversarial way.•Multiple-layer gated recurrent units are utilized as the basic structure of the encoder and decoders in both VAEs.•Demonstrate our proposal outperforms SOTA VAE and adversarial training based FDIA schemes on multiple power systems. |
| ArticleNumber | 111169 |
| Author | Wang, Yufeng Ma, Jianhua Zhou, Yangming jin, Qun |
| Author_xml | – sequence: 1 givenname: Yufeng orcidid: 0000-0003-0448-325X surname: Wang fullname: Wang, Yufeng email: wfwang1974@gmail.com organization: Nanjing University of Posts and Telecommunications, China – sequence: 2 givenname: Yangming surname: Zhou fullname: Zhou, Yangming organization: Nanjing University of Posts and Telecommunications, China – sequence: 3 givenname: Jianhua surname: Ma fullname: Ma, Jianhua organization: Hosei University, Japan – sequence: 4 givenname: Qun surname: jin fullname: jin, Qun organization: Waseda University, Japan |
| BookMark | eNp9kMtOwzAQRS1UJErhB1j5BxJsJ3UciU1V8ZIqsYG1NX4EHNIY2W4l_h6n7YpFvRlrPOeO771Gs9GPFqE7SkpKKL_vS4hel4ywqqT58PYCzaloWNFyQWf5vuSiqNuaX6HrGHuSoZaJOdqt8OA1JOdHGHAHQ7TYQALsxt7qqY0hJdDf2Nh0amxt-vImT-C4hZDwZ3AGK4jW4Gnc7G2IEFzW20_lpA275O2ovcmvN-jysOr2VBfo4-nxff1SbN6eX9erTaErQlKhjKaWV8AaVgPXnNOqto0FIzrVghKNUrTtmiVrFKGMtaymglgCilUdbSmrFkgcdXXwMQbbSe3S4UMpgBskJXKKT_Zyik9O8cljfBll_9Cf4LLd3_PQwxGy2dTe2SCjdtm0NS7k8KTx7hz-BxYEjaE |
| CitedBy_id | crossref_primary_10_1016_j_autcon_2024_105794 crossref_primary_10_1371_journal_pone_0316536 crossref_primary_10_3390_math13172812 crossref_primary_10_1038_s41598_024_82566_6 crossref_primary_10_3390_en18102461 crossref_primary_10_1007_s00500_025_10702_z crossref_primary_10_3390_en18071568 crossref_primary_10_1016_j_asoc_2025_113691 crossref_primary_10_1049_cps2_12093 crossref_primary_10_1002_ett_70238 crossref_primary_10_1016_j_engappai_2025_110953 |
| Cites_doi | 10.1145/3394486.3403392 10.1145/3097983.3098144 10.1109/TSG.2020.3010510 10.1109/TSG.2015.2495133 10.1016/j.cose.2020.101994 10.1109/MDM.2018.00029 10.1561/2200000056 10.1016/j.asoc.2022.109903 10.1016/j.media.2019.01.010 10.1007/978-3-030-20893-6_39 10.1109/TII.2018.2825243 10.1109/TPWRS.2010.2051168 10.1109/TSMC.2022.3204777 10.1109/JIOT.2021.3113900 10.24963/ijcai.2019/378 10.1109/TSMC.2020.2968516 10.1145/1952982.1952995 10.1016/j.renene.2018.05.024 10.1145/3439950 10.1145/3444690 10.1109/TSG.2019.2949998 10.1145/3292500.3330672 10.1109/JIOT.2020.2983911 10.1109/LRA.2018.2801475 10.1109/JPROC.2017.2768698 10.1016/j.rser.2022.112423 10.1002/cpe.7827 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2023.111169 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2023_111169 S1568494623011870 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-bdc1e63a2724a6c66134e7ead8fb9ab87bb19f7527b0122924180e0ab23f19123 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001146768900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Sat Nov 29 03:06:00 EST 2025 Tue Nov 18 21:11:18 EST 2025 Sat Aug 03 15:33:34 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Self-attention mechanism Gated recurrent units (GRUs) Generative adversarial paradigm Variational autoencoders (VAE) False data injection attack (FDIA) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-bdc1e63a2724a6c66134e7ead8fb9ab87bb19f7527b0122924180e0ab23f19123 |
| ORCID | 0000-0003-0448-325X |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2023_111169 crossref_primary_10_1016_j_asoc_2023_111169 elsevier_sciencedirect_doi_10_1016_j_asoc_2023_111169 |
| PublicationCentury | 2000 |
| PublicationDate | January 2024 2024-01-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wang, Bi, Zhang (bib26) 2020; 7 Yang, Cai, Wu, Wang, Ge, Hu, Zhu (bib5) 2023; 33 Park, Hoshi, Kemp (bib22) 2018; 3 Yin, Zhang, Wang, Xiong (bib18) 2022; 52 S. Akcay A. Atapour-Abarghouei T.P. Breckon, GANomaly: semi-supervised anomaly detection via adversarial training, in: Proceedings of the Asian Conference on Computer Vision; 2018. DOI: 10.1007/978–3-030–20893-6_39. T. Kieu B. Yang C. Guo C.S. Jensen, Outlier detection for time series with recurrent autoencoder ensembles, in: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI); 2019. DOI: 10.24963/ijcai.2019/378. Sun, He, Lin, Cai, Cai, Gao (bib23) 2023; 132 Ashrafuzzaman, Das, Chakhchoukh, Shiva, Sheldon (bib27) 2020; 97 Blázquez-García, Conde, Mori, Lozano (bib15) 2022; 54 Liu, Ning, Reiter (bib4) 2011; 14 T. Kieu B. Yang C.S. Jensen, Outlier detection for multidimensional time series using deep neural networks, in: Proceedings of the 19th IEEE International Conference on Mobile Data Management; 2018. DOI: 10.1109/MDM.2018.00029. Du, Pierrou, Wang (bib28) 2021 Kingma, Welling (bib14) 2019; 12 Liang, Zhao, Luo, Weller, Zhao (bib3) 2017; 8 Y. Su Y. Zhao C. Niu R. Liu W. Sun D. Pei, Robust anomaly detection for multivariate time series through stochastic recurrent neural network, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD); 2019. DOI: 10.1145/3292500.3330672. Reda, Anwar, Mahmood (bib13) 2022; 163 Kong, Cai, Liu, Zhu, Yang, Gao (bib6) 2023; 55 Pang, Shen, Cao, Hengel (bib16) 2022; 54 J. Audibert P. Michiardi F. Guyard S. Marti M.A. Zuluaga, USAD: Unsupervised anomaly detection on multivariate time series, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD); 2020. DOI: 10.1145/3394486.3403392. A. Vaswani N. Shazeer N. Parmar et al., Attention is all you need, in: Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS); 2017. DOI: 10.5555/3295222.3295349. Schlegl, Seeböck, Waldstein, Langs, Schmidt-Erfurth (bib12) 2019; 54 Wang, Zhang, Ma, Jin (bib10) 2022; 9 Xue, Yu (bib1) 2017; 105 Wang, Zhang, Ma, Jin (bib33) 2023; 35 Zhang, Wang, Chen (bib17) 2021; 12 Zimmerman, Murillo-Sánchez, Thomas (bib32) 2011; 26 Yan, B. Tang, He (bib9) 2016 Wang, Wang, Zhang, Jin (bib7) 2019; 46 A. Siffer P.A. Fouque A. Termier C. Largouet, Anomaly detection in streams with extreme value theory, In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD); 2017. DOI: 10.1145/3097983.3098144. Musleh, Guo, Zhao (bib2) 2020; 11 Zhao, Liu, Hu, Yan (bib31) 2018; 127 Yu, Hou, Li (bib8) 2018; 14 Zhao, Liu, Hu, Yan (bib11) 2018; 127 Sun (10.1016/j.asoc.2023.111169_bib23) 2023; 132 Zimmerman (10.1016/j.asoc.2023.111169_bib32) 2011; 26 Wang (10.1016/j.asoc.2023.111169_bib26) 2020; 7 Ashrafuzzaman (10.1016/j.asoc.2023.111169_bib27) 2020; 97 Park (10.1016/j.asoc.2023.111169_bib22) 2018; 3 Zhao (10.1016/j.asoc.2023.111169_bib31) 2018; 127 Yin (10.1016/j.asoc.2023.111169_bib18) 2022; 52 Kingma (10.1016/j.asoc.2023.111169_bib14) 2019; 12 10.1016/j.asoc.2023.111169_bib21 10.1016/j.asoc.2023.111169_bib20 Kong (10.1016/j.asoc.2023.111169_bib6) 2023; 55 Musleh (10.1016/j.asoc.2023.111169_bib2) 2020; 11 Xue (10.1016/j.asoc.2023.111169_bib1) 2017; 105 10.1016/j.asoc.2023.111169_bib29 Zhang (10.1016/j.asoc.2023.111169_bib17) 2021; 12 10.1016/j.asoc.2023.111169_bib25 Pang (10.1016/j.asoc.2023.111169_bib16) 2022; 54 10.1016/j.asoc.2023.111169_bib24 Yu (10.1016/j.asoc.2023.111169_bib8) 2018; 14 Wang (10.1016/j.asoc.2023.111169_bib7) 2019; 46 Liang (10.1016/j.asoc.2023.111169_bib3) 2017; 8 Liu (10.1016/j.asoc.2023.111169_bib4) 2011; 14 Reda (10.1016/j.asoc.2023.111169_bib13) 2022; 163 Yang (10.1016/j.asoc.2023.111169_bib5) 2023; 33 Schlegl (10.1016/j.asoc.2023.111169_bib12) 2019; 54 Yan (10.1016/j.asoc.2023.111169_bib9) 2016 Zhao (10.1016/j.asoc.2023.111169_bib11) 2018; 127 Du (10.1016/j.asoc.2023.111169_bib28) 2021 10.1016/j.asoc.2023.111169_bib30 Wang (10.1016/j.asoc.2023.111169_bib33) 2023; 35 10.1016/j.asoc.2023.111169_bib19 Wang (10.1016/j.asoc.2023.111169_bib10) 2022; 9 Blázquez-García (10.1016/j.asoc.2023.111169_bib15) 2022; 54 |
| References_xml | – volume: 105 start-page: 2290 year: 2017 end-page: 2292 ident: bib1 article-title: Beyond smart grid—cyber–physical–social system in energy future publication-title: Proc. IEEE – volume: 8 start-page: 1630 year: 2017 end-page: 1638 ident: bib3 article-title: A review of false data injection attacks against modern power systems publication-title: IEEE Trans. Smart Grid – reference: T. Kieu B. Yang C.S. Jensen, Outlier detection for multidimensional time series using deep neural networks, in: Proceedings of the 19th IEEE International Conference on Mobile Data Management; 2018. DOI: 10.1109/MDM.2018.00029. – volume: 3 start-page: 1544 year: 2018 end-page: 1551 ident: bib22 article-title: A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencode publication-title: IEEE Robot. Autom. Lett. – volume: 12 start-page: 623 year: 2021 end-page: 634 ident: bib17 article-title: Detecting false data injection attacks in smart grids: a semi-supervised deep learning approach publication-title: IEEE Trans. Smart Grid – reference: S. Akcay A. Atapour-Abarghouei T.P. Breckon, GANomaly: semi-supervised anomaly detection via adversarial training, in: Proceedings of the Asian Conference on Computer Vision; 2018. DOI: 10.1007/978–3-030–20893-6_39. – volume: 12 start-page: 307 year: 2019 end-page: 392 ident: bib14 article-title: An introduction to variational autoencoders publication-title: Found. Trends® Mach. Learn. – reference: T. Kieu B. Yang C. Guo C.S. Jensen, Outlier detection for time series with recurrent autoencoder ensembles, in: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI); 2019. DOI: 10.24963/ijcai.2019/378. – volume: 14 start-page: 1 year: 2011 end-page: 33 ident: bib4 article-title: False data injection attacks against state estimation in electric power grids publication-title: ACM Trans. Inf. Syst. Secur. – volume: 26 start-page: 12 year: 2011 end-page: 19 ident: bib32 article-title: MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education publication-title: IEEE Trans. Power Syst. – volume: 33 year: 2023 ident: bib5 article-title: Digital twin-driven fault diagnosis method for composite faults by combining virtual and real data publication-title: J. Ind. Inf. Integr. – volume: 14 start-page: 3271 year: 2018 end-page: 3280 ident: bib8 article-title: Online false data injection attack detection with wavelet transform and deep neural networks publication-title: IEEE Trans. Ind. Inform. – year: 2016 ident: bib9 article-title: Detection of false data attacks in smart grid with supervised learning publication-title: Proc. Int. Joint Conf. Neural Netw. – reference: Y. Su Y. Zhao C. Niu R. Liu W. Sun D. Pei, Robust anomaly detection for multivariate time series through stochastic recurrent neural network, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD); 2019. DOI: 10.1145/3292500.3330672. – reference: A. Vaswani N. Shazeer N. Parmar et al., Attention is all you need, in: Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS); 2017. DOI: 10.5555/3295222.3295349. – volume: 132 year: 2023 ident: bib23 article-title: Anomaly detection of power battery pack using gated recurrent units based variational autoencoder publication-title: Appl. Soft Comput. – volume: 11 start-page: 2218 year: 2020 end-page: 2234 ident: bib2 article-title: A survey on the detection algorithms for false data injection attacks in smart grids publication-title: IEEE Trans. Smart Grid – volume: 7 start-page: 8218 year: 2020 end-page: 8227 ident: bib26 article-title: Locational detection of the false data injection attack in a smart grid: a multilabel classification approach publication-title: IEEE Internet Things J. – volume: 97 year: 2020 ident: bib27 article-title: Detecting stealthy false data injection attacks in the smart grid using ensemble-based machine learning publication-title: Comput. Secur. – year: 2021 ident: bib28 article-title: Targeted false data injection attack against DC state estimation without line parameters publication-title: Proc. IEEE Power Energy Soc. Gen. Meet. – volume: 55 start-page: 1618 year: 2023 end-page: 1629 ident: bib6 article-title: Fault diagnosis methodology of redundant closed-loop feedback control systems: subsea blowout preventer system as a case study publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 9 start-page: 6893 year: 2022 end-page: 6904 ident: bib10 article-title: KFRNN: an effective false data injection attack detection in smart grid based on kalman filter and recurrent neural network publication-title: IEEE Internet Things J. – volume: 54 start-page: 1 year: 2022 end-page: 38 ident: bib16 article-title: Deep learning for anomaly detection: a review publication-title: ACM Comput. Surv. – reference: J. Audibert P. Michiardi F. Guyard S. Marti M.A. Zuluaga, USAD: Unsupervised anomaly detection on multivariate time series, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD); 2020. DOI: 10.1145/3394486.3403392. – volume: 163 start-page: 1112423 year: 2022 ident: bib13 article-title: Comprehensive survey and taxonomies of false data injection attacks in smart grids: attack models, targets, and impacts publication-title: Renew. Sustain. Energy Rev. – volume: 46 start-page: 42 year: 2019 end-page: 52 ident: bib7 article-title: Detection of power grid disturbances and cyber-attacks based on machine learning publication-title: J. Inf. Secur. Appl. – volume: 54 start-page: 30 year: 2019 end-page: 44 ident: bib12 article-title: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks publication-title: Med. Image Anal. – volume: 52 start-page: 112 year: 2022 end-page: 122 ident: bib18 article-title: Anomaly detection based on convolutional recurrent autoencoder for IoT time series publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 35 year: 2023 ident: bib33 article-title: Artificial intelligence of things (AIoT) data acquisition based on graph neural networks: a systematical review publication-title: Concurr. Comput. Pract. Exp. – volume: 127 start-page: 825 year: 2018 end-page: 834 ident: bib31 article-title: Anomaly detection and fault analysis of wind turbine components based on deep learning network publication-title: Renew. Energy – volume: 127 start-page: 825 year: 2018 end-page: 834 ident: bib11 article-title: Anomaly detection and fault analysis of wind turbine components based on deep learning network publication-title: Renew. Energy – reference: A. Siffer P.A. Fouque A. Termier C. Largouet, Anomaly detection in streams with extreme value theory, In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD); 2017. DOI: 10.1145/3097983.3098144. – volume: 54 start-page: 1 year: 2022 end-page: 33 ident: bib15 article-title: A review on outlier/anomaly detection in time series data publication-title: ACM Comput. Surv. – ident: 10.1016/j.asoc.2023.111169_bib24 doi: 10.1145/3394486.3403392 – ident: 10.1016/j.asoc.2023.111169_bib30 doi: 10.1145/3097983.3098144 – volume: 12 start-page: 623 issue: 1 year: 2021 ident: 10.1016/j.asoc.2023.111169_bib17 article-title: Detecting false data injection attacks in smart grids: a semi-supervised deep learning approach publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2020.3010510 – volume: 8 start-page: 1630 issue: 4 year: 2017 ident: 10.1016/j.asoc.2023.111169_bib3 article-title: A review of false data injection attacks against modern power systems publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2015.2495133 – volume: 97 year: 2020 ident: 10.1016/j.asoc.2023.111169_bib27 article-title: Detecting stealthy false data injection attacks in the smart grid using ensemble-based machine learning publication-title: Comput. Secur. doi: 10.1016/j.cose.2020.101994 – ident: 10.1016/j.asoc.2023.111169_bib29 – ident: 10.1016/j.asoc.2023.111169_bib19 doi: 10.1109/MDM.2018.00029 – volume: 12 start-page: 307 issue: 4 year: 2019 ident: 10.1016/j.asoc.2023.111169_bib14 article-title: An introduction to variational autoencoders publication-title: Found. Trends® Mach. Learn. doi: 10.1561/2200000056 – volume: 132 year: 2023 ident: 10.1016/j.asoc.2023.111169_bib23 article-title: Anomaly detection of power battery pack using gated recurrent units based variational autoencoder publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109903 – volume: 54 start-page: 30 year: 2019 ident: 10.1016/j.asoc.2023.111169_bib12 article-title: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.01.010 – ident: 10.1016/j.asoc.2023.111169_bib25 doi: 10.1007/978-3-030-20893-6_39 – volume: 14 start-page: 3271 issue: 7 year: 2018 ident: 10.1016/j.asoc.2023.111169_bib8 article-title: Online false data injection attack detection with wavelet transform and deep neural networks publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2825243 – volume: 26 start-page: 12 issue: 1 year: 2011 ident: 10.1016/j.asoc.2023.111169_bib32 article-title: MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2010.2051168 – volume: 55 start-page: 1618 issue: 3 year: 2023 ident: 10.1016/j.asoc.2023.111169_bib6 article-title: Fault diagnosis methodology of redundant closed-loop feedback control systems: subsea blowout preventer system as a case study publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2022.3204777 – volume: 9 start-page: 6893 issue: 9 year: 2022 ident: 10.1016/j.asoc.2023.111169_bib10 article-title: KFRNN: an effective false data injection attack detection in smart grid based on kalman filter and recurrent neural network publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3113900 – year: 2021 ident: 10.1016/j.asoc.2023.111169_bib28 article-title: Targeted false data injection attack against DC state estimation without line parameters publication-title: Proc. IEEE Power Energy Soc. Gen. Meet. – year: 2016 ident: 10.1016/j.asoc.2023.111169_bib9 article-title: Detection of false data attacks in smart grid with supervised learning publication-title: Proc. Int. Joint Conf. Neural Netw. – ident: 10.1016/j.asoc.2023.111169_bib20 doi: 10.24963/ijcai.2019/378 – volume: 52 start-page: 112 issue: 1 year: 2022 ident: 10.1016/j.asoc.2023.111169_bib18 article-title: Anomaly detection based on convolutional recurrent autoencoder for IoT time series publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2020.2968516 – volume: 46 start-page: 42 year: 2019 ident: 10.1016/j.asoc.2023.111169_bib7 article-title: Detection of power grid disturbances and cyber-attacks based on machine learning publication-title: J. Inf. Secur. Appl. – volume: 14 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.asoc.2023.111169_bib4 article-title: False data injection attacks against state estimation in electric power grids publication-title: ACM Trans. Inf. Syst. Secur. doi: 10.1145/1952982.1952995 – volume: 127 start-page: 825 year: 2018 ident: 10.1016/j.asoc.2023.111169_bib11 article-title: Anomaly detection and fault analysis of wind turbine components based on deep learning network publication-title: Renew. Energy doi: 10.1016/j.renene.2018.05.024 – volume: 54 start-page: 1 issue: 2 year: 2022 ident: 10.1016/j.asoc.2023.111169_bib16 article-title: Deep learning for anomaly detection: a review publication-title: ACM Comput. Surv. doi: 10.1145/3439950 – volume: 54 start-page: 1 issue: 3 year: 2022 ident: 10.1016/j.asoc.2023.111169_bib15 article-title: A review on outlier/anomaly detection in time series data publication-title: ACM Comput. Surv. doi: 10.1145/3444690 – volume: 11 start-page: 2218 issue: 3 year: 2020 ident: 10.1016/j.asoc.2023.111169_bib2 article-title: A survey on the detection algorithms for false data injection attacks in smart grids publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2019.2949998 – ident: 10.1016/j.asoc.2023.111169_bib21 doi: 10.1145/3292500.3330672 – volume: 7 start-page: 8218 issue: 9 year: 2020 ident: 10.1016/j.asoc.2023.111169_bib26 article-title: Locational detection of the false data injection attack in a smart grid: a multilabel classification approach publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2983911 – volume: 3 start-page: 1544 issue: 3 year: 2018 ident: 10.1016/j.asoc.2023.111169_bib22 article-title: A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencode publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2018.2801475 – volume: 105 start-page: 2290 issue: 12 year: 2017 ident: 10.1016/j.asoc.2023.111169_bib1 article-title: Beyond smart grid—cyber–physical–social system in energy future publication-title: Proc. IEEE doi: 10.1109/JPROC.2017.2768698 – volume: 127 start-page: 825 year: 2018 ident: 10.1016/j.asoc.2023.111169_bib31 article-title: Anomaly detection and fault analysis of wind turbine components based on deep learning network publication-title: Renew. Energy doi: 10.1016/j.renene.2018.05.024 – volume: 163 start-page: 1112423 year: 2022 ident: 10.1016/j.asoc.2023.111169_bib13 article-title: Comprehensive survey and taxonomies of false data injection attacks in smart grids: attack models, targets, and impacts publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112423 – volume: 35 issue: 23 year: 2023 ident: 10.1016/j.asoc.2023.111169_bib33 article-title: Artificial intelligence of things (AIoT) data acquisition based on graph neural networks: a systematical review publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.7827 – volume: 33 year: 2023 ident: 10.1016/j.asoc.2023.111169_bib5 article-title: Digital twin-driven fault diagnosis method for composite faults by combining virtual and real data publication-title: J. Ind. Inf. Integr. |
| SSID | ssj0016928 |
| Score | 2.4656043 |
| Snippet | Stealthy FDIA (False Data Injection Attack) is a serious cyber threat that can modify state estimation of smart grid through maliciously altering the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 111169 |
| SubjectTerms | False data injection attack (FDIA) Gated recurrent units (GRUs) Generative adversarial paradigm Self-attention mechanism Variational autoencoders (VAE) |
| Title | A locational false data injection attack detection method in smart grid based on adversarial variational autoencoders |
| URI | https://dx.doi.org/10.1016/j.asoc.2023.111169 |
| Volume | 151 |
| WOSCitedRecordID | wos001146768900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMXKC9R2iIfuEVZbRLHcY6rqhUgqEAqaOES2Y5Nd9tmq91k1Z_Az2b8yIMCFT1wyUazziTKfJkZj8czCL3mmqpSERZmKoUJClcqFKliYUkYL2mqtbRxyC_vs5MTNpvlH0ejH-1emM1FVlXs-jq_-q-iBhoI22ydvYO4O6ZAgHMQOhxB7HD8J8FPA2OffIhPw-1UYNJAg3m1UL4veF1zeR6UqvYE10bahD7Wl8Ax-L6ag18K9q00awnc9Gxec9veY2N-PG_e1EtTBrP0SfRdMVvv2K5Bw9uU9aZu7aON3Dvt8rXRqqd-O1s2lgr_Xg5Gf3CpvIDhs6YzIAtX9-BTUw1jFjEZxCy8mqUsJLkPPrZ62FeedZrUqHLXxOU3Je_iDYsxB_yOTfv3cT_414raNyxdl3_YprYtCsOjMDwKx-Me2o6zNAcVvz19ezR7161I0dz26e2e3G_AcrmCN5_kz07OwHE53UEP_YwDTx1SHqORqp6gR203D-yV-1PUTHEPHGyBgw1wcAcc7ICDO-BgBxwYgS1wsAEOtsDBZngPHDwADh4C5xn6fHx0evgm9E05QplMJnUoShkpmvA4iwmnEty7hKgM9BHTIueCZUJEuc7SOBNm1Ram9xGbqAkXcaKjHPyk52irWlbqBcJUpjFJykRqrYgUNOeUEUFUSnQKdiHaRVH7FgvpK9abxikXxd_lt4uC7porV6_l1tFpK5zCe5zOkywAa7dc9_JOd9lDD_qPYB9t1atGHaD7clPP16tXHmg_AasGppY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+locational+false+data+injection+attack+detection+method+in+smart+grid+based+on+adversarial+variational+autoencoders&rft.jtitle=Applied+soft+computing&rft.au=Wang%2C+Yufeng&rft.au=Zhou%2C+Yangming&rft.au=Ma%2C+Jianhua&rft.au=jin%2C+Qun&rft.date=2024-01-01&rft.issn=1568-4946&rft.volume=151&rft.spage=111169&rft_id=info:doi/10.1016%2Fj.asoc.2023.111169&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2023_111169 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |