A novel approach for cross-subject unfavorable driving state detection by cooperation between phase-based functional connectivity and convolutional neural network
•Phase-based FC between all pairs of EEG channels is assessed using PTE.•The cooperation between model-driven and data-driven approaches is realized.•The performance of proposed model is excellent on unseen subjects. Driving under unfavorable driving state (UDS) is the primary factor inducing the so...
Gespeichert in:
| Veröffentlicht in: | Biomedical signal processing and control Jg. 86; S. 105270 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.09.2023
|
| Schlagworte: | |
| ISSN: | 1746-8094, 1746-8108 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Phase-based FC between all pairs of EEG channels is assessed using PTE.•The cooperation between model-driven and data-driven approaches is realized.•The performance of proposed model is excellent on unseen subjects.
Driving under unfavorable driving state (UDS) is the primary factor inducing the soaring incidence of road accidents. Recently, Electroencephalography (EEG) with high time resolution is regarded as the “gold standard” for identifying drivers' UDS because it directly reflects the neural activity of human brain. However, EEG recordings are heavily influenced by individuals, resulting in poor generality and fair recognition performance on unseen subject. To handle the issue, an EEG-based cross-subject UDS detection framework is proposed, which combines model-driven and data-driven approaches. Concretely, EEG recordings collected from the driving simulation are first decomposed into six classical frequency bands. Interactive relation of all EEG channels is estimated by the phase transfer entropy (PTE). Subsequently, a novel meta-heuristic algorithm called equilibrium optimizer (EO) is employed as a PTE-based functional connectivity feature selection method. A customized 14-layer CNN model is further developed to extract hidden feature from PTE-EO-based functional connectivity and to perform UDS and NUDS classification tasks. Statistical analysis demonstrates that equilibrium optimizer significantly outperforms binary dragonfly algorithm (BDA) and whale optimization algorithm (WOA) in terms of UDS detection. The best recognition outcome is achieved using PTE-EO-CNN model, yielding a mean ACC of 90.19 %, a mean PRE of 89.20 %, a mean SEN of 91.75 %, and a mean SPE of 88.63 % on 16 subjects using LOSO-CV strategy. Conclusively, our findings suggest that PTE-EO-CNN is a promising framework with excellence reliability and generalizability, which has a new perspective and practical significance to solve the road safety issue. |
|---|---|
| AbstractList | •Phase-based FC between all pairs of EEG channels is assessed using PTE.•The cooperation between model-driven and data-driven approaches is realized.•The performance of proposed model is excellent on unseen subjects.
Driving under unfavorable driving state (UDS) is the primary factor inducing the soaring incidence of road accidents. Recently, Electroencephalography (EEG) with high time resolution is regarded as the “gold standard” for identifying drivers' UDS because it directly reflects the neural activity of human brain. However, EEG recordings are heavily influenced by individuals, resulting in poor generality and fair recognition performance on unseen subject. To handle the issue, an EEG-based cross-subject UDS detection framework is proposed, which combines model-driven and data-driven approaches. Concretely, EEG recordings collected from the driving simulation are first decomposed into six classical frequency bands. Interactive relation of all EEG channels is estimated by the phase transfer entropy (PTE). Subsequently, a novel meta-heuristic algorithm called equilibrium optimizer (EO) is employed as a PTE-based functional connectivity feature selection method. A customized 14-layer CNN model is further developed to extract hidden feature from PTE-EO-based functional connectivity and to perform UDS and NUDS classification tasks. Statistical analysis demonstrates that equilibrium optimizer significantly outperforms binary dragonfly algorithm (BDA) and whale optimization algorithm (WOA) in terms of UDS detection. The best recognition outcome is achieved using PTE-EO-CNN model, yielding a mean ACC of 90.19 %, a mean PRE of 89.20 %, a mean SEN of 91.75 %, and a mean SPE of 88.63 % on 16 subjects using LOSO-CV strategy. Conclusively, our findings suggest that PTE-EO-CNN is a promising framework with excellence reliability and generalizability, which has a new perspective and practical significance to solve the road safety issue. |
| ArticleNumber | 105270 |
| Author | Chen, Jichi He, Enqiu Wang, Hong |
| Author_xml | – sequence: 1 givenname: Jichi surname: Chen fullname: Chen, Jichi email: jcchen@sut.edu.cn organization: School of Mechanical Engineering, Shenyang University of Technology, 110870 Shenyang, Liaoning, China – sequence: 2 givenname: Hong surname: Wang fullname: Wang, Hong organization: School of Mechanical Engineering and Automation, Northeastern University, 110819 Shenyang, Liaoning, China – sequence: 3 givenname: Enqiu surname: He fullname: He, Enqiu organization: School of Chemical Equipment, Shenyang University of Technology, 111000 Liaoyang, Liaoning, China |
| BookMark | eNp9kM1OxCAUhYnRRB19AVe8QEdoO52auDHGv2QSN7omF7g4jBUaoDXzOj6pdEY3LtxwuYfzkZxzSg6dd0jIBWdzznhzuZnL2Kt5ycoqC4tyyQ7ICV_WTdFy1h7-3tlVfUxOY9wwVrdLXp-Qrxvq_Igdhb4PHtSaGh-oCj7GIg5ygyrRwRkYfQDZIdXBjta90Zgg5Q1TNljvqNxS5X2PAfYrpk9ER_s1RCxkPjQ1g9t5octW5yZwtGlLwelJGH03_Dw7HMJupE8f3s_IkYEu4vnPnJHX-7uX28di9fzwdHuzKlTFWCqk0sYAKDAoF1JDWTNouW5lW1dZWTSLpWEtz0VwzWUN2VFJyUvFGtMAN9WMtPt_d-kDGqFs2sVJAWwnOBNT12Ijpq7F1LXYd53R8g_aB_sBYfs_dL2HMIcaLQYRlUWnUNuQyxHa2__wb4pgoWo |
| CitedBy_id | crossref_primary_10_1016_j_chaos_2025_116751 crossref_primary_10_1016_j_bspc_2025_108046 crossref_primary_10_1016_j_bspc_2024_107132 crossref_primary_10_1016_j_ins_2023_120070 |
| Cites_doi | 10.1177/1550147717733391 10.1016/j.aap.2015.09.002 10.1016/j.bspc.2021.102857 10.1016/j.bspc.2022.104157 10.1109/JSAC.2020.3020606 10.1007/s11571-022-09825-y 10.1016/j.eswa.2018.04.021 10.1016/j.eswa.2021.116339 10.1016/j.compbiomed.2022.106520 10.1016/j.bbe.2020.08.009 10.1016/j.cmpb.2018.04.012 10.1088/1361-6579/ac8f80 10.1016/j.bspc.2021.102792 10.1016/j.neuropsychologia.2020.107695 10.1016/j.knosys.2022.109436 10.1063/1.5120538 10.3390/app112110279 10.1016/j.asoc.2020.106542 10.1016/j.bspc.2022.104237 10.3390/s21196449 10.1016/j.trf.2021.08.001 10.1016/j.neuropsychologia.2019.04.004 10.1016/j.eswa.2016.01.024 10.1177/1550147719872452 10.18280/ts.390335 10.3390/ijerph17228499 10.18280/ts.380501 10.1109/TITS.2021.3090272 10.1007/s13246-020-00853-8 10.1109/TITS.2021.3125737 10.1016/j.neuroimage.2019.116285 10.1016/j.heliyon.2022.e11204 10.32604/iasc.2023.029698 10.1109/TVT.2021.3130152 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2023.105270 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1746-8108 |
| ExternalDocumentID | 10_1016_j_bspc_2023_105270 S1746809423007036 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-bcdffaacafeb5bda240a81d8b843eb55657f0811741d1b4ada23bb12c06f6a1f3 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001045290200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1746-8094 |
| IngestDate | Sat Nov 29 07:04:23 EST 2025 Tue Nov 18 22:17:25 EST 2025 Fri Feb 23 02:36:20 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Convolutional Neural network Driver status Feature extraction Electroencephalography Phase transfer entropy |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-bcdffaacafeb5bda240a81d8b843eb55657f0811741d1b4ada23bb12c06f6a1f3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2023_105270 crossref_primary_10_1016_j_bspc_2023_105270 elsevier_sciencedirect_doi_10_1016_j_bspc_2023_105270 |
| PublicationCentury | 2000 |
| PublicationDate | September 2023 2023-09-00 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wang, Wan, Li, Huang, Li, Hou, Pan, Wen, Li (b0135) 2023; 35 Gao, Li, Yang, Ma (b0065) 2019; 29 Murugan, Selvaraj, Sahayadhas (b0110) 2020; 43 Zeng, Wang, Chen, Zhang, Cheng (b0160) 2020; 17 Z. Li, Q. Zhang, X. Zhao, Performance analysis of K-nearest neighbor, support vector machine, and artificial neural network classifiers for driver drowsiness detection with different road geometries, Int. J. Distributed Sensor Networks, 13, 2017. Chen, Ma, Li, Yan, Li (b0030) 2017; 139 Chang, Wang, Yan, Lu, Liu, Hua (b0025) 2021; 151 Chen, Wang, Wang, Hua (b0035) 2019; 129 Zhang, Yan, Chang, Huang, Yuan (b0180) 2023; 79 Naim, Mustafa, Sulaiman, Zahari (b0115) 2022; 39 Z. Li, Q. Yang, S. Chen, W. Zhou, L. Chen, L. Song, A fuzzy recurrent neural network for driver fatigue detection based on steering-wheel angle sensor data, Int. J. Distributed Sensor Networks, 15, 2019. Chen, Wang, He, Wang, Wang (b0040) 2021; 69 Ahmadi, Bazregarzadeh, Kazemi (b0010) 2021; 41 Bakker, Zablocki, Baker, Riethmeister, Marx, Iyer, Anund, Ahlstrom (b0015) 2022; 23 Zhong, Li, Meng, Li, He (b0185) 2023; 153 Dziuda, Baran, Zieliński, Murawski, Dziwosz, Krej, Piotrowski, Stablewski, Wojdas, Strus, Gasiul, Kosobudzki, Bortkiewicz (b0055) 2021; 21 Hadra, Omidvarnia, Mesbah (b0080) 2022; 43 Min, Xiong, Zhang, Cai (b0105) 2021; 69 Ullah, Hussain, Qazi, Aboalsamh (b0130) 2018; 107 Woerle, Metz, Steinborn, Huestegge, Baumann (b0150) 2021; 82 Wang, Xu (b0145) 2016; 95 Gao, Li, Ma, Rui, Sun (b0070) 2021; 70 Yang, Wang, Mao (b0155) 2021; 39 Zhang, Wu, Zhang, Ferreira (b0165) 2022 Acharya, Oh, Hagiwara, Tan, Adeli, Subha (b0005) 2018; 161 Li, Chen, Nie, Yang (b0090) 2022; 71 Bekhouche, Ruichek, Dornaika (b0020) 2022; 252 Fan, Peng, Peng, Zhang, Wu, Kwong (b0060) 2022; 23 Wang, Chang, Zhang (b0140) 2016; 53 Gupta, Deep, Mirjalili (b0075) 2020; 96 Chen, Wang, He, Wang, Wang (b0050) 2023; 17 Rashid, Mustafa, Sulaiman, Abdullah, Samad (b0125) 2021; 38 Zhang, Chen, He, Wang (b0170) 2021; 11 Zhang, Guo, Zhou, Xu, Liao (b0175) 2023; 79 Chen, Wang, He, Wang, Wang (b0045) 2022; 191 Li, Tao, Peng, Zhang, Si, Zhang, Yi, Biswal, Yao, Xu (b0085) 2020; 205 Rahman, Hriday, Khan (b0120) 2022; 8 Hadra (10.1016/j.bspc.2023.105270_b0080) 2022; 43 Zhang (10.1016/j.bspc.2023.105270_b0165) 2022 Ahmadi (10.1016/j.bspc.2023.105270_b0010) 2021; 41 Dziuda (10.1016/j.bspc.2023.105270_b0055) 2021; 21 Wang (10.1016/j.bspc.2023.105270_b0145) 2016; 95 Zhang (10.1016/j.bspc.2023.105270_b0170) 2021; 11 Min (10.1016/j.bspc.2023.105270_b0105) 2021; 69 Murugan (10.1016/j.bspc.2023.105270_b0110) 2020; 43 Wang (10.1016/j.bspc.2023.105270_b0140) 2016; 53 Acharya (10.1016/j.bspc.2023.105270_b0005) 2018; 161 Ullah (10.1016/j.bspc.2023.105270_b0130) 2018; 107 10.1016/j.bspc.2023.105270_b0100 Chen (10.1016/j.bspc.2023.105270_b0035) 2019; 129 Wang (10.1016/j.bspc.2023.105270_b0135) 2023; 35 Bekhouche (10.1016/j.bspc.2023.105270_b0020) 2022; 252 Li (10.1016/j.bspc.2023.105270_b0090) 2022; 71 Zeng (10.1016/j.bspc.2023.105270_b0160) 2020; 17 Zhong (10.1016/j.bspc.2023.105270_b0185) 2023; 153 Rashid (10.1016/j.bspc.2023.105270_b0125) 2021; 38 Naim (10.1016/j.bspc.2023.105270_b0115) 2022; 39 Zhang (10.1016/j.bspc.2023.105270_b0175) 2023; 79 Rahman (10.1016/j.bspc.2023.105270_b0120) 2022; 8 Chen (10.1016/j.bspc.2023.105270_b0040) 2021; 69 Chang (10.1016/j.bspc.2023.105270_b0025) 2021; 151 Bakker (10.1016/j.bspc.2023.105270_b0015) 2022; 23 10.1016/j.bspc.2023.105270_b0095 Gupta (10.1016/j.bspc.2023.105270_b0075) 2020; 96 Woerle (10.1016/j.bspc.2023.105270_b0150) 2021; 82 Chen (10.1016/j.bspc.2023.105270_b0045) 2022; 191 Yang (10.1016/j.bspc.2023.105270_b0155) 2021; 39 Li (10.1016/j.bspc.2023.105270_b0085) 2020; 205 Chen (10.1016/j.bspc.2023.105270_b0030) 2017; 139 Fan (10.1016/j.bspc.2023.105270_b0060) 2022; 23 Zhang (10.1016/j.bspc.2023.105270_b0180) 2023; 79 Chen (10.1016/j.bspc.2023.105270_b0050) 2023; 17 Gao (10.1016/j.bspc.2023.105270_b0065) 2019; 29 Gao (10.1016/j.bspc.2023.105270_b0070) 2021; 70 |
| References_xml | – volume: 139 year: 2017 ident: b0030 article-title: Drowsiness detection with electrooculography signal using a system dynamics approach publication-title: J. Dynamic Syst. Measure. Control-Trans. ASME – volume: 79 start-page: 104237 year: 2023 ident: b0175 article-title: Recognising drivers? mental fatigue based on EEG multi-dimensional feature selection and fusion publication-title: Biomed. Signal Process. Control – volume: 151 start-page: 107695 year: 2021 ident: b0025 article-title: EEG based functional connectivity analysis of human pain empathy towards humans and robots publication-title: Neuropsychologia – volume: 129 start-page: 200 year: 2019 end-page: 211 ident: b0035 article-title: Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males publication-title: Neuropsychologia – volume: 96 start-page: 106542 year: 2020 ident: b0075 article-title: An efficient equilibrium optimizer with mutation strategy for numerical optimization publication-title: Appl. Soft Comput. – volume: 191 start-page: 116339 year: 2022 ident: b0045 article-title: Two-dimensional phase lag index image representation of electroencephalography for automated recognition of driver fatigue using convolutional neural network publication-title: Expert Syst. Appl. – volume: 8 start-page: e11204 year: 2022 ident: b0120 article-title: Computer vision-based approach to detect fatigue driving and face mask for edge computing device publication-title: Heliyon – volume: 71 start-page: 269 year: 2022 end-page: 281 ident: b0090 article-title: A Novel Learning Model of Driver Fatigue Features Representation for Steering Wheel Angle publication-title: IEEE Trans. Veh. Technol. – year: 2022 ident: b0165 article-title: Comparative analysis of drowsiness and performance in conditionally automated driving and manual driving considering the effect of circadian rhythm publication-title: J. Intell. Transp. Syst. – volume: 95 start-page: 350 year: 2016 end-page: 357 ident: b0145 article-title: Driver drowsiness detection based on non-intrusive metrics considering individual specifics publication-title: Accid. Anal. Prev. – volume: 82 start-page: 111 year: 2021 end-page: 120 ident: b0150 article-title: Differential effects of driver sleepiness and sleep inertia on driving behavior publication-title: Transport. Res. Part F-Traffic Psychol. Behaviour – reference: Z. Li, Q. Zhang, X. Zhao, Performance analysis of K-nearest neighbor, support vector machine, and artificial neural network classifiers for driver drowsiness detection with different road geometries, Int. J. Distributed Sensor Networks, 13, 2017. – volume: 21 start-page: 6449 year: 2021 ident: b0055 article-title: Evaluation of a Fatigue Detector Using Eye Closure-Associated Indicators Acquired from Truck Drivers in a Simulator Study publication-title: Sensors – volume: 107 start-page: 61 year: 2018 end-page: 71 ident: b0130 article-title: An automated system for epilepsy detection using EEG brain signals based on deep learning approach publication-title: Expert Syst. Appl. – reference: Z. Li, Q. Yang, S. Chen, W. Zhou, L. Chen, L. Song, A fuzzy recurrent neural network for driver fatigue detection based on steering-wheel angle sensor data, Int. J. Distributed Sensor Networks, 15, 2019. – volume: 35 start-page: 3573 year: 2023 end-page: 3586 ident: b0135 article-title: Recent Advances in Fatigue Detection Algorithm Based on EEG publication-title: Intelligent Automation Soft Comput. – volume: 69 start-page: 102857 year: 2021 ident: b0105 article-title: Driver fatigue detection based on prefrontal EEG using multi-entropy measures and hybrid model publication-title: Biomed. Signal Process. Control – volume: 17 start-page: 8499 year: 2020 ident: b0160 article-title: Sex Differences in Time-Domain and Frequency-Domain Heart Rate Variability Measures of Fatigued Drivers publication-title: Int. J. Environ. Res. Public Health – volume: 69 start-page: 102792 year: 2021 ident: b0040 article-title: Recognizing drowsiness in young men during real driving based on electroencephalography using an end-to-end deep learning approach publication-title: Biomed. Signal Process. Control – volume: 43 start-page: 525 year: 2020 end-page: 537 ident: b0110 article-title: Detection and analysis: driver state with electrocardiogram (ECG) publication-title: Phys. Eng. Sci. Med. – volume: 43 start-page: 095002 year: 2022 ident: b0080 article-title: Temporal complexity of EEG encodes human alertness publication-title: Physiol. Meas. – volume: 41 start-page: 316 year: 2021 end-page: 332 ident: b0010 article-title: Automated detection of driver fatigue from electroencephalography through wavelet-based connectivity publication-title: Biocybern. Biomed. Eng. – volume: 70 start-page: 1 year: 2021 end-page: 9 ident: b0070 article-title: Core-Brain-Network-Based Multilayer Convolutional Neural Network for Emotion Recognition publication-title: IEEE Trans. Instrum. Meas. – volume: 53 start-page: 117 year: 2016 end-page: 128 ident: b0140 article-title: Functional brain network and multichannel analysis for the P300-based brain computer interface system of lying detection publication-title: Expert Syst. Appl. – volume: 153 start-page: 106520 year: 2023 ident: b0185 article-title: A self-adaptive quantum equilibrium optimizer with artificial bee colony for feature selection publication-title: Comput. Biol. Med. – volume: 17 start-page: 547 year: 2023 end-page: 553 ident: b0050 article-title: The architecture of functional brain network modulated by driving during adverse weather conditions publication-title: Cogn. Neurodyn. – volume: 39 start-page: 500 year: 2021 end-page: 512 ident: b0155 article-title: Respiration Monitoring With RFID in Driving Environments publication-title: IEEE J. Sel. Areas Commun. – volume: 161 start-page: 103 year: 2018 end-page: 113 ident: b0005 article-title: Automated EEG-based screening of depression using deep convolutional neural network publication-title: Comput. Methods Programs Biomed. – volume: 205 start-page: 116285 year: 2020 ident: b0085 article-title: Inter-subject P300 variability relates to the efficiency of brain networks reconfigured from resting- to task-state: Evidence from a simultaneous event-related EEG-fMRI study publication-title: Neuroimage – volume: 23 start-page: 4791 year: 2022 end-page: 4800 ident: b0015 article-title: A Multi-Stage, Multi-Feature Machine Learning Approach to Detect Driver Sleepiness in Naturalistic Road Driving Conditions publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 23 start-page: 13559 year: 2022 end-page: 13569 ident: b0060 article-title: Detection of Train Driver Fatigue and Distraction Based on Forehead EEG: A Time-Series Ensemble Learning Method publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 38 start-page: 1259 year: 2021 end-page: 1270 ident: b0125 article-title: Random Subspace K-NN Based Ensemble Classifier for Driver Fatigue Detection Utilizing Selected EEG Channels publication-title: Traitement Du Signal – volume: 79 start-page: 104157 year: 2023 ident: b0180 article-title: EEG-based multi-frequency band functional connectivity analysis and the application of spatio-temporal features in emotion recognition publication-title: Biomed. Signal Process. Control – volume: 29 start-page: 113126 year: 2019 ident: b0065 article-title: A recurrence network-based convolutional neural network for fatigue driving detection from EEG publication-title: Chaos – volume: 39 start-page: 1079 year: 2022 end-page: 1088 ident: b0115 article-title: Dual-Layer Ranking Feature Selection Method Based on Statistical Formula for Driver Fatigue Detection of EMG Signals publication-title: Traitement Du Signal – volume: 252 start-page: 109436 year: 2022 ident: b0020 article-title: Driver drowsiness detection in video sequences using hybrid selection of deep features publication-title: Knowl.-Based Syst. – volume: 11 start-page: 10279 year: 2021 ident: b0170 article-title: Sample-Entropy-Based Method for Real Driving Fatigue Detection with Multichannel Electroencephalogram publication-title: Appl. Sciences-Basel – ident: 10.1016/j.bspc.2023.105270_b0100 doi: 10.1177/1550147717733391 – volume: 95 start-page: 350 year: 2016 ident: 10.1016/j.bspc.2023.105270_b0145 article-title: Driver drowsiness detection based on non-intrusive metrics considering individual specifics publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2015.09.002 – volume: 69 start-page: 102857 year: 2021 ident: 10.1016/j.bspc.2023.105270_b0105 article-title: Driver fatigue detection based on prefrontal EEG using multi-entropy measures and hybrid model publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102857 – volume: 79 start-page: 104157 year: 2023 ident: 10.1016/j.bspc.2023.105270_b0180 article-title: EEG-based multi-frequency band functional connectivity analysis and the application of spatio-temporal features in emotion recognition publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104157 – volume: 39 start-page: 500 issue: 2 year: 2021 ident: 10.1016/j.bspc.2023.105270_b0155 article-title: Respiration Monitoring With RFID in Driving Environments publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2020.3020606 – volume: 17 start-page: 547 issue: 2 year: 2023 ident: 10.1016/j.bspc.2023.105270_b0050 article-title: The architecture of functional brain network modulated by driving during adverse weather conditions publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-022-09825-y – volume: 107 start-page: 61 year: 2018 ident: 10.1016/j.bspc.2023.105270_b0130 article-title: An automated system for epilepsy detection using EEG brain signals based on deep learning approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.04.021 – volume: 191 start-page: 116339 year: 2022 ident: 10.1016/j.bspc.2023.105270_b0045 article-title: Two-dimensional phase lag index image representation of electroencephalography for automated recognition of driver fatigue using convolutional neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116339 – volume: 153 start-page: 106520 year: 2023 ident: 10.1016/j.bspc.2023.105270_b0185 article-title: A self-adaptive quantum equilibrium optimizer with artificial bee colony for feature selection publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106520 – volume: 41 start-page: 316 issue: 1 year: 2021 ident: 10.1016/j.bspc.2023.105270_b0010 article-title: Automated detection of driver fatigue from electroencephalography through wavelet-based connectivity publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2020.08.009 – volume: 161 start-page: 103 year: 2018 ident: 10.1016/j.bspc.2023.105270_b0005 article-title: Automated EEG-based screening of depression using deep convolutional neural network publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.04.012 – volume: 43 start-page: 095002 issue: 9 year: 2022 ident: 10.1016/j.bspc.2023.105270_b0080 article-title: Temporal complexity of EEG encodes human alertness publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ac8f80 – volume: 69 start-page: 102792 year: 2021 ident: 10.1016/j.bspc.2023.105270_b0040 article-title: Recognizing drowsiness in young men during real driving based on electroencephalography using an end-to-end deep learning approach publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102792 – volume: 151 start-page: 107695 year: 2021 ident: 10.1016/j.bspc.2023.105270_b0025 article-title: EEG based functional connectivity analysis of human pain empathy towards humans and robots publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2020.107695 – volume: 252 start-page: 109436 year: 2022 ident: 10.1016/j.bspc.2023.105270_b0020 article-title: Driver drowsiness detection in video sequences using hybrid selection of deep features publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.109436 – volume: 29 start-page: 113126 issue: 11 year: 2019 ident: 10.1016/j.bspc.2023.105270_b0065 article-title: A recurrence network-based convolutional neural network for fatigue driving detection from EEG publication-title: Chaos doi: 10.1063/1.5120538 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.bspc.2023.105270_b0070 article-title: Core-Brain-Network-Based Multilayer Convolutional Neural Network for Emotion Recognition publication-title: IEEE Trans. Instrum. Meas. – volume: 11 start-page: 10279 issue: 21 year: 2021 ident: 10.1016/j.bspc.2023.105270_b0170 article-title: Sample-Entropy-Based Method for Real Driving Fatigue Detection with Multichannel Electroencephalogram publication-title: Appl. Sciences-Basel doi: 10.3390/app112110279 – volume: 139 year: 2017 ident: 10.1016/j.bspc.2023.105270_b0030 article-title: Drowsiness detection with electrooculography signal using a system dynamics approach publication-title: J. Dynamic Syst. Measure. Control-Trans. ASME – volume: 96 start-page: 106542 year: 2020 ident: 10.1016/j.bspc.2023.105270_b0075 article-title: An efficient equilibrium optimizer with mutation strategy for numerical optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106542 – volume: 79 start-page: 104237 year: 2023 ident: 10.1016/j.bspc.2023.105270_b0175 article-title: Recognising drivers? mental fatigue based on EEG multi-dimensional feature selection and fusion publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104237 – volume: 21 start-page: 6449 issue: 19 year: 2021 ident: 10.1016/j.bspc.2023.105270_b0055 article-title: Evaluation of a Fatigue Detector Using Eye Closure-Associated Indicators Acquired from Truck Drivers in a Simulator Study publication-title: Sensors doi: 10.3390/s21196449 – volume: 82 start-page: 111 year: 2021 ident: 10.1016/j.bspc.2023.105270_b0150 article-title: Differential effects of driver sleepiness and sleep inertia on driving behavior publication-title: Transport. Res. Part F-Traffic Psychol. Behaviour doi: 10.1016/j.trf.2021.08.001 – volume: 129 start-page: 200 year: 2019 ident: 10.1016/j.bspc.2023.105270_b0035 article-title: Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2019.04.004 – volume: 53 start-page: 117 year: 2016 ident: 10.1016/j.bspc.2023.105270_b0140 article-title: Functional brain network and multichannel analysis for the P300-based brain computer interface system of lying detection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.01.024 – ident: 10.1016/j.bspc.2023.105270_b0095 doi: 10.1177/1550147719872452 – volume: 39 start-page: 1079 issue: 3 year: 2022 ident: 10.1016/j.bspc.2023.105270_b0115 article-title: Dual-Layer Ranking Feature Selection Method Based on Statistical Formula for Driver Fatigue Detection of EMG Signals publication-title: Traitement Du Signal doi: 10.18280/ts.390335 – volume: 17 start-page: 8499 issue: 22 year: 2020 ident: 10.1016/j.bspc.2023.105270_b0160 article-title: Sex Differences in Time-Domain and Frequency-Domain Heart Rate Variability Measures of Fatigued Drivers publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph17228499 – volume: 38 start-page: 1259 issue: 5 year: 2021 ident: 10.1016/j.bspc.2023.105270_b0125 article-title: Random Subspace K-NN Based Ensemble Classifier for Driver Fatigue Detection Utilizing Selected EEG Channels publication-title: Traitement Du Signal doi: 10.18280/ts.380501 – volume: 23 start-page: 4791 issue: 5 year: 2022 ident: 10.1016/j.bspc.2023.105270_b0015 article-title: A Multi-Stage, Multi-Feature Machine Learning Approach to Detect Driver Sleepiness in Naturalistic Road Driving Conditions publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3090272 – volume: 43 start-page: 525 issue: 2 year: 2020 ident: 10.1016/j.bspc.2023.105270_b0110 article-title: Detection and analysis: driver state with electrocardiogram (ECG) publication-title: Phys. Eng. Sci. Med. doi: 10.1007/s13246-020-00853-8 – volume: 23 start-page: 13559 issue: 8 year: 2022 ident: 10.1016/j.bspc.2023.105270_b0060 article-title: Detection of Train Driver Fatigue and Distraction Based on Forehead EEG: A Time-Series Ensemble Learning Method publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3125737 – volume: 205 start-page: 116285 year: 2020 ident: 10.1016/j.bspc.2023.105270_b0085 article-title: Inter-subject P300 variability relates to the efficiency of brain networks reconfigured from resting- to task-state: Evidence from a simultaneous event-related EEG-fMRI study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116285 – volume: 8 start-page: e11204 issue: 10 year: 2022 ident: 10.1016/j.bspc.2023.105270_b0120 article-title: Computer vision-based approach to detect fatigue driving and face mask for edge computing device publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e11204 – year: 2022 ident: 10.1016/j.bspc.2023.105270_b0165 article-title: Comparative analysis of drowsiness and performance in conditionally automated driving and manual driving considering the effect of circadian rhythm publication-title: J. Intell. Transp. Syst. – volume: 35 start-page: 3573 year: 2023 ident: 10.1016/j.bspc.2023.105270_b0135 article-title: Recent Advances in Fatigue Detection Algorithm Based on EEG publication-title: Intelligent Automation Soft Comput. doi: 10.32604/iasc.2023.029698 – volume: 71 start-page: 269 issue: 1 year: 2022 ident: 10.1016/j.bspc.2023.105270_b0090 article-title: A Novel Learning Model of Driver Fatigue Features Representation for Steering Wheel Angle publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3130152 |
| SSID | ssj0048714 |
| Score | 2.3310332 |
| Snippet | •Phase-based FC between all pairs of EEG channels is assessed using PTE.•The cooperation between model-driven and data-driven approaches is realized.•The... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105270 |
| SubjectTerms | Convolutional Neural network Driver status Electroencephalography Feature extraction Phase transfer entropy |
| Title | A novel approach for cross-subject unfavorable driving state detection by cooperation between phase-based functional connectivity and convolutional neural network |
| URI | https://dx.doi.org/10.1016/j.bspc.2023.105270 |
| Volume | 86 |
| WOSCitedRecordID | wos001045290200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIEXJ dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RXpoDt1WqvB_HFSoqHCokirS3yHZimmqVpPuIyt9B4n8yYzuPLagCJPaQXXntZDfzZcYezzfD2NsgxkUHWmJH4srLCSPpOplQkSMUmrNYJkFRmmITydlZulxmn2azHz0XplsldZ1eX2ftfxU1tqGwiTr7F-IeTooN-BmFjkcUOx7_SPCLed105WrIFq4DCbUxdDY7QW6X-a5WvEPZa9bUuup9ClviUG1LUzwcp6WyadrSImSI57pAs-eQ7SvmZBOtK1FSvIy0lSgMVa7u7N_Erylrpn7TMed7G8ma_m-4mdVX6tsa6kJPnrSx9GMYgmWTVPKiGncDjMY6bawd1s5drebrq2o39Wz4wRC6Zd1tPeVmjG8iDZ2ElEHZVEY-LidtnptO1brJsP2LhTDOistjsWkpg6UfUKVj3xQvuZF5-zOdly6FyzTSjPEddugnUYb6_3Dx4WT5sTf5uOjTSeSH32bZWSaQ8OaVfj8Dmsxqzh-yB3Y5AgsDo0dsVtaP2f1Jkson7PsCNKCgBxQgoGAPUDABFFhAgQYUDIAC8Q0mgAILKJgACkZAwRRQgDiAPUCBARRYQD1lX96fnL87dWxlD0firdw6QhZKcS65KkUkCo7TSo4Lp1SkYYAttBWvXKJAh17hiZBjj0AIz5durGLuqeAZO6ibunzOQGTCL1yOLyFDPymzMJMqUSJ2ZZDxND5iXn-3c2nT3lP1lVXexzde5iShnCSUGwkdsfkwpjVJX27tHfVCzO201UxHc8TcLeNe_OO4l-ze-LS8Ygfb9a58ze7Kbltt1m8sNH8Cao7I4w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+approach+for+cross-subject+unfavorable+driving+state+detection+by+cooperation+between+phase-based+functional+connectivity+and+convolutional+neural+network&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Chen%2C+Jichi&rft.au=Wang%2C+Hong&rft.au=He%2C+Enqiu&rft.date=2023-09-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=86&rft_id=info:doi/10.1016%2Fj.bspc.2023.105270&rft.externalDocID=S1746809423007036 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |