A locational false data injection attack detection method in smart grid based on adversarial variational autoencoders

Stealthy FDIA (False Data Injection Attack) is a serious cyber threat that can modify state estimation of smart grid through maliciously altering the measurement data, but can’t be detected by traditional bad data detection system in smart grid. There exist two weakpoints for numerous deep neural ne...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 151; s. 111169
Hlavní autoři: Wang, Yufeng, Zhou, Yangming, Ma, Jianhua, jin, Qun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.01.2024
Témata:
ISSN:1568-4946, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Stealthy FDIA (False Data Injection Attack) is a serious cyber threat that can modify state estimation of smart grid through maliciously altering the measurement data, but can’t be detected by traditional bad data detection system in smart grid. There exist two weakpoints for numerous deep neural networks (DNNs) based data-driven schemes against FDIA. First, they mainly focus on detecting the presence of FDIA, but fail to localize the specific bus/nodes affected. Second, their performance is not sufficiently desirable under small attack, i.e., anomalies caused by the attack closely resemble normal data. To address the above issues, this paper proposes an effective locational FDIA detection framework based on data reconstruction, AT-GVAE, which seamlessly integrates the variational autoencoders (VAEs) and generative adversarial network paradigm. Specifically, our contributions are threefold. First, the proposed AT-GVAE framework is novelly composed of two main modules: the generative VAE_G and discriminative VAE_D that both play dual roles: reconstruct data from jointly learning distributions of data and latent feature space, and meanwhile play Minmax game with adversarial way. Second, multiple-layer gated recurrent units (GRUs) are utilized as the basic structure of the encoder and decoders in both VAEs, to characterize the temporal correlations of measurement data sequence. Additionally, the self-attention mechanism is used to enhance the expressive ability of GRU based VAEs. Then, the anomaly score for each busbar in the smart grid is determined by comparing the residual between the observed measurement and the outputs of VAE_G and VAE_D, enabling the localization of FDIA. Finally, thorough experiments on multiple power systems with series data of total 3456 measurements demonstrate that, in terms of multiple typical metrics, including false alarm rate vs. detection probability, AUC-ROC, and AUC-PR, our proposed framework outperforms the state-of-the-art GRU, VAE and adversarial training based FDIA detection schemes. •Propose a novel locational FDIA detection framework, seamlessly integrating the VAEs and GAN paradigm.•The generative and discriminative VAEs both have dual roles: reconstruct data and play minmax game with adversarial way.•Multiple-layer gated recurrent units are utilized as the basic structure of the encoder and decoders in both VAEs.•Demonstrate our proposal outperforms SOTA VAE and adversarial training based FDIA schemes on multiple power systems.
AbstractList Stealthy FDIA (False Data Injection Attack) is a serious cyber threat that can modify state estimation of smart grid through maliciously altering the measurement data, but can’t be detected by traditional bad data detection system in smart grid. There exist two weakpoints for numerous deep neural networks (DNNs) based data-driven schemes against FDIA. First, they mainly focus on detecting the presence of FDIA, but fail to localize the specific bus/nodes affected. Second, their performance is not sufficiently desirable under small attack, i.e., anomalies caused by the attack closely resemble normal data. To address the above issues, this paper proposes an effective locational FDIA detection framework based on data reconstruction, AT-GVAE, which seamlessly integrates the variational autoencoders (VAEs) and generative adversarial network paradigm. Specifically, our contributions are threefold. First, the proposed AT-GVAE framework is novelly composed of two main modules: the generative VAE_G and discriminative VAE_D that both play dual roles: reconstruct data from jointly learning distributions of data and latent feature space, and meanwhile play Minmax game with adversarial way. Second, multiple-layer gated recurrent units (GRUs) are utilized as the basic structure of the encoder and decoders in both VAEs, to characterize the temporal correlations of measurement data sequence. Additionally, the self-attention mechanism is used to enhance the expressive ability of GRU based VAEs. Then, the anomaly score for each busbar in the smart grid is determined by comparing the residual between the observed measurement and the outputs of VAE_G and VAE_D, enabling the localization of FDIA. Finally, thorough experiments on multiple power systems with series data of total 3456 measurements demonstrate that, in terms of multiple typical metrics, including false alarm rate vs. detection probability, AUC-ROC, and AUC-PR, our proposed framework outperforms the state-of-the-art GRU, VAE and adversarial training based FDIA detection schemes. •Propose a novel locational FDIA detection framework, seamlessly integrating the VAEs and GAN paradigm.•The generative and discriminative VAEs both have dual roles: reconstruct data and play minmax game with adversarial way.•Multiple-layer gated recurrent units are utilized as the basic structure of the encoder and decoders in both VAEs.•Demonstrate our proposal outperforms SOTA VAE and adversarial training based FDIA schemes on multiple power systems.
ArticleNumber 111169
Author Wang, Yufeng
Ma, Jianhua
Zhou, Yangming
jin, Qun
Author_xml – sequence: 1
  givenname: Yufeng
  orcidid: 0000-0003-0448-325X
  surname: Wang
  fullname: Wang, Yufeng
  email: wfwang1974@gmail.com
  organization: Nanjing University of Posts and Telecommunications, China
– sequence: 2
  givenname: Yangming
  surname: Zhou
  fullname: Zhou, Yangming
  organization: Nanjing University of Posts and Telecommunications, China
– sequence: 3
  givenname: Jianhua
  surname: Ma
  fullname: Ma, Jianhua
  organization: Hosei University, Japan
– sequence: 4
  givenname: Qun
  surname: jin
  fullname: jin, Qun
  organization: Waseda University, Japan
BookMark eNp9kMtOwzAQRS1UJErhB1j5BxJsJ3UciU1V8ZIqsYG1NX4EHNIY2W4l_h6n7YpFvRlrPOeO771Gs9GPFqE7SkpKKL_vS4hel4ywqqT58PYCzaloWNFyQWf5vuSiqNuaX6HrGHuSoZaJOdqt8OA1JOdHGHAHQ7TYQALsxt7qqY0hJdDf2Nh0amxt-vImT-C4hZDwZ3AGK4jW4Gnc7G2IEFzW20_lpA275O2ovcmvN-jysOr2VBfo4-nxff1SbN6eX9erTaErQlKhjKaWV8AaVgPXnNOqto0FIzrVghKNUrTtmiVrFKGMtaymglgCilUdbSmrFkgcdXXwMQbbSe3S4UMpgBskJXKKT_Zyik9O8cljfBll_9Cf4LLd3_PQwxGy2dTe2SCjdtm0NS7k8KTx7hz-BxYEjaE
CitedBy_id crossref_primary_10_1016_j_autcon_2024_105794
crossref_primary_10_1371_journal_pone_0316536
crossref_primary_10_3390_math13172812
crossref_primary_10_1038_s41598_024_82566_6
crossref_primary_10_3390_en18102461
crossref_primary_10_1007_s00500_025_10702_z
crossref_primary_10_3390_en18071568
crossref_primary_10_1016_j_asoc_2025_113691
crossref_primary_10_1049_cps2_12093
crossref_primary_10_1002_ett_70238
crossref_primary_10_1016_j_engappai_2025_110953
Cites_doi 10.1145/3394486.3403392
10.1145/3097983.3098144
10.1109/TSG.2020.3010510
10.1109/TSG.2015.2495133
10.1016/j.cose.2020.101994
10.1109/MDM.2018.00029
10.1561/2200000056
10.1016/j.asoc.2022.109903
10.1016/j.media.2019.01.010
10.1007/978-3-030-20893-6_39
10.1109/TII.2018.2825243
10.1109/TPWRS.2010.2051168
10.1109/TSMC.2022.3204777
10.1109/JIOT.2021.3113900
10.24963/ijcai.2019/378
10.1109/TSMC.2020.2968516
10.1145/1952982.1952995
10.1016/j.renene.2018.05.024
10.1145/3439950
10.1145/3444690
10.1109/TSG.2019.2949998
10.1145/3292500.3330672
10.1109/JIOT.2020.2983911
10.1109/LRA.2018.2801475
10.1109/JPROC.2017.2768698
10.1016/j.rser.2022.112423
10.1002/cpe.7827
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2023.111169
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2023_111169
S1568494623011870
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-bdc1e63a2724a6c66134e7ead8fb9ab87bb19f7527b0122924180e0ab23f19123
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001146768900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 03:06:00 EST 2025
Tue Nov 18 21:11:18 EST 2025
Sat Aug 03 15:33:34 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Self-attention mechanism
Gated recurrent units (GRUs)
Generative adversarial paradigm
Variational autoencoders (VAE)
False data injection attack (FDIA)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-bdc1e63a2724a6c66134e7ead8fb9ab87bb19f7527b0122924180e0ab23f19123
ORCID 0000-0003-0448-325X
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2023_111169
crossref_primary_10_1016_j_asoc_2023_111169
elsevier_sciencedirect_doi_10_1016_j_asoc_2023_111169
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Bi, Zhang (bib26) 2020; 7
Yang, Cai, Wu, Wang, Ge, Hu, Zhu (bib5) 2023; 33
Park, Hoshi, Kemp (bib22) 2018; 3
Yin, Zhang, Wang, Xiong (bib18) 2022; 52
S. Akcay A. Atapour-Abarghouei T.P. Breckon, GANomaly: semi-supervised anomaly detection via adversarial training, in: Proceedings of the Asian Conference on Computer Vision; 2018. DOI: 10.1007/978–3-030–20893-6_39.
T. Kieu B. Yang C. Guo C.S. Jensen, Outlier detection for time series with recurrent autoencoder ensembles, in: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI); 2019. DOI: 10.24963/ijcai.2019/378.
Sun, He, Lin, Cai, Cai, Gao (bib23) 2023; 132
Ashrafuzzaman, Das, Chakhchoukh, Shiva, Sheldon (bib27) 2020; 97
Blázquez-García, Conde, Mori, Lozano (bib15) 2022; 54
Liu, Ning, Reiter (bib4) 2011; 14
T. Kieu B. Yang C.S. Jensen, Outlier detection for multidimensional time series using deep neural networks, in: Proceedings of the 19th IEEE International Conference on Mobile Data Management; 2018. DOI: 10.1109/MDM.2018.00029.
Du, Pierrou, Wang (bib28) 2021
Kingma, Welling (bib14) 2019; 12
Liang, Zhao, Luo, Weller, Zhao (bib3) 2017; 8
Y. Su Y. Zhao C. Niu R. Liu W. Sun D. Pei, Robust anomaly detection for multivariate time series through stochastic recurrent neural network, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD); 2019. DOI: 10.1145/3292500.3330672.
Reda, Anwar, Mahmood (bib13) 2022; 163
Kong, Cai, Liu, Zhu, Yang, Gao (bib6) 2023; 55
Pang, Shen, Cao, Hengel (bib16) 2022; 54
J. Audibert P. Michiardi F. Guyard S. Marti M.A. Zuluaga, USAD: Unsupervised anomaly detection on multivariate time series, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD); 2020. DOI: 10.1145/3394486.3403392.
A. Vaswani N. Shazeer N. Parmar et al., Attention is all you need, in: Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS); 2017. DOI: 10.5555/3295222.3295349.
Schlegl, Seeböck, Waldstein, Langs, Schmidt-Erfurth (bib12) 2019; 54
Wang, Zhang, Ma, Jin (bib10) 2022; 9
Xue, Yu (bib1) 2017; 105
Wang, Zhang, Ma, Jin (bib33) 2023; 35
Zhang, Wang, Chen (bib17) 2021; 12
Zimmerman, Murillo-Sánchez, Thomas (bib32) 2011; 26
Yan, B. Tang, He (bib9) 2016
Wang, Wang, Zhang, Jin (bib7) 2019; 46
A. Siffer P.A. Fouque A. Termier C. Largouet, Anomaly detection in streams with extreme value theory, In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD); 2017. DOI: 10.1145/3097983.3098144.
Musleh, Guo, Zhao (bib2) 2020; 11
Zhao, Liu, Hu, Yan (bib31) 2018; 127
Yu, Hou, Li (bib8) 2018; 14
Zhao, Liu, Hu, Yan (bib11) 2018; 127
Sun (10.1016/j.asoc.2023.111169_bib23) 2023; 132
Zimmerman (10.1016/j.asoc.2023.111169_bib32) 2011; 26
Wang (10.1016/j.asoc.2023.111169_bib26) 2020; 7
Ashrafuzzaman (10.1016/j.asoc.2023.111169_bib27) 2020; 97
Park (10.1016/j.asoc.2023.111169_bib22) 2018; 3
Zhao (10.1016/j.asoc.2023.111169_bib31) 2018; 127
Yin (10.1016/j.asoc.2023.111169_bib18) 2022; 52
Kingma (10.1016/j.asoc.2023.111169_bib14) 2019; 12
10.1016/j.asoc.2023.111169_bib21
10.1016/j.asoc.2023.111169_bib20
Kong (10.1016/j.asoc.2023.111169_bib6) 2023; 55
Musleh (10.1016/j.asoc.2023.111169_bib2) 2020; 11
Xue (10.1016/j.asoc.2023.111169_bib1) 2017; 105
10.1016/j.asoc.2023.111169_bib29
Zhang (10.1016/j.asoc.2023.111169_bib17) 2021; 12
10.1016/j.asoc.2023.111169_bib25
Pang (10.1016/j.asoc.2023.111169_bib16) 2022; 54
10.1016/j.asoc.2023.111169_bib24
Yu (10.1016/j.asoc.2023.111169_bib8) 2018; 14
Wang (10.1016/j.asoc.2023.111169_bib7) 2019; 46
Liang (10.1016/j.asoc.2023.111169_bib3) 2017; 8
Liu (10.1016/j.asoc.2023.111169_bib4) 2011; 14
Reda (10.1016/j.asoc.2023.111169_bib13) 2022; 163
Yang (10.1016/j.asoc.2023.111169_bib5) 2023; 33
Schlegl (10.1016/j.asoc.2023.111169_bib12) 2019; 54
Yan (10.1016/j.asoc.2023.111169_bib9) 2016
Zhao (10.1016/j.asoc.2023.111169_bib11) 2018; 127
Du (10.1016/j.asoc.2023.111169_bib28) 2021
10.1016/j.asoc.2023.111169_bib30
Wang (10.1016/j.asoc.2023.111169_bib33) 2023; 35
10.1016/j.asoc.2023.111169_bib19
Wang (10.1016/j.asoc.2023.111169_bib10) 2022; 9
Blázquez-García (10.1016/j.asoc.2023.111169_bib15) 2022; 54
References_xml – volume: 105
  start-page: 2290
  year: 2017
  end-page: 2292
  ident: bib1
  article-title: Beyond smart grid—cyber–physical–social system in energy future
  publication-title: Proc. IEEE
– volume: 8
  start-page: 1630
  year: 2017
  end-page: 1638
  ident: bib3
  article-title: A review of false data injection attacks against modern power systems
  publication-title: IEEE Trans. Smart Grid
– reference: T. Kieu B. Yang C.S. Jensen, Outlier detection for multidimensional time series using deep neural networks, in: Proceedings of the 19th IEEE International Conference on Mobile Data Management; 2018. DOI: 10.1109/MDM.2018.00029.
– volume: 3
  start-page: 1544
  year: 2018
  end-page: 1551
  ident: bib22
  article-title: A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencode
  publication-title: IEEE Robot. Autom. Lett.
– volume: 12
  start-page: 623
  year: 2021
  end-page: 634
  ident: bib17
  article-title: Detecting false data injection attacks in smart grids: a semi-supervised deep learning approach
  publication-title: IEEE Trans. Smart Grid
– reference: S. Akcay A. Atapour-Abarghouei T.P. Breckon, GANomaly: semi-supervised anomaly detection via adversarial training, in: Proceedings of the Asian Conference on Computer Vision; 2018. DOI: 10.1007/978–3-030–20893-6_39.
– volume: 12
  start-page: 307
  year: 2019
  end-page: 392
  ident: bib14
  article-title: An introduction to variational autoencoders
  publication-title: Found. Trends® Mach. Learn.
– reference: T. Kieu B. Yang C. Guo C.S. Jensen, Outlier detection for time series with recurrent autoencoder ensembles, in: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI); 2019. DOI: 10.24963/ijcai.2019/378.
– volume: 14
  start-page: 1
  year: 2011
  end-page: 33
  ident: bib4
  article-title: False data injection attacks against state estimation in electric power grids
  publication-title: ACM Trans. Inf. Syst. Secur.
– volume: 26
  start-page: 12
  year: 2011
  end-page: 19
  ident: bib32
  article-title: MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education
  publication-title: IEEE Trans. Power Syst.
– volume: 33
  year: 2023
  ident: bib5
  article-title: Digital twin-driven fault diagnosis method for composite faults by combining virtual and real data
  publication-title: J. Ind. Inf. Integr.
– volume: 14
  start-page: 3271
  year: 2018
  end-page: 3280
  ident: bib8
  article-title: Online false data injection attack detection with wavelet transform and deep neural networks
  publication-title: IEEE Trans. Ind. Inform.
– year: 2016
  ident: bib9
  article-title: Detection of false data attacks in smart grid with supervised learning
  publication-title: Proc. Int. Joint Conf. Neural Netw.
– reference: Y. Su Y. Zhao C. Niu R. Liu W. Sun D. Pei, Robust anomaly detection for multivariate time series through stochastic recurrent neural network, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD); 2019. DOI: 10.1145/3292500.3330672.
– reference: A. Vaswani N. Shazeer N. Parmar et al., Attention is all you need, in: Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS); 2017. DOI: 10.5555/3295222.3295349.
– volume: 132
  year: 2023
  ident: bib23
  article-title: Anomaly detection of power battery pack using gated recurrent units based variational autoencoder
  publication-title: Appl. Soft Comput.
– volume: 11
  start-page: 2218
  year: 2020
  end-page: 2234
  ident: bib2
  article-title: A survey on the detection algorithms for false data injection attacks in smart grids
  publication-title: IEEE Trans. Smart Grid
– volume: 7
  start-page: 8218
  year: 2020
  end-page: 8227
  ident: bib26
  article-title: Locational detection of the false data injection attack in a smart grid: a multilabel classification approach
  publication-title: IEEE Internet Things J.
– volume: 97
  year: 2020
  ident: bib27
  article-title: Detecting stealthy false data injection attacks in the smart grid using ensemble-based machine learning
  publication-title: Comput. Secur.
– year: 2021
  ident: bib28
  article-title: Targeted false data injection attack against DC state estimation without line parameters
  publication-title: Proc. IEEE Power Energy Soc. Gen. Meet.
– volume: 55
  start-page: 1618
  year: 2023
  end-page: 1629
  ident: bib6
  article-title: Fault diagnosis methodology of redundant closed-loop feedback control systems: subsea blowout preventer system as a case study
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 9
  start-page: 6893
  year: 2022
  end-page: 6904
  ident: bib10
  article-title: KFRNN: an effective false data injection attack detection in smart grid based on kalman filter and recurrent neural network
  publication-title: IEEE Internet Things J.
– volume: 54
  start-page: 1
  year: 2022
  end-page: 38
  ident: bib16
  article-title: Deep learning for anomaly detection: a review
  publication-title: ACM Comput. Surv.
– reference: J. Audibert P. Michiardi F. Guyard S. Marti M.A. Zuluaga, USAD: Unsupervised anomaly detection on multivariate time series, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD); 2020. DOI: 10.1145/3394486.3403392.
– volume: 163
  start-page: 1112423
  year: 2022
  ident: bib13
  article-title: Comprehensive survey and taxonomies of false data injection attacks in smart grids: attack models, targets, and impacts
  publication-title: Renew. Sustain. Energy Rev.
– volume: 46
  start-page: 42
  year: 2019
  end-page: 52
  ident: bib7
  article-title: Detection of power grid disturbances and cyber-attacks based on machine learning
  publication-title: J. Inf. Secur. Appl.
– volume: 54
  start-page: 30
  year: 2019
  end-page: 44
  ident: bib12
  article-title: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks
  publication-title: Med. Image Anal.
– volume: 52
  start-page: 112
  year: 2022
  end-page: 122
  ident: bib18
  article-title: Anomaly detection based on convolutional recurrent autoencoder for IoT time series
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 35
  year: 2023
  ident: bib33
  article-title: Artificial intelligence of things (AIoT) data acquisition based on graph neural networks: a systematical review
  publication-title: Concurr. Comput. Pract. Exp.
– volume: 127
  start-page: 825
  year: 2018
  end-page: 834
  ident: bib31
  article-title: Anomaly detection and fault analysis of wind turbine components based on deep learning network
  publication-title: Renew. Energy
– volume: 127
  start-page: 825
  year: 2018
  end-page: 834
  ident: bib11
  article-title: Anomaly detection and fault analysis of wind turbine components based on deep learning network
  publication-title: Renew. Energy
– reference: A. Siffer P.A. Fouque A. Termier C. Largouet, Anomaly detection in streams with extreme value theory, In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD); 2017. DOI: 10.1145/3097983.3098144.
– volume: 54
  start-page: 1
  year: 2022
  end-page: 33
  ident: bib15
  article-title: A review on outlier/anomaly detection in time series data
  publication-title: ACM Comput. Surv.
– ident: 10.1016/j.asoc.2023.111169_bib24
  doi: 10.1145/3394486.3403392
– ident: 10.1016/j.asoc.2023.111169_bib30
  doi: 10.1145/3097983.3098144
– volume: 12
  start-page: 623
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.111169_bib17
  article-title: Detecting false data injection attacks in smart grids: a semi-supervised deep learning approach
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2020.3010510
– volume: 8
  start-page: 1630
  issue: 4
  year: 2017
  ident: 10.1016/j.asoc.2023.111169_bib3
  article-title: A review of false data injection attacks against modern power systems
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2015.2495133
– volume: 97
  year: 2020
  ident: 10.1016/j.asoc.2023.111169_bib27
  article-title: Detecting stealthy false data injection attacks in the smart grid using ensemble-based machine learning
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2020.101994
– ident: 10.1016/j.asoc.2023.111169_bib29
– ident: 10.1016/j.asoc.2023.111169_bib19
  doi: 10.1109/MDM.2018.00029
– volume: 12
  start-page: 307
  issue: 4
  year: 2019
  ident: 10.1016/j.asoc.2023.111169_bib14
  article-title: An introduction to variational autoencoders
  publication-title: Found. Trends® Mach. Learn.
  doi: 10.1561/2200000056
– volume: 132
  year: 2023
  ident: 10.1016/j.asoc.2023.111169_bib23
  article-title: Anomaly detection of power battery pack using gated recurrent units based variational autoencoder
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109903
– volume: 54
  start-page: 30
  year: 2019
  ident: 10.1016/j.asoc.2023.111169_bib12
  article-title: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.01.010
– ident: 10.1016/j.asoc.2023.111169_bib25
  doi: 10.1007/978-3-030-20893-6_39
– volume: 14
  start-page: 3271
  issue: 7
  year: 2018
  ident: 10.1016/j.asoc.2023.111169_bib8
  article-title: Online false data injection attack detection with wavelet transform and deep neural networks
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2825243
– volume: 26
  start-page: 12
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2023.111169_bib32
  article-title: MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2010.2051168
– volume: 55
  start-page: 1618
  issue: 3
  year: 2023
  ident: 10.1016/j.asoc.2023.111169_bib6
  article-title: Fault diagnosis methodology of redundant closed-loop feedback control systems: subsea blowout preventer system as a case study
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2022.3204777
– volume: 9
  start-page: 6893
  issue: 9
  year: 2022
  ident: 10.1016/j.asoc.2023.111169_bib10
  article-title: KFRNN: an effective false data injection attack detection in smart grid based on kalman filter and recurrent neural network
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3113900
– year: 2021
  ident: 10.1016/j.asoc.2023.111169_bib28
  article-title: Targeted false data injection attack against DC state estimation without line parameters
  publication-title: Proc. IEEE Power Energy Soc. Gen. Meet.
– year: 2016
  ident: 10.1016/j.asoc.2023.111169_bib9
  article-title: Detection of false data attacks in smart grid with supervised learning
  publication-title: Proc. Int. Joint Conf. Neural Netw.
– ident: 10.1016/j.asoc.2023.111169_bib20
  doi: 10.24963/ijcai.2019/378
– volume: 52
  start-page: 112
  issue: 1
  year: 2022
  ident: 10.1016/j.asoc.2023.111169_bib18
  article-title: Anomaly detection based on convolutional recurrent autoencoder for IoT time series
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2020.2968516
– volume: 46
  start-page: 42
  year: 2019
  ident: 10.1016/j.asoc.2023.111169_bib7
  article-title: Detection of power grid disturbances and cyber-attacks based on machine learning
  publication-title: J. Inf. Secur. Appl.
– volume: 14
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2023.111169_bib4
  article-title: False data injection attacks against state estimation in electric power grids
  publication-title: ACM Trans. Inf. Syst. Secur.
  doi: 10.1145/1952982.1952995
– volume: 127
  start-page: 825
  year: 2018
  ident: 10.1016/j.asoc.2023.111169_bib11
  article-title: Anomaly detection and fault analysis of wind turbine components based on deep learning network
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.05.024
– volume: 54
  start-page: 1
  issue: 2
  year: 2022
  ident: 10.1016/j.asoc.2023.111169_bib16
  article-title: Deep learning for anomaly detection: a review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3439950
– volume: 54
  start-page: 1
  issue: 3
  year: 2022
  ident: 10.1016/j.asoc.2023.111169_bib15
  article-title: A review on outlier/anomaly detection in time series data
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3444690
– volume: 11
  start-page: 2218
  issue: 3
  year: 2020
  ident: 10.1016/j.asoc.2023.111169_bib2
  article-title: A survey on the detection algorithms for false data injection attacks in smart grids
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2019.2949998
– ident: 10.1016/j.asoc.2023.111169_bib21
  doi: 10.1145/3292500.3330672
– volume: 7
  start-page: 8218
  issue: 9
  year: 2020
  ident: 10.1016/j.asoc.2023.111169_bib26
  article-title: Locational detection of the false data injection attack in a smart grid: a multilabel classification approach
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2983911
– volume: 3
  start-page: 1544
  issue: 3
  year: 2018
  ident: 10.1016/j.asoc.2023.111169_bib22
  article-title: A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencode
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2018.2801475
– volume: 105
  start-page: 2290
  issue: 12
  year: 2017
  ident: 10.1016/j.asoc.2023.111169_bib1
  article-title: Beyond smart grid—cyber–physical–social system in energy future
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2017.2768698
– volume: 127
  start-page: 825
  year: 2018
  ident: 10.1016/j.asoc.2023.111169_bib31
  article-title: Anomaly detection and fault analysis of wind turbine components based on deep learning network
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.05.024
– volume: 163
  start-page: 1112423
  year: 2022
  ident: 10.1016/j.asoc.2023.111169_bib13
  article-title: Comprehensive survey and taxonomies of false data injection attacks in smart grids: attack models, targets, and impacts
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112423
– volume: 35
  issue: 23
  year: 2023
  ident: 10.1016/j.asoc.2023.111169_bib33
  article-title: Artificial intelligence of things (AIoT) data acquisition based on graph neural networks: a systematical review
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.7827
– volume: 33
  year: 2023
  ident: 10.1016/j.asoc.2023.111169_bib5
  article-title: Digital twin-driven fault diagnosis method for composite faults by combining virtual and real data
  publication-title: J. Ind. Inf. Integr.
SSID ssj0016928
Score 2.4656043
Snippet Stealthy FDIA (False Data Injection Attack) is a serious cyber threat that can modify state estimation of smart grid through maliciously altering the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111169
SubjectTerms False data injection attack (FDIA)
Gated recurrent units (GRUs)
Generative adversarial paradigm
Self-attention mechanism
Variational autoencoders (VAE)
Title A locational false data injection attack detection method in smart grid based on adversarial variational autoencoders
URI https://dx.doi.org/10.1016/j.asoc.2023.111169
Volume 151
WOSCitedRecordID wos001146768900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMXKC9R2iIfuEVZbRLHcY6rqhUgqEAqaOES2Y5Nd9tmq91k1Z_Az2b8yIMCFT1wyUazziTKfJkZj8czCL3mmqpSERZmKoUJClcqFKliYUkYL2mqtbRxyC_vs5MTNpvlH0ejH-1emM1FVlXs-jq_-q-iBhoI22ydvYO4O6ZAgHMQOhxB7HD8J8FPA2OffIhPw-1UYNJAg3m1UL4veF1zeR6UqvYE10bahD7Wl8Ax-L6ag18K9q00awnc9Gxec9veY2N-PG_e1EtTBrP0SfRdMVvv2K5Bw9uU9aZu7aON3Dvt8rXRqqd-O1s2lgr_Xg5Gf3CpvIDhs6YzIAtX9-BTUw1jFjEZxCy8mqUsJLkPPrZ62FeedZrUqHLXxOU3Je_iDYsxB_yOTfv3cT_414raNyxdl3_YprYtCsOjMDwKx-Me2o6zNAcVvz19ezR7161I0dz26e2e3G_AcrmCN5_kz07OwHE53UEP_YwDTx1SHqORqp6gR203D-yV-1PUTHEPHGyBgw1wcAcc7ICDO-BgBxwYgS1wsAEOtsDBZngPHDwADh4C5xn6fHx0evgm9E05QplMJnUoShkpmvA4iwmnEty7hKgM9BHTIueCZUJEuc7SOBNm1Ram9xGbqAkXcaKjHPyk52irWlbqBcJUpjFJykRqrYgUNOeUEUFUSnQKdiHaRVH7FgvpK9abxikXxd_lt4uC7porV6_l1tFpK5zCe5zOkywAa7dc9_JOd9lDD_qPYB9t1atGHaD7clPP16tXHmg_AasGppY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+locational+false+data+injection+attack+detection+method+in+smart+grid+based+on+adversarial+variational+autoencoders&rft.jtitle=Applied+soft+computing&rft.au=Wang%2C+Yufeng&rft.au=Zhou%2C+Yangming&rft.au=Ma%2C+Jianhua&rft.au=jin%2C+Qun&rft.date=2024-01-01&rft.issn=1568-4946&rft.volume=151&rft.spage=111169&rft_id=info:doi/10.1016%2Fj.asoc.2023.111169&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2023_111169
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon