Exploring the probabilistic graphic model of a hybrid multi-objective Bayesian estimation of distribution algorithm

The Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm (HMOBEDA) has shown to be very competitive for Many Objective Optimization Problems (MaOPs). The Probabilistic Graphic Model (PGM) of HMOBEDA expands the possibilities for exploration as it provides the joint probability of dec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 73; S. 328 - 343
Hauptverfasser: Martins, Marcella S.R., Delgado, Myriam, Lüders, Ricardo, Santana, Roberto, Gonçalves, Richard A., de Almeida, Carolina P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2018
Schlagworte:
ISSN:1568-4946, 1872-9681
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm (HMOBEDA) has shown to be very competitive for Many Objective Optimization Problems (MaOPs). The Probabilistic Graphic Model (PGM) of HMOBEDA expands the possibilities for exploration as it provides the joint probability of decision variables, objectives, and configuration parameters of an embedded local search. This work investigates different sampling mechanisms of HMOBEDA, applying the considered approaches to two different combinatorial MaOPs. Moreover, the paper provides a broad set of statistical analyses on its PGM model. These analyses have been carried out to evaluate how the interactions among variables, objectives and local search parameters are captured by the model and how information collected from different runs can be aggregated and explored in a Probabilistic Pareto Front. In experiments, two variants of HMOBEDA are compared with the original version, each one with a different set of evidences fixed during the sampling process. Results for instances of multi-objective knapsack problem with 2–5 and 8 objectives show that the best variant outperforms the original HMOBEDA in terms of convergence and diversity in the solution set. This best variant is then compared with five state-of-the-art evolutionary algorithms using the knapsack problem instances as well as a set of MNK-landscape instances with 2, 3, 5 and 8 objectives. HMOBEDA outperforms all of them. [Display omitted] •An approach for multi and many-objective combinatorial optimization is explored.•It is based on a joint probabilistic model with local optimizers as an online tuning.•Versions with different sampling are analyzed from a probabilistic point of view.•The best version outperforms other approaches when the number of objectives increases.•Information can be extracted from the models to learn and explore dependencies.
AbstractList The Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm (HMOBEDA) has shown to be very competitive for Many Objective Optimization Problems (MaOPs). The Probabilistic Graphic Model (PGM) of HMOBEDA expands the possibilities for exploration as it provides the joint probability of decision variables, objectives, and configuration parameters of an embedded local search. This work investigates different sampling mechanisms of HMOBEDA, applying the considered approaches to two different combinatorial MaOPs. Moreover, the paper provides a broad set of statistical analyses on its PGM model. These analyses have been carried out to evaluate how the interactions among variables, objectives and local search parameters are captured by the model and how information collected from different runs can be aggregated and explored in a Probabilistic Pareto Front. In experiments, two variants of HMOBEDA are compared with the original version, each one with a different set of evidences fixed during the sampling process. Results for instances of multi-objective knapsack problem with 2–5 and 8 objectives show that the best variant outperforms the original HMOBEDA in terms of convergence and diversity in the solution set. This best variant is then compared with five state-of-the-art evolutionary algorithms using the knapsack problem instances as well as a set of MNK-landscape instances with 2, 3, 5 and 8 objectives. HMOBEDA outperforms all of them. [Display omitted] •An approach for multi and many-objective combinatorial optimization is explored.•It is based on a joint probabilistic model with local optimizers as an online tuning.•Versions with different sampling are analyzed from a probabilistic point of view.•The best version outperforms other approaches when the number of objectives increases.•Information can be extracted from the models to learn and explore dependencies.
Author de Almeida, Carolina P.
Delgado, Myriam
Santana, Roberto
Martins, Marcella S.R.
Gonçalves, Richard A.
Lüders, Ricardo
Author_xml – sequence: 1
  givenname: Marcella S.R.
  orcidid: 0000-0002-5716-4968
  surname: Martins
  fullname: Martins, Marcella S.R.
  email: marcella@utfpr.edu.br
  organization: Federal University of Technology - Paraná, Curitiba PR, Brazil
– sequence: 2
  givenname: Myriam
  surname: Delgado
  fullname: Delgado, Myriam
  organization: Federal University of Technology - Paraná, Curitiba PR, Brazil
– sequence: 3
  givenname: Ricardo
  surname: Lüders
  fullname: Lüders, Ricardo
  organization: Federal University of Technology - Paraná, Curitiba PR, Brazil
– sequence: 4
  givenname: Roberto
  surname: Santana
  fullname: Santana, Roberto
  organization: University of the Basque Country, San Sebastián, Spain
– sequence: 5
  givenname: Richard A.
  surname: Gonçalves
  fullname: Gonçalves, Richard A.
  organization: State University of the Midwest of Paraná, Guarapuava PR, Brazil
– sequence: 6
  givenname: Carolina P.
  surname: de Almeida
  fullname: de Almeida, Carolina P.
  organization: State University of the Midwest of Paraná, Guarapuava PR, Brazil
BookMark eNp9kEtrAjEQx0OxULX9Aj3lC6xNNpuYhV5asQ8QemnPIU-NrBtJotRv36z21ENhYGaY-c3jPwGjPvQWgHuMZhhh9rCdyRT0rEaYz1Ax0l6BMebzumoZx6MSU8arpm3YDZiktEUFams-Bmn5ve9C9P0a5o2F-xiUVL7zKXsN11HuN8XvgrEdDA5KuDmp6A3cHbrsq6C2Vmd_tPBZnmzysoe2gDuZfeiHflPmRK8O51x267Iob3a34NrJLtm7Xz8FXy_Lz8Vbtfp4fV88rSpNEMqVMpQ4zAjjjllNCXEGzXFTK2aQwY4RTlmrmKSlbijVjlrkMG8UNw2mLSdTUF_m6hhSitaJfSzHxZPASAyyia0YZBODbAIVI22B-B9I-3x-KEfpu__Rxwtqy1NHb6NI2tteW-Nj0UmY4P_DfwCI444B
CitedBy_id crossref_primary_10_1016_j_asoc_2020_106147
crossref_primary_10_1016_j_eswa_2025_127006
crossref_primary_10_1007_s13042_022_01623_6
crossref_primary_10_1007_s10732_021_09469_x
crossref_primary_10_1007_s12065_020_00523_4
crossref_primary_10_1007_s12145_025_01931_9
Cites_doi 10.1007/s10994-006-6889-7
10.1016/j.enconman.2010.09.008
10.1016/S0022-5193(89)80019-0
10.1111/j.1475-3995.2011.00840.x
10.1287/opre.37.3.384
10.1016/j.eswa.2011.11.058
10.1007/s11590-014-0743-9
10.1109/TEVC.2013.2281535
10.1109/TEVC.2007.892759
10.1016/S0898-1221(99)00065-6
10.1109/TEVC.2002.802873
10.1590/S0103-65132012005000081
10.1109/TEVC.2014.2387433
10.1007/s00191-013-0334-4
10.4304/jcp.8.2.302-307
10.1023/A:1009682532542
10.1007/BF00994110
10.1016/j.ejor.2006.08.004
10.1109/4235.996017
10.1109/TEVC.2013.2281524
10.1109/TCYB.2014.2307319
10.1613/jair.4039
10.1016/B978-0-444-70396-5.50019-4
10.1109/4235.797969
10.1016/0191-2615(95)00032-1
10.1016/S0022-5193(87)80029-2
10.1016/S0377-2217(02)00080-2
10.1109/TEVC.2009.2024143
10.1109/TEVC.2014.2315442
10.1016/j.swevo.2011.03.001
10.1007/s10732-012-9208-4
10.1162/evco.1994.2.3.221
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2018.08.039
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 343
ExternalDocumentID 10_1016_j_asoc_2018_08_039
S1568494618305015
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-bd53f16368f6ec533fd07142b6d0d1f638569b6a58f6d55cf5e0f184b8d415983
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000450124900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 03:05:35 EST 2025
Tue Nov 18 22:33:17 EST 2025
Fri Feb 23 02:24:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Estimation of distribution algorithms
Automatic algorithm configuration
Multi-objective optimization
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-bd53f16368f6ec533fd07142b6d0d1f638569b6a58f6d55cf5e0f184b8d415983
ORCID 0000-0002-5716-4968
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_asoc_2018_08_039
crossref_citationtrail_10_1016_j_asoc_2018_08_039
elsevier_sciencedirect_doi_10_1016_j_asoc_2018_08_039
PublicationCentury 2000
PublicationDate December 2018
2018-12-00
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Korb, Nicholson (b51) 2010
Zhang, Li (b75) 2007; 11
Laumanns, Ocenasek (b12) 2002; vol. 2439
Kostreva, Ogryczak, Tonkyn (b32) 1999; 37
Daolio, Liefooghe, Verel, Aguirre, Tanaka (b26) 2015
Mühlenbein, Paab (b9) 1996; vol. 1411
Tsamardinos, Brown, Aliferis (b58) 2006; 65
Verel, Liefooghe, Jourdan, Dhaenens (b24) 2011
Larrañaga, Lozano (b10) 2002
Chabane, Basseur, Hao (b34) 2015
Bengoetxea (b52) 2002
Lust, Teghem (b42) 2012; 19
Zitzler, Thiele (b17) 1999; 3
Martins, Delgado, Lüders, Santana, Ricardo, Gonçalves, Almeida (b16) 2017
Santana, Mendiburu, Lozano (b25) 2015
Koller, Friedman (b49) 2009
Cooper, Herskovits (b50) 1992; 9
Yuan, Malone (b55) 2013; 48
Aguirre, Tanaka (b23) 2007; 181
Santana, Mendiburu, Lozano (b45) 2015
Gupta, Batra, Verma (b47) 2014; 5
Kauffman, Levin (b35) 1987; 128
Ishibuchi, Tsukamoto, Nojima (b3) 2008
Witten, Frank, Hall, Pal (b65) 2016
Jaszkiewicz (b40) 2002; 6
Jaszkiewicz (b39) 2001; 26
Valente (b37) 2014; 24
Martins (b69) 2017
Kauffman, Weinberger (b36) 1989; 141
Lara, Sanchez, Coello, Schutze (b4) 2010; 14
Spirtes, Glymour, Scheines (b64) 2000
Jiang, Ong, Zhang, Feng (b70) 2014; 44
Bader (b18) 2009
Bleuler, Laumanns, Thiele, Zitzler (b71) 2003
Ishibuchi, Akedo, Nojima (b20) 2015; 19
van der Gaag, de Waal (b59) 2006
Srinivas, Deb (b67) 1994; 2
Deb (b2) 2001
Kauffman (b44) 1993
Liaw, Ting (b29) 2013
Conover (b72) 1999
Pelikan, Sastry, Goldberg, Butz, Hauschild (b28) 2009
Russel, Norvig (b66) 2003
Schwarz, Ocenasek (b46) 2001
Martins, Delgado, Lüders, Santana, Gonçalves, de Almeida (b8) 2017
Karshenas, Santana, Bielza, Larrañaga (b11) 2014; 18
Rosenblatt, Sinuany-Stern (b30) 1989; 37
Ishibuchi, Hitotsuyanagi, Nojima (b74) 2008
Henrion (b54) 1988
Bouhamed, Masmoudi, Lecroq, Rebaï (b62) 2012
Liefooghe, Verel, Daolio, Aguirre, Tanaka (b48) 2015
Aliferis, Statnikov, Tsamardinos, Mani, Koutsoukos (b57) 2010; 11
Pearl (b53) 1988
Zhou, Qu, Li, Zhao, Suganthanb, Zhang (b5) 2011
Jenkins (b33) 2002; 140
Aguirre, Tanaka (b22) 2004
Carta, Velázquez, Matías (b63) 2011; 52
D. A. van Veldhuizen, Lamont (b19) 1999
Pelikan (b27) 2008
Tsamardinos, Aliferis, Statnikov, Statnikov (b56) 2003
Moran, He, Liu (b61) 2009; 36
Martins, Delgado, Santana, Lüders, Gonçalves, Almeida (b7) 2016
Wang, Wang, Xu (b15) 2012; 39
Vianna, de Ftima Dianin Vianna (b41) 2013; 23
Larrañaga, Karshenas, Bielza, Santana (b13) 2012; 18
Deb, Agrawal, Pratab, Meyarivan (b68) 2002; 6
Tanigaki, Narukawa, Nojima, Ishibuchi (b21) 2014
Casella, Berger (b73) 2002
Deb, Jain (b76) 2014; 18
Luque (b1) 2015; 9
Teng, Tzeng (b31) 1996; 30
Gandibleux, Frville (b43) 2000; 6
Zhou, Sun, Zhang (b6) 2015; 19
Li, Zhang, Tsang, Ford (b14) 2004
Tan, Jiao (b38) 2013; 8
de Waal, van der Gaag (b60) 2007
Laumanns (10.1016/j.asoc.2018.08.039_b12) 2002; vol. 2439
Schwarz (10.1016/j.asoc.2018.08.039_b46) 2001
Verel (10.1016/j.asoc.2018.08.039_b24) 2011
Zhou (10.1016/j.asoc.2018.08.039_b6) 2015; 19
Jaszkiewicz (10.1016/j.asoc.2018.08.039_b40) 2002; 6
Pelikan (10.1016/j.asoc.2018.08.039_b27) 2008
Jiang (10.1016/j.asoc.2018.08.039_b70) 2014; 44
Zitzler (10.1016/j.asoc.2018.08.039_b17) 1999; 3
Tsamardinos (10.1016/j.asoc.2018.08.039_b58) 2006; 65
Luque (10.1016/j.asoc.2018.08.039_b1) 2015; 9
Koller (10.1016/j.asoc.2018.08.039_b49) 2009
Li (10.1016/j.asoc.2018.08.039_b14) 2004
Jenkins (10.1016/j.asoc.2018.08.039_b33) 2002; 140
Aguirre (10.1016/j.asoc.2018.08.039_b23) 2007; 181
Gandibleux (10.1016/j.asoc.2018.08.039_b43) 2000; 6
Korb (10.1016/j.asoc.2018.08.039_b51) 2010
Carta (10.1016/j.asoc.2018.08.039_b63) 2011; 52
Martins (10.1016/j.asoc.2018.08.039_b69) 2017
Deb (10.1016/j.asoc.2018.08.039_b2) 2001
Mühlenbein (10.1016/j.asoc.2018.08.039_b9) 1996; vol. 1411
Henrion (10.1016/j.asoc.2018.08.039_b54) 1988
Casella (10.1016/j.asoc.2018.08.039_b73) 2002
Kostreva (10.1016/j.asoc.2018.08.039_b32) 1999; 37
D. A. van Veldhuizen (10.1016/j.asoc.2018.08.039_b19) 1999
Santana (10.1016/j.asoc.2018.08.039_b45) 2015
Witten (10.1016/j.asoc.2018.08.039_b65) 2016
Daolio (10.1016/j.asoc.2018.08.039_b26) 2015
Wang (10.1016/j.asoc.2018.08.039_b15) 2012; 39
Santana (10.1016/j.asoc.2018.08.039_b25) 2015
de Waal (10.1016/j.asoc.2018.08.039_b60) 2007
Yuan (10.1016/j.asoc.2018.08.039_b55) 2013; 48
Jaszkiewicz (10.1016/j.asoc.2018.08.039_b39) 2001; 26
van der Gaag (10.1016/j.asoc.2018.08.039_b59) 2006
Ishibuchi (10.1016/j.asoc.2018.08.039_b20) 2015; 19
Moran (10.1016/j.asoc.2018.08.039_b61) 2009; 36
Tan (10.1016/j.asoc.2018.08.039_b38) 2013; 8
Bouhamed (10.1016/j.asoc.2018.08.039_b62) 2012
Russel (10.1016/j.asoc.2018.08.039_b66) 2003
Lust (10.1016/j.asoc.2018.08.039_b42) 2012; 19
Larrañaga (10.1016/j.asoc.2018.08.039_b13) 2012; 18
Larrañaga (10.1016/j.asoc.2018.08.039_b10) 2002
Bleuler (10.1016/j.asoc.2018.08.039_b71) 2003
Karshenas (10.1016/j.asoc.2018.08.039_b11) 2014; 18
Martins (10.1016/j.asoc.2018.08.039_b8) 2017
Conover (10.1016/j.asoc.2018.08.039_b72) 1999
Vianna (10.1016/j.asoc.2018.08.039_b41) 2013; 23
Valente (10.1016/j.asoc.2018.08.039_b37) 2014; 24
Cooper (10.1016/j.asoc.2018.08.039_b50) 1992; 9
Pearl (10.1016/j.asoc.2018.08.039_b53) 1988
Chabane (10.1016/j.asoc.2018.08.039_b34) 2015
Aliferis (10.1016/j.asoc.2018.08.039_b57) 2010; 11
Tsamardinos (10.1016/j.asoc.2018.08.039_b56) 2003
Liefooghe (10.1016/j.asoc.2018.08.039_b48) 2015
Ishibuchi (10.1016/j.asoc.2018.08.039_b74) 2008
Ishibuchi (10.1016/j.asoc.2018.08.039_b3) 2008
Aguirre (10.1016/j.asoc.2018.08.039_b22) 2004
Rosenblatt (10.1016/j.asoc.2018.08.039_b30) 1989; 37
Zhang (10.1016/j.asoc.2018.08.039_b75) 2007; 11
Lara (10.1016/j.asoc.2018.08.039_b4) 2010; 14
Tanigaki (10.1016/j.asoc.2018.08.039_b21) 2014
Gupta (10.1016/j.asoc.2018.08.039_b47) 2014; 5
Bengoetxea (10.1016/j.asoc.2018.08.039_b52) 2002
Deb (10.1016/j.asoc.2018.08.039_b68) 2002; 6
Liaw (10.1016/j.asoc.2018.08.039_b29) 2013
Kauffman (10.1016/j.asoc.2018.08.039_b35) 1987; 128
Kauffman (10.1016/j.asoc.2018.08.039_b44) 1993
Martins (10.1016/j.asoc.2018.08.039_b16) 2017
Zhou (10.1016/j.asoc.2018.08.039_b5) 2011
Bader (10.1016/j.asoc.2018.08.039_b18) 2009
Martins (10.1016/j.asoc.2018.08.039_b7) 2016
Pelikan (10.1016/j.asoc.2018.08.039_b28) 2009
Kauffman (10.1016/j.asoc.2018.08.039_b36) 1989; 141
Srinivas (10.1016/j.asoc.2018.08.039_b67) 1994; 2
Deb (10.1016/j.asoc.2018.08.039_b76) 2014; 18
Spirtes (10.1016/j.asoc.2018.08.039_b64) 2000
Teng (10.1016/j.asoc.2018.08.039_b31) 1996; 30
References_xml – year: 2002
  ident: b73
  article-title: Statistical Inference
– volume: 6
  start-page: 402
  year: 2002
  end-page: 412
  ident: b40
  article-title: On the performance of multiple objective genetic local search on the 0/1 knapsack problem: a comparative experiment
  publication-title: IEEE Trans. Evol. Comput.
– year: 2009
  ident: b18
  article-title: Hypervolume-Based Search for Multiobjective Optimization: Theory and Methods
– volume: 128
  start-page: 11
  year: 1987
  end-page: 45
  ident: b35
  article-title: Towards a general theory of adaptive walks on rugged landscapes
  publication-title: J. Theoret. Biol.
– volume: 19
  start-page: 264
  year: 2015
  end-page: 283
  ident: b20
  article-title: Behavior of multiobjective evolutionary algorithms on many-objective Knapsack problems
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 384
  year: 2017
  end-page: 389
  ident: b16
  article-title: Probabilistic analysis of Pareto Front Approximation for a Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm
  publication-title: Proceedings of the 2017 Brazilian Conference on Intelligent Systems
– start-page: 1364
  year: 2015
  end-page: 1371
  ident: b45
  article-title: Evolving MNK-landscapes with structural constraints
  publication-title: IEEE Congress on Evolutionary Computation
– year: 2016
  ident: b65
  article-title: Data Mining: Practical Machine Learning Tools and Techniques
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b68
  article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 637
  year: 2014
  end-page: 642
  ident: b21
  article-title: Preference-based NSGA-II for many-objective Knapsack problems
  publication-title: 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and Advanced Intelligent Systems (ISIS)
– volume: 52
  start-page: 1137
  year: 2011
  end-page: 1149
  ident: b63
  article-title: Use of Bayesian networks classifiers for long-term mean wind turbine energy output estimation at a potential wind energy conversion site
  publication-title: Energy Convers. Manage.
– volume: 9
  start-page: 309
  year: 1992
  end-page: 347
  ident: b50
  article-title: A Bayesian method for the induction of probabilistic networks from data
  publication-title: Mach. Learn.
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: b76
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 519
  year: 2014
  end-page: 542
  ident: b11
  article-title: Multiobjective estimation of distribution algorithm based on joint modeling of objectives and variables
  publication-title: IEEE Trans. Evol. Comput.
– volume: 65
  start-page: 31
  year: 2006
  end-page: 78
  ident: b58
  article-title: The max-min hill-climbing Bayesian network structure learning algorithm
  publication-title: Mach. Learn.
– year: 2017
  ident: b69
  article-title: A Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm
– start-page: 851
  year: 2009
  end-page: 858
  ident: b28
  article-title: Performance of evolutionary algorithms on NK landscapes with nearest neighbor interactions and tunable overlap
  publication-title: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation
– volume: 24
  start-page: 107
  year: 2014
  end-page: 134
  ident: b37
  article-title: An NK-like model for complexity
  publication-title: J. Evol. Econ.
– volume: 23
  start-page: 478
  year: 2013
  end-page: 487
  ident: b41
  article-title: Local search-based heuristics for the multiobjective multidimensional knapsack problem
  publication-title: Produo
– start-page: 351
  year: 1999
  end-page: 357
  ident: b19
  article-title: Multiobjective evolutionary algorithm test suites
  publication-title: Proceedings of the 1999 ACM Symposium on Applied Computing
– volume: vol. 2439
  start-page: 298
  year: 2002
  end-page: 307
  ident: b12
  article-title: Bayesian optimization algorithms for multi-objective optimization
  publication-title: Parallel Problem Solving from Nature
– start-page: 76
  year: 2013
  end-page: 83
  ident: b29
  article-title: Effect of model complexity for estimation of distribution algorithm in NK landscapes
  publication-title: Symposium on Foundations of Computational Intelligence
– year: 2010
  ident: b51
  article-title: Bayesian Artificial Intelligence
– volume: 37
  start-page: 384
  year: 1989
  end-page: 394
  ident: b30
  article-title: Generating the discrete efficient frontier to the capital budgeting problem
  publication-title: Oper. Res.
– start-page: 107
  year: 2006
  end-page: 114
  ident: b59
  article-title: Multi-dimensional Bayesian network classifiers
  publication-title: Proceedings of the Third European Workshop in Probabilistic Graphical Models
– volume: 39
  start-page: 5593
  year: 2012
  end-page: 5599
  ident: b15
  article-title: An effective hybrid EDA-based algorithm for solving multidimensional knapsack problem
  publication-title: Expert Syst. Appl.
– volume: vol. 1411
  start-page: 178
  year: 1996
  end-page: 187
  ident: b9
  article-title: From recombination of genes to the estimation of distributions I. Binary parameters
  publication-title: Parallel Problem Solving from Nature
– volume: 18
  start-page: 795
  year: 2012
  end-page: 819
  ident: b13
  article-title: A review on probabilistic graphical models in evolutionary computation
  publication-title: J. Heuristics
– start-page: 369
  year: 2015
  end-page: 376
  ident: b26
  article-title: Global vs local search on multi-objective NK-landscapes: contrasting the impact of problem features
  publication-title: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation
– year: 2002
  ident: b52
  article-title: Inexact Graph Matching Using Estimation of Distribution Algorithms
– volume: 14
  start-page: 112
  year: 2010
  end-page: 132
  ident: b4
  article-title: HCS: A new local search strategy for memetic multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 131
  year: 2001
  end-page: 136
  ident: b46
  article-title: Pareto Bayesian optimization algorithm for the multiobjective 0/1 Knapsack problem
  publication-title: 7th International Mendel Conference on Soft Computing
– volume: 19
  start-page: 495
  year: 2012
  end-page: 520
  ident: b42
  article-title: The multiobjective multidimensional knapsack problem: a survey and a new approach
  publication-title: Int. Trans. Oper. Res.
– start-page: 3586
  year: 2008
  end-page: 3593
  ident: b74
  article-title: Scalability of multiobjective genetic local search to many-objective problems:Knapsack problem case studies
  publication-title: IEEE Conference on Evolutionary Computation
– start-page: 32
  year: 2011
  end-page: 49
  ident: b5
  article-title: Multiobjective evolutionary algorithms: a survey of the state of the art
  publication-title: Swarm Evol. Comput.
– start-page: 1477
  year: 2015
  end-page: 1478
  ident: b25
  article-title: Multi-objective NM-landscapes
  publication-title: Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation
– year: 2001
  ident: b2
  article-title: Multi-Objective Optimization using Evolutionary Algorithms
– year: 1988
  ident: b53
  article-title: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
– volume: 2
  start-page: 221
  year: 1994
  end-page: 248
  ident: b67
  article-title: Multiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evol. Comput.
– volume: 26
  start-page: 99
  year: 2001
  end-page: 120
  ident: b39
  article-title: Comparison of local search-based metaheuristics on the multiple-objective knapsack problem
  publication-title: Found. Compu. Decis. Sci.
– year: 2002
  ident: b10
  article-title: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, vol. 2
– volume: 5
  start-page: 4313
  year: 2014
  end-page: 4316
  ident: b47
  article-title: Greedy estimation of distributed algorithm to solve bounded knapsack problem
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– start-page: 249
  year: 2015
  end-page: 255
  ident: b34
  article-title: A practical case of the multiobjective knapsack problem: Design, modelling, tests and analysis
  publication-title: International Conference on Learning and Intelligent Optimization
– year: 2009
  ident: b49
  article-title: Probabilistic Graphical Models: Principles and Techniques
– volume: 30
  start-page: 201
  year: 1996
  end-page: 307
  ident: b31
  article-title: A multiobjective programming approach for selecting non-independent transportation investment alternatives
  publication-title: Transp. Res. B
– start-page: 376
  year: 2003
  end-page: 380
  ident: b56
  article-title: Algorithms for large scale Markov blanket discovery
  publication-title: FLAIRS Conference, vol. 2
– start-page: 494
  year: 2003
  end-page: 508
  ident: b71
  article-title: PISA - A platform and programming language independent interface for search algorithms
  publication-title: Evolutionary Multi-Criterion Optimization
– start-page: 387
  year: 2012
  end-page: 393
  ident: b62
  article-title: A new approach for Bayesian classifier learning structure via K2 algorithm
  publication-title: Proceedings of the 8th International Conference in Emerging Intelligent Computing Technology and Applications
– start-page: 501
  year: 2007
  end-page: 511
  ident: b60
  article-title: Inference and learning in multi-dimensional Bayesian network classifiers
  publication-title: Proceedings of the 9th European Conference in Symbolic and Quantitative Approaches to Reasoning with Uncertainty
– volume: 9
  start-page: 173
  year: 2015
  end-page: 187
  ident: b1
  article-title: Modified interactive Chebyshev algorithm (MICA) for non-convex multiobjective programming
  publication-title: Optim. Lett.
– year: 1999
  ident: b72
  article-title: Practical Nonparametric Statistics
– start-page: 196
  year: 2004
  end-page: 203
  ident: b22
  article-title: Insights on properties of multiobjective MNK-landscapes
  publication-title: Proceedings of the 2004 Congress on Evolutionary Computation, vol. 1
– volume: 8
  start-page: 302
  year: 2013
  end-page: 307
  ident: b38
  article-title: MOEA/D with Uniform Design for Solving Multiobjective Knapsack Problems
  publication-title: J. Comput.
– start-page: 145
  year: 2004
  end-page: 154
  ident: b14
  article-title: Hybrid estimation of distribution algorithm for multiobjective Knapsack problem
  publication-title: Evol. Comput. Combin. Opt.
– volume: 48
  start-page: 23
  year: 2013
  end-page: 65
  ident: b55
  article-title: Learning optimal Bayesian networks: A shortest path perspective
  publication-title: J. Artificial Intelligence Res.
– volume: 11
  start-page: 171
  year: 2010
  end-page: 234
  ident: b57
  article-title: Local causal and Markov blanket induction for causal discovery and feature selection for classification part I: algorithms and empirical evaluation
  publication-title: J. Mach. Learn. Res.
– volume: 140
  start-page: 427
  year: 2002
  end-page: 433
  ident: b33
  article-title: A bicriteria knapsack program for planning remediation of contaminated lightstation sites
  publication-title: European J. Oper. Res.
– year: 2003
  ident: b66
  article-title: Artificial Intelligence: A Modern Approach
– year: 2000
  ident: b64
  article-title: Causation Prediction, and Search
– volume: 36
  start-page: 322
  year: 2009
  end-page: 331
  ident: b61
  article-title: Choosing the best Bayesian classifier: An empirical study
  publication-title: IAENG Int. J. Comput. Sci.
– start-page: 2419
  year: 2008
  end-page: 2426
  ident: b3
  article-title: Evolutionary many-objective optimization: A short review
  publication-title: IEEE Conference on Evolutionary Computation
– volume: 44
  start-page: 2391
  year: 2014
  end-page: 2404
  ident: b70
  article-title: Consistencies and contradictions of performance metrics in multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– start-page: 357
  year: 2016
  end-page: 364
  ident: b7
  article-title: HMOBEDA: Hybrid multi-objective bayesian estimation of distribution algorithm
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference
– year: 1993
  ident: b44
  article-title: The Origins of Order: Self-Organization and Selection in Evolution
– start-page: 226
  year: 2011
  end-page: 237
  ident: b24
  article-title: Pareto local optima of multiobjective NK-landscapes with correlated objectives
  publication-title: Evol. Comput. Combin. Opt.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b75
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 95
  year: 2015
  end-page: 109
  ident: b48
  article-title: A feature-based performance analysis in evolutionary multiobjective optimization
  publication-title: International Conference on Evolutionary Multi-Criterion Optimization
– start-page: 149
  year: 1988
  end-page: 163
  ident: b54
  article-title: Propagating uncertainty in Bayesian networks by probabilistic logic sampling
  publication-title: Machine Intelligence and Pattern Recognition, vol. 5
– volume: 37
  start-page: 135
  year: 1999
  end-page: 150
  ident: b32
  article-title: Relocation problems arising in conservation biology
  publication-title: Comput. Math. Appl.
– volume: 19
  start-page: 807
  year: 2015
  end-page: 822
  ident: b6
  article-title: An estimation of distribution algorithm with cheap and expensive local search methods
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1033
  year: 2008
  end-page: 1040
  ident: b27
  article-title: Analysis of estimation of distribution algorithms and genetic algorithms on NK landscapes
  publication-title: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation
– volume: 181
  start-page: 1670
  year: 2007
  end-page: 1690
  ident: b23
  article-title: Working principles, behavior, and performance of MOEAs on MNK-landscapes
  publication-title: European J. Oper. Res.
– volume: 6
  start-page: 361
  year: 2000
  end-page: 383
  ident: b43
  article-title: Tabu search based procedure for solving the 0-1 multiobjective knapsack problem: The two objectives case
  publication-title: J. Heuristics
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: b17
  article-title: Multiple objective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
– volume: 141
  start-page: 211
  year: 1989
  end-page: 245
  ident: b36
  article-title: The NK model of rugged fitness landscapes and its application to maturation of the immune response
  publication-title: J. Theoret. Biol.
– start-page: 1
  year: 2017
  end-page: 23
  ident: b8
  article-title: Hybrid multi-objective Bayesian estimation of distribution algorithm: a comparative analysis for the multi-objective knapsack problem
  publication-title: J. Heuristics
– year: 1999
  ident: 10.1016/j.asoc.2018.08.039_b72
– volume: 5
  start-page: 4313
  year: 2014
  ident: 10.1016/j.asoc.2018.08.039_b47
  article-title: Greedy estimation of distributed algorithm to solve bounded knapsack problem
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– start-page: 357
  year: 2016
  ident: 10.1016/j.asoc.2018.08.039_b7
  article-title: HMOBEDA: Hybrid multi-objective bayesian estimation of distribution algorithm
– start-page: 387
  year: 2012
  ident: 10.1016/j.asoc.2018.08.039_b62
  article-title: A new approach for Bayesian classifier learning structure via K2 algorithm
– volume: 65
  start-page: 31
  issue: 1
  year: 2006
  ident: 10.1016/j.asoc.2018.08.039_b58
  article-title: The max-min hill-climbing Bayesian network structure learning algorithm
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-6889-7
– volume: 52
  start-page: 1137
  issue: 2
  year: 2011
  ident: 10.1016/j.asoc.2018.08.039_b63
  article-title: Use of Bayesian networks classifiers for long-term mean wind turbine energy output estimation at a potential wind energy conversion site
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2010.09.008
– start-page: 1033
  year: 2008
  ident: 10.1016/j.asoc.2018.08.039_b27
  article-title: Analysis of estimation of distribution algorithms and genetic algorithms on NK landscapes
– volume: 26
  start-page: 99
  year: 2001
  ident: 10.1016/j.asoc.2018.08.039_b39
  article-title: Comparison of local search-based metaheuristics on the multiple-objective knapsack problem
  publication-title: Found. Compu. Decis. Sci.
– volume: 141
  start-page: 211
  issue: 2
  year: 1989
  ident: 10.1016/j.asoc.2018.08.039_b36
  article-title: The NK model of rugged fitness landscapes and its application to maturation of the immune response
  publication-title: J. Theoret. Biol.
  doi: 10.1016/S0022-5193(89)80019-0
– start-page: 196
  year: 2004
  ident: 10.1016/j.asoc.2018.08.039_b22
  article-title: Insights on properties of multiobjective MNK-landscapes
– volume: 19
  start-page: 495
  year: 2012
  ident: 10.1016/j.asoc.2018.08.039_b42
  article-title: The multiobjective multidimensional knapsack problem: a survey and a new approach
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/j.1475-3995.2011.00840.x
– year: 2002
  ident: 10.1016/j.asoc.2018.08.039_b73
– volume: 37
  start-page: 384
  year: 1989
  ident: 10.1016/j.asoc.2018.08.039_b30
  article-title: Generating the discrete efficient frontier to the capital budgeting problem
  publication-title: Oper. Res.
  doi: 10.1287/opre.37.3.384
– volume: 39
  start-page: 5593
  year: 2012
  ident: 10.1016/j.asoc.2018.08.039_b15
  article-title: An effective hybrid EDA-based algorithm for solving multidimensional knapsack problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.11.058
– volume: 9
  start-page: 173
  issue: 1
  year: 2015
  ident: 10.1016/j.asoc.2018.08.039_b1
  article-title: Modified interactive Chebyshev algorithm (MICA) for non-convex multiobjective programming
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-014-0743-9
– start-page: 145
  year: 2004
  ident: 10.1016/j.asoc.2018.08.039_b14
  article-title: Hybrid estimation of distribution algorithm for multiobjective Knapsack problem
  publication-title: Evol. Comput. Combin. Opt.
– start-page: 369
  year: 2015
  ident: 10.1016/j.asoc.2018.08.039_b26
  article-title: Global vs local search on multi-objective NK-landscapes: contrasting the impact of problem features
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.asoc.2018.08.039_b76
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– start-page: 2419
  year: 2008
  ident: 10.1016/j.asoc.2018.08.039_b3
  article-title: Evolutionary many-objective optimization: A short review
– year: 2003
  ident: 10.1016/j.asoc.2018.08.039_b66
– year: 2009
  ident: 10.1016/j.asoc.2018.08.039_b49
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.asoc.2018.08.039_b75
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 37
  start-page: 135
  year: 1999
  ident: 10.1016/j.asoc.2018.08.039_b32
  article-title: Relocation problems arising in conservation biology
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(99)00065-6
– volume: 6
  start-page: 402
  year: 2002
  ident: 10.1016/j.asoc.2018.08.039_b40
  article-title: On the performance of multiple objective genetic local search on the 0/1 knapsack problem: a comparative experiment
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2002.802873
– volume: 23
  start-page: 478
  year: 2013
  ident: 10.1016/j.asoc.2018.08.039_b41
  article-title: Local search-based heuristics for the multiobjective multidimensional knapsack problem
  publication-title: Produo
  doi: 10.1590/S0103-65132012005000081
– year: 2010
  ident: 10.1016/j.asoc.2018.08.039_b51
– start-page: 637
  year: 2014
  ident: 10.1016/j.asoc.2018.08.039_b21
  article-title: Preference-based NSGA-II for many-objective Knapsack problems
– volume: 19
  start-page: 807
  issue: 6
  year: 2015
  ident: 10.1016/j.asoc.2018.08.039_b6
  article-title: An estimation of distribution algorithm with cheap and expensive local search methods
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2387433
– volume: vol. 2439
  start-page: 298
  year: 2002
  ident: 10.1016/j.asoc.2018.08.039_b12
  article-title: Bayesian optimization algorithms for multi-objective optimization
– volume: 24
  start-page: 107
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2018.08.039_b37
  article-title: An NK-like model for complexity
  publication-title: J. Evol. Econ.
  doi: 10.1007/s00191-013-0334-4
– start-page: 384
  year: 2017
  ident: 10.1016/j.asoc.2018.08.039_b16
  article-title: Probabilistic analysis of Pareto Front Approximation for a Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm
– volume: 8
  start-page: 302
  year: 2013
  ident: 10.1016/j.asoc.2018.08.039_b38
  article-title: MOEA/D with Uniform Design for Solving Multiobjective Knapsack Problems
  publication-title: J. Comput.
  doi: 10.4304/jcp.8.2.302-307
– volume: 6
  start-page: 361
  year: 2000
  ident: 10.1016/j.asoc.2018.08.039_b43
  article-title: Tabu search based procedure for solving the 0-1 multiobjective knapsack problem: The two objectives case
  publication-title: J. Heuristics
  doi: 10.1023/A:1009682532542
– volume: 9
  start-page: 309
  issue: 4
  year: 1992
  ident: 10.1016/j.asoc.2018.08.039_b50
  article-title: A Bayesian method for the induction of probabilistic networks from data
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994110
– start-page: 376
  year: 2003
  ident: 10.1016/j.asoc.2018.08.039_b56
  article-title: Algorithms for large scale Markov blanket discovery
– start-page: 494
  year: 2003
  ident: 10.1016/j.asoc.2018.08.039_b71
  article-title: PISA - A platform and programming language independent interface for search algorithms
– volume: 181
  start-page: 1670
  issue: 3
  year: 2007
  ident: 10.1016/j.asoc.2018.08.039_b23
  article-title: Working principles, behavior, and performance of MOEAs on MNK-landscapes
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2006.08.004
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.asoc.2018.08.039_b68
  article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– year: 1993
  ident: 10.1016/j.asoc.2018.08.039_b44
– start-page: 226
  year: 2011
  ident: 10.1016/j.asoc.2018.08.039_b24
  article-title: Pareto local optima of multiobjective NK-landscapes with correlated objectives
  publication-title: Evol. Comput. Combin. Opt.
– year: 2016
  ident: 10.1016/j.asoc.2018.08.039_b65
– volume: 36
  start-page: 322
  issue: 4
  year: 2009
  ident: 10.1016/j.asoc.2018.08.039_b61
  article-title: Choosing the best Bayesian classifier: An empirical study
  publication-title: IAENG Int. J. Comput. Sci.
– start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2018.08.039_b8
  article-title: Hybrid multi-objective Bayesian estimation of distribution algorithm: a comparative analysis for the multi-objective knapsack problem
  publication-title: J. Heuristics
– volume: 18
  start-page: 519
  year: 2014
  ident: 10.1016/j.asoc.2018.08.039_b11
  article-title: Multiobjective estimation of distribution algorithm based on joint modeling of objectives and variables
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281524
– start-page: 107
  year: 2006
  ident: 10.1016/j.asoc.2018.08.039_b59
  article-title: Multi-dimensional Bayesian network classifiers
– year: 2000
  ident: 10.1016/j.asoc.2018.08.039_b64
– start-page: 249
  year: 2015
  ident: 10.1016/j.asoc.2018.08.039_b34
  article-title: A practical case of the multiobjective knapsack problem: Design, modelling, tests and analysis
– year: 2017
  ident: 10.1016/j.asoc.2018.08.039_b69
– start-page: 76
  year: 2013
  ident: 10.1016/j.asoc.2018.08.039_b29
  article-title: Effect of model complexity for estimation of distribution algorithm in NK landscapes
– start-page: 131
  year: 2001
  ident: 10.1016/j.asoc.2018.08.039_b46
  article-title: Pareto Bayesian optimization algorithm for the multiobjective 0/1 Knapsack problem
– start-page: 95
  year: 2015
  ident: 10.1016/j.asoc.2018.08.039_b48
  article-title: A feature-based performance analysis in evolutionary multiobjective optimization
– volume: 44
  start-page: 2391
  issue: 12
  year: 2014
  ident: 10.1016/j.asoc.2018.08.039_b70
  article-title: Consistencies and contradictions of performance metrics in multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2307319
– volume: 48
  start-page: 23
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2018.08.039_b55
  article-title: Learning optimal Bayesian networks: A shortest path perspective
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.4039
– year: 1988
  ident: 10.1016/j.asoc.2018.08.039_b53
– start-page: 501
  year: 2007
  ident: 10.1016/j.asoc.2018.08.039_b60
  article-title: Inference and learning in multi-dimensional Bayesian network classifiers
– start-page: 149
  year: 1988
  ident: 10.1016/j.asoc.2018.08.039_b54
  article-title: Propagating uncertainty in Bayesian networks by probabilistic logic sampling
  doi: 10.1016/B978-0-444-70396-5.50019-4
– year: 2001
  ident: 10.1016/j.asoc.2018.08.039_b2
– volume: 3
  start-page: 257
  year: 1999
  ident: 10.1016/j.asoc.2018.08.039_b17
  article-title: Multiple objective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.797969
– volume: 30
  start-page: 201
  year: 1996
  ident: 10.1016/j.asoc.2018.08.039_b31
  article-title: A multiobjective programming approach for selecting non-independent transportation investment alternatives
  publication-title: Transp. Res. B
  doi: 10.1016/0191-2615(95)00032-1
– year: 2002
  ident: 10.1016/j.asoc.2018.08.039_b52
– volume: 128
  start-page: 11
  issue: 1
  year: 1987
  ident: 10.1016/j.asoc.2018.08.039_b35
  article-title: Towards a general theory of adaptive walks on rugged landscapes
  publication-title: J. Theoret. Biol.
  doi: 10.1016/S0022-5193(87)80029-2
– start-page: 1477
  year: 2015
  ident: 10.1016/j.asoc.2018.08.039_b25
  article-title: Multi-objective NM-landscapes
– volume: 140
  start-page: 427
  issue: 2
  year: 2002
  ident: 10.1016/j.asoc.2018.08.039_b33
  article-title: A bicriteria knapsack program for planning remediation of contaminated lightstation sites
  publication-title: European J. Oper. Res.
  doi: 10.1016/S0377-2217(02)00080-2
– start-page: 1364
  year: 2015
  ident: 10.1016/j.asoc.2018.08.039_b45
  article-title: Evolving MNK-landscapes with structural constraints
– year: 2002
  ident: 10.1016/j.asoc.2018.08.039_b10
– volume: 14
  start-page: 112
  issue: 1
  year: 2010
  ident: 10.1016/j.asoc.2018.08.039_b4
  article-title: HCS: A new local search strategy for memetic multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2024143
– volume: 19
  start-page: 264
  issue: 2
  year: 2015
  ident: 10.1016/j.asoc.2018.08.039_b20
  article-title: Behavior of multiobjective evolutionary algorithms on many-objective Knapsack problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2315442
– start-page: 351
  year: 1999
  ident: 10.1016/j.asoc.2018.08.039_b19
  article-title: Multiobjective evolutionary algorithm test suites
– start-page: 32
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2018.08.039_b5
  article-title: Multiobjective evolutionary algorithms: a survey of the state of the art
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.03.001
– volume: vol. 1411
  start-page: 178
  year: 1996
  ident: 10.1016/j.asoc.2018.08.039_b9
  article-title: From recombination of genes to the estimation of distributions I. Binary parameters
– volume: 18
  start-page: 795
  year: 2012
  ident: 10.1016/j.asoc.2018.08.039_b13
  article-title: A review on probabilistic graphical models in evolutionary computation
  publication-title: J. Heuristics
  doi: 10.1007/s10732-012-9208-4
– volume: 2
  start-page: 221
  year: 1994
  ident: 10.1016/j.asoc.2018.08.039_b67
  article-title: Multiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evol. Comput.
  doi: 10.1162/evco.1994.2.3.221
– start-page: 3586
  year: 2008
  ident: 10.1016/j.asoc.2018.08.039_b74
  article-title: Scalability of multiobjective genetic local search to many-objective problems:Knapsack problem case studies
– start-page: 851
  year: 2009
  ident: 10.1016/j.asoc.2018.08.039_b28
  article-title: Performance of evolutionary algorithms on NK landscapes with nearest neighbor interactions and tunable overlap
– year: 2009
  ident: 10.1016/j.asoc.2018.08.039_b18
– volume: 11
  start-page: 171
  issue: Jan
  year: 2010
  ident: 10.1016/j.asoc.2018.08.039_b57
  article-title: Local causal and Markov blanket induction for causal discovery and feature selection for classification part I: algorithms and empirical evaluation
  publication-title: J. Mach. Learn. Res.
SSID ssj0016928
Score 2.2628102
Snippet The Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm (HMOBEDA) has shown to be very competitive for Many Objective Optimization Problems...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 328
SubjectTerms Automatic algorithm configuration
Estimation of distribution algorithms
Multi-objective optimization
Title Exploring the probabilistic graphic model of a hybrid multi-objective Bayesian estimation of distribution algorithm
URI https://dx.doi.org/10.1016/j.asoc.2018.08.039
Volume 73
WOSCitedRecordID wos000450124900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeqjQde-EYMBvIDb1GqfNmxH7dpCBBMaBuob1ESO9uqNpnabFr_MP6_3cWOGzo0ARIvaeXGjeX75e5s3--OkPcsrrhUFYaVs9xPEqn8AsyAD-YB7FUsdNrtQ_74kh4diclEfhuNfvZcmOtZWtfi5kZe_ldRQxsIG6mzfyFu96fQAN9B6HAFscP1jwS_jqozLCh4YTEAFvMxe116avjs6t8YauT5CjlbJrDQb4qpUYDefr7SHb8Ss3DMnV-pMM-uLZHl5bMzeFB7Ph96uL1buwT93gWsX7W9dXRZC5aWJYSnBrl3Mj4eO39az85y1W3ffl3BZM1dwBCe6O8fKFvS7RiwtVCN2x8CfOSG3WZCxZvhbkYoNiJD7tJsjFbmwk-k3avUpk2kkS-5qffSq_I0Huji2LLOjVmPTTaoOxbDbF5Mxzm8DBjpJ7qMribB0kYm7hMcBw4D1GDAAkxtsB2lTIIy3d77dDj57I6vuOyK-rpxW7aWCSzcfNLvPaKBl3P6hDyyyxO6Z2D1lIx0_Yw87kt_UGsJnpOlQxkFlNFfUEYtymiHMtpUNKcGZXQDZbRHGV2jDO8foow6lL0g3z8cnh589G39Dr-Mg6D1CwWaAPx9LiquS1hXVArpclHBVaDCCjQ_47LgOYPfFWNlxXRQhSIphAK3Uor4Jdmqm1q_IlTIkhdhKQIhi6SshNSwEo-hM0ujJI30Dgn7OcxKm9wea6zMsj6KcZrhvGc47xkWXo3lDvFcn0uT2uXeu1kvmsw6p8bpzABJ9_R7_Y_93pCH6_djl2y1iyv9ljwor9uL5eKdBdwt6x63gg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+probabilistic+graphic+model+of+a+hybrid+multi-objective+Bayesian+estimation+of+distribution+algorithm&rft.jtitle=Applied+soft+computing&rft.au=Martins%2C+Marcella+S.R.&rft.au=Delgado%2C+Myriam&rft.au=L%C3%BCders%2C+Ricardo&rft.au=Santana%2C+Roberto&rft.date=2018-12-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=73&rft.spage=328&rft.epage=343&rft_id=info:doi/10.1016%2Fj.asoc.2018.08.039&rft.externalDocID=S1568494618305015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon