A novel approach for cross-subject unfavorable driving state detection by cooperation between phase-based functional connectivity and convolutional neural network

•Phase-based FC between all pairs of EEG channels is assessed using PTE.•The cooperation between model-driven and data-driven approaches is realized.•The performance of proposed model is excellent on unseen subjects. Driving under unfavorable driving state (UDS) is the primary factor inducing the so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical signal processing and control Jg. 86; S. 105270
Hauptverfasser: Chen, Jichi, Wang, Hong, He, Enqiu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.09.2023
Schlagworte:
ISSN:1746-8094, 1746-8108
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Phase-based FC between all pairs of EEG channels is assessed using PTE.•The cooperation between model-driven and data-driven approaches is realized.•The performance of proposed model is excellent on unseen subjects. Driving under unfavorable driving state (UDS) is the primary factor inducing the soaring incidence of road accidents. Recently, Electroencephalography (EEG) with high time resolution is regarded as the “gold standard” for identifying drivers' UDS because it directly reflects the neural activity of human brain. However, EEG recordings are heavily influenced by individuals, resulting in poor generality and fair recognition performance on unseen subject. To handle the issue, an EEG-based cross-subject UDS detection framework is proposed, which combines model-driven and data-driven approaches. Concretely, EEG recordings collected from the driving simulation are first decomposed into six classical frequency bands. Interactive relation of all EEG channels is estimated by the phase transfer entropy (PTE). Subsequently, a novel meta-heuristic algorithm called equilibrium optimizer (EO) is employed as a PTE-based functional connectivity feature selection method. A customized 14-layer CNN model is further developed to extract hidden feature from PTE-EO-based functional connectivity and to perform UDS and NUDS classification tasks. Statistical analysis demonstrates that equilibrium optimizer significantly outperforms binary dragonfly algorithm (BDA) and whale optimization algorithm (WOA) in terms of UDS detection. The best recognition outcome is achieved using PTE-EO-CNN model, yielding a mean ACC of 90.19 %, a mean PRE of 89.20 %, a mean SEN of 91.75 %, and a mean SPE of 88.63 % on 16 subjects using LOSO-CV strategy. Conclusively, our findings suggest that PTE-EO-CNN is a promising framework with excellence reliability and generalizability, which has a new perspective and practical significance to solve the road safety issue.
AbstractList •Phase-based FC between all pairs of EEG channels is assessed using PTE.•The cooperation between model-driven and data-driven approaches is realized.•The performance of proposed model is excellent on unseen subjects. Driving under unfavorable driving state (UDS) is the primary factor inducing the soaring incidence of road accidents. Recently, Electroencephalography (EEG) with high time resolution is regarded as the “gold standard” for identifying drivers' UDS because it directly reflects the neural activity of human brain. However, EEG recordings are heavily influenced by individuals, resulting in poor generality and fair recognition performance on unseen subject. To handle the issue, an EEG-based cross-subject UDS detection framework is proposed, which combines model-driven and data-driven approaches. Concretely, EEG recordings collected from the driving simulation are first decomposed into six classical frequency bands. Interactive relation of all EEG channels is estimated by the phase transfer entropy (PTE). Subsequently, a novel meta-heuristic algorithm called equilibrium optimizer (EO) is employed as a PTE-based functional connectivity feature selection method. A customized 14-layer CNN model is further developed to extract hidden feature from PTE-EO-based functional connectivity and to perform UDS and NUDS classification tasks. Statistical analysis demonstrates that equilibrium optimizer significantly outperforms binary dragonfly algorithm (BDA) and whale optimization algorithm (WOA) in terms of UDS detection. The best recognition outcome is achieved using PTE-EO-CNN model, yielding a mean ACC of 90.19 %, a mean PRE of 89.20 %, a mean SEN of 91.75 %, and a mean SPE of 88.63 % on 16 subjects using LOSO-CV strategy. Conclusively, our findings suggest that PTE-EO-CNN is a promising framework with excellence reliability and generalizability, which has a new perspective and practical significance to solve the road safety issue.
ArticleNumber 105270
Author Chen, Jichi
He, Enqiu
Wang, Hong
Author_xml – sequence: 1
  givenname: Jichi
  surname: Chen
  fullname: Chen, Jichi
  email: jcchen@sut.edu.cn
  organization: School of Mechanical Engineering, Shenyang University of Technology, 110870 Shenyang, Liaoning, China
– sequence: 2
  givenname: Hong
  surname: Wang
  fullname: Wang, Hong
  organization: School of Mechanical Engineering and Automation, Northeastern University, 110819 Shenyang, Liaoning, China
– sequence: 3
  givenname: Enqiu
  surname: He
  fullname: He, Enqiu
  organization: School of Chemical Equipment, Shenyang University of Technology, 111000 Liaoyang, Liaoning, China
BookMark eNp9kM1OxCAUhYnRRB19AVe8QEdoO52auDHGv2QSN7omF7g4jBUaoDXzOj6pdEY3LtxwuYfzkZxzSg6dd0jIBWdzznhzuZnL2Kt5ycoqC4tyyQ7ICV_WTdFy1h7-3tlVfUxOY9wwVrdLXp-Qrxvq_Igdhb4PHtSaGh-oCj7GIg5ygyrRwRkYfQDZIdXBjta90Zgg5Q1TNljvqNxS5X2PAfYrpk9ER_s1RCxkPjQ1g9t5octW5yZwtGlLwelJGH03_Dw7HMJupE8f3s_IkYEu4vnPnJHX-7uX28di9fzwdHuzKlTFWCqk0sYAKDAoF1JDWTNouW5lW1dZWTSLpWEtz0VwzWUN2VFJyUvFGtMAN9WMtPt_d-kDGqFs2sVJAWwnOBNT12Ijpq7F1LXYd53R8g_aB_sBYfs_dL2HMIcaLQYRlUWnUNuQyxHa2__wb4pgoWo
CitedBy_id crossref_primary_10_1016_j_chaos_2025_116751
crossref_primary_10_1016_j_bspc_2025_108046
crossref_primary_10_1016_j_bspc_2024_107132
crossref_primary_10_1016_j_ins_2023_120070
Cites_doi 10.1177/1550147717733391
10.1016/j.aap.2015.09.002
10.1016/j.bspc.2021.102857
10.1016/j.bspc.2022.104157
10.1109/JSAC.2020.3020606
10.1007/s11571-022-09825-y
10.1016/j.eswa.2018.04.021
10.1016/j.eswa.2021.116339
10.1016/j.compbiomed.2022.106520
10.1016/j.bbe.2020.08.009
10.1016/j.cmpb.2018.04.012
10.1088/1361-6579/ac8f80
10.1016/j.bspc.2021.102792
10.1016/j.neuropsychologia.2020.107695
10.1016/j.knosys.2022.109436
10.1063/1.5120538
10.3390/app112110279
10.1016/j.asoc.2020.106542
10.1016/j.bspc.2022.104237
10.3390/s21196449
10.1016/j.trf.2021.08.001
10.1016/j.neuropsychologia.2019.04.004
10.1016/j.eswa.2016.01.024
10.1177/1550147719872452
10.18280/ts.390335
10.3390/ijerph17228499
10.18280/ts.380501
10.1109/TITS.2021.3090272
10.1007/s13246-020-00853-8
10.1109/TITS.2021.3125737
10.1016/j.neuroimage.2019.116285
10.1016/j.heliyon.2022.e11204
10.32604/iasc.2023.029698
10.1109/TVT.2021.3130152
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2023.105270
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2023_105270
S1746809423007036
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-bcdffaacafeb5bda240a81d8b843eb55657f0811741d1b4ada23bb12c06f6a1f3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001045290200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Sat Nov 29 07:04:23 EST 2025
Tue Nov 18 22:17:25 EST 2025
Fri Feb 23 02:36:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Convolutional Neural network
Driver status
Feature extraction
Electroencephalography
Phase transfer entropy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-bcdffaacafeb5bda240a81d8b843eb55657f0811741d1b4ada23bb12c06f6a1f3
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2023_105270
crossref_primary_10_1016_j_bspc_2023_105270
elsevier_sciencedirect_doi_10_1016_j_bspc_2023_105270
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Wan, Li, Huang, Li, Hou, Pan, Wen, Li (b0135) 2023; 35
Gao, Li, Yang, Ma (b0065) 2019; 29
Murugan, Selvaraj, Sahayadhas (b0110) 2020; 43
Zeng, Wang, Chen, Zhang, Cheng (b0160) 2020; 17
Z. Li, Q. Zhang, X. Zhao, Performance analysis of K-nearest neighbor, support vector machine, and artificial neural network classifiers for driver drowsiness detection with different road geometries, Int. J. Distributed Sensor Networks, 13, 2017.
Chen, Ma, Li, Yan, Li (b0030) 2017; 139
Chang, Wang, Yan, Lu, Liu, Hua (b0025) 2021; 151
Chen, Wang, Wang, Hua (b0035) 2019; 129
Zhang, Yan, Chang, Huang, Yuan (b0180) 2023; 79
Naim, Mustafa, Sulaiman, Zahari (b0115) 2022; 39
Z. Li, Q. Yang, S. Chen, W. Zhou, L. Chen, L. Song, A fuzzy recurrent neural network for driver fatigue detection based on steering-wheel angle sensor data, Int. J. Distributed Sensor Networks, 15, 2019.
Chen, Wang, He, Wang, Wang (b0040) 2021; 69
Ahmadi, Bazregarzadeh, Kazemi (b0010) 2021; 41
Bakker, Zablocki, Baker, Riethmeister, Marx, Iyer, Anund, Ahlstrom (b0015) 2022; 23
Zhong, Li, Meng, Li, He (b0185) 2023; 153
Dziuda, Baran, Zieliński, Murawski, Dziwosz, Krej, Piotrowski, Stablewski, Wojdas, Strus, Gasiul, Kosobudzki, Bortkiewicz (b0055) 2021; 21
Hadra, Omidvarnia, Mesbah (b0080) 2022; 43
Min, Xiong, Zhang, Cai (b0105) 2021; 69
Ullah, Hussain, Qazi, Aboalsamh (b0130) 2018; 107
Woerle, Metz, Steinborn, Huestegge, Baumann (b0150) 2021; 82
Wang, Xu (b0145) 2016; 95
Gao, Li, Ma, Rui, Sun (b0070) 2021; 70
Yang, Wang, Mao (b0155) 2021; 39
Zhang, Wu, Zhang, Ferreira (b0165) 2022
Acharya, Oh, Hagiwara, Tan, Adeli, Subha (b0005) 2018; 161
Li, Chen, Nie, Yang (b0090) 2022; 71
Bekhouche, Ruichek, Dornaika (b0020) 2022; 252
Fan, Peng, Peng, Zhang, Wu, Kwong (b0060) 2022; 23
Wang, Chang, Zhang (b0140) 2016; 53
Gupta, Deep, Mirjalili (b0075) 2020; 96
Chen, Wang, He, Wang, Wang (b0050) 2023; 17
Rashid, Mustafa, Sulaiman, Abdullah, Samad (b0125) 2021; 38
Zhang, Chen, He, Wang (b0170) 2021; 11
Zhang, Guo, Zhou, Xu, Liao (b0175) 2023; 79
Chen, Wang, He, Wang, Wang (b0045) 2022; 191
Li, Tao, Peng, Zhang, Si, Zhang, Yi, Biswal, Yao, Xu (b0085) 2020; 205
Rahman, Hriday, Khan (b0120) 2022; 8
Hadra (10.1016/j.bspc.2023.105270_b0080) 2022; 43
Zhang (10.1016/j.bspc.2023.105270_b0165) 2022
Ahmadi (10.1016/j.bspc.2023.105270_b0010) 2021; 41
Dziuda (10.1016/j.bspc.2023.105270_b0055) 2021; 21
Wang (10.1016/j.bspc.2023.105270_b0145) 2016; 95
Zhang (10.1016/j.bspc.2023.105270_b0170) 2021; 11
Min (10.1016/j.bspc.2023.105270_b0105) 2021; 69
Murugan (10.1016/j.bspc.2023.105270_b0110) 2020; 43
Wang (10.1016/j.bspc.2023.105270_b0140) 2016; 53
Acharya (10.1016/j.bspc.2023.105270_b0005) 2018; 161
Ullah (10.1016/j.bspc.2023.105270_b0130) 2018; 107
10.1016/j.bspc.2023.105270_b0100
Chen (10.1016/j.bspc.2023.105270_b0035) 2019; 129
Wang (10.1016/j.bspc.2023.105270_b0135) 2023; 35
Bekhouche (10.1016/j.bspc.2023.105270_b0020) 2022; 252
Li (10.1016/j.bspc.2023.105270_b0090) 2022; 71
Zeng (10.1016/j.bspc.2023.105270_b0160) 2020; 17
Zhong (10.1016/j.bspc.2023.105270_b0185) 2023; 153
Rashid (10.1016/j.bspc.2023.105270_b0125) 2021; 38
Naim (10.1016/j.bspc.2023.105270_b0115) 2022; 39
Zhang (10.1016/j.bspc.2023.105270_b0175) 2023; 79
Rahman (10.1016/j.bspc.2023.105270_b0120) 2022; 8
Chen (10.1016/j.bspc.2023.105270_b0040) 2021; 69
Chang (10.1016/j.bspc.2023.105270_b0025) 2021; 151
Bakker (10.1016/j.bspc.2023.105270_b0015) 2022; 23
10.1016/j.bspc.2023.105270_b0095
Gupta (10.1016/j.bspc.2023.105270_b0075) 2020; 96
Woerle (10.1016/j.bspc.2023.105270_b0150) 2021; 82
Chen (10.1016/j.bspc.2023.105270_b0045) 2022; 191
Yang (10.1016/j.bspc.2023.105270_b0155) 2021; 39
Li (10.1016/j.bspc.2023.105270_b0085) 2020; 205
Chen (10.1016/j.bspc.2023.105270_b0030) 2017; 139
Fan (10.1016/j.bspc.2023.105270_b0060) 2022; 23
Zhang (10.1016/j.bspc.2023.105270_b0180) 2023; 79
Chen (10.1016/j.bspc.2023.105270_b0050) 2023; 17
Gao (10.1016/j.bspc.2023.105270_b0065) 2019; 29
Gao (10.1016/j.bspc.2023.105270_b0070) 2021; 70
References_xml – volume: 139
  year: 2017
  ident: b0030
  article-title: Drowsiness detection with electrooculography signal using a system dynamics approach
  publication-title: J. Dynamic Syst. Measure. Control-Trans. ASME
– volume: 79
  start-page: 104237
  year: 2023
  ident: b0175
  article-title: Recognising drivers? mental fatigue based on EEG multi-dimensional feature selection and fusion
  publication-title: Biomed. Signal Process. Control
– volume: 151
  start-page: 107695
  year: 2021
  ident: b0025
  article-title: EEG based functional connectivity analysis of human pain empathy towards humans and robots
  publication-title: Neuropsychologia
– volume: 129
  start-page: 200
  year: 2019
  end-page: 211
  ident: b0035
  article-title: Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males
  publication-title: Neuropsychologia
– volume: 96
  start-page: 106542
  year: 2020
  ident: b0075
  article-title: An efficient equilibrium optimizer with mutation strategy for numerical optimization
  publication-title: Appl. Soft Comput.
– volume: 191
  start-page: 116339
  year: 2022
  ident: b0045
  article-title: Two-dimensional phase lag index image representation of electroencephalography for automated recognition of driver fatigue using convolutional neural network
  publication-title: Expert Syst. Appl.
– volume: 8
  start-page: e11204
  year: 2022
  ident: b0120
  article-title: Computer vision-based approach to detect fatigue driving and face mask for edge computing device
  publication-title: Heliyon
– volume: 71
  start-page: 269
  year: 2022
  end-page: 281
  ident: b0090
  article-title: A Novel Learning Model of Driver Fatigue Features Representation for Steering Wheel Angle
  publication-title: IEEE Trans. Veh. Technol.
– year: 2022
  ident: b0165
  article-title: Comparative analysis of drowsiness and performance in conditionally automated driving and manual driving considering the effect of circadian rhythm
  publication-title: J. Intell. Transp. Syst.
– volume: 95
  start-page: 350
  year: 2016
  end-page: 357
  ident: b0145
  article-title: Driver drowsiness detection based on non-intrusive metrics considering individual specifics
  publication-title: Accid. Anal. Prev.
– volume: 82
  start-page: 111
  year: 2021
  end-page: 120
  ident: b0150
  article-title: Differential effects of driver sleepiness and sleep inertia on driving behavior
  publication-title: Transport. Res. Part F-Traffic Psychol. Behaviour
– reference: Z. Li, Q. Zhang, X. Zhao, Performance analysis of K-nearest neighbor, support vector machine, and artificial neural network classifiers for driver drowsiness detection with different road geometries, Int. J. Distributed Sensor Networks, 13, 2017.
– volume: 21
  start-page: 6449
  year: 2021
  ident: b0055
  article-title: Evaluation of a Fatigue Detector Using Eye Closure-Associated Indicators Acquired from Truck Drivers in a Simulator Study
  publication-title: Sensors
– volume: 107
  start-page: 61
  year: 2018
  end-page: 71
  ident: b0130
  article-title: An automated system for epilepsy detection using EEG brain signals based on deep learning approach
  publication-title: Expert Syst. Appl.
– reference: Z. Li, Q. Yang, S. Chen, W. Zhou, L. Chen, L. Song, A fuzzy recurrent neural network for driver fatigue detection based on steering-wheel angle sensor data, Int. J. Distributed Sensor Networks, 15, 2019.
– volume: 35
  start-page: 3573
  year: 2023
  end-page: 3586
  ident: b0135
  article-title: Recent Advances in Fatigue Detection Algorithm Based on EEG
  publication-title: Intelligent Automation Soft Comput.
– volume: 69
  start-page: 102857
  year: 2021
  ident: b0105
  article-title: Driver fatigue detection based on prefrontal EEG using multi-entropy measures and hybrid model
  publication-title: Biomed. Signal Process. Control
– volume: 17
  start-page: 8499
  year: 2020
  ident: b0160
  article-title: Sex Differences in Time-Domain and Frequency-Domain Heart Rate Variability Measures of Fatigued Drivers
  publication-title: Int. J. Environ. Res. Public Health
– volume: 69
  start-page: 102792
  year: 2021
  ident: b0040
  article-title: Recognizing drowsiness in young men during real driving based on electroencephalography using an end-to-end deep learning approach
  publication-title: Biomed. Signal Process. Control
– volume: 43
  start-page: 525
  year: 2020
  end-page: 537
  ident: b0110
  article-title: Detection and analysis: driver state with electrocardiogram (ECG)
  publication-title: Phys. Eng. Sci. Med.
– volume: 43
  start-page: 095002
  year: 2022
  ident: b0080
  article-title: Temporal complexity of EEG encodes human alertness
  publication-title: Physiol. Meas.
– volume: 41
  start-page: 316
  year: 2021
  end-page: 332
  ident: b0010
  article-title: Automated detection of driver fatigue from electroencephalography through wavelet-based connectivity
  publication-title: Biocybern. Biomed. Eng.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 9
  ident: b0070
  article-title: Core-Brain-Network-Based Multilayer Convolutional Neural Network for Emotion Recognition
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 53
  start-page: 117
  year: 2016
  end-page: 128
  ident: b0140
  article-title: Functional brain network and multichannel analysis for the P300-based brain computer interface system of lying detection
  publication-title: Expert Syst. Appl.
– volume: 153
  start-page: 106520
  year: 2023
  ident: b0185
  article-title: A self-adaptive quantum equilibrium optimizer with artificial bee colony for feature selection
  publication-title: Comput. Biol. Med.
– volume: 17
  start-page: 547
  year: 2023
  end-page: 553
  ident: b0050
  article-title: The architecture of functional brain network modulated by driving during adverse weather conditions
  publication-title: Cogn. Neurodyn.
– volume: 39
  start-page: 500
  year: 2021
  end-page: 512
  ident: b0155
  article-title: Respiration Monitoring With RFID in Driving Environments
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 161
  start-page: 103
  year: 2018
  end-page: 113
  ident: b0005
  article-title: Automated EEG-based screening of depression using deep convolutional neural network
  publication-title: Comput. Methods Programs Biomed.
– volume: 205
  start-page: 116285
  year: 2020
  ident: b0085
  article-title: Inter-subject P300 variability relates to the efficiency of brain networks reconfigured from resting- to task-state: Evidence from a simultaneous event-related EEG-fMRI study
  publication-title: Neuroimage
– volume: 23
  start-page: 4791
  year: 2022
  end-page: 4800
  ident: b0015
  article-title: A Multi-Stage, Multi-Feature Machine Learning Approach to Detect Driver Sleepiness in Naturalistic Road Driving Conditions
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 23
  start-page: 13559
  year: 2022
  end-page: 13569
  ident: b0060
  article-title: Detection of Train Driver Fatigue and Distraction Based on Forehead EEG: A Time-Series Ensemble Learning Method
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 38
  start-page: 1259
  year: 2021
  end-page: 1270
  ident: b0125
  article-title: Random Subspace K-NN Based Ensemble Classifier for Driver Fatigue Detection Utilizing Selected EEG Channels
  publication-title: Traitement Du Signal
– volume: 79
  start-page: 104157
  year: 2023
  ident: b0180
  article-title: EEG-based multi-frequency band functional connectivity analysis and the application of spatio-temporal features in emotion recognition
  publication-title: Biomed. Signal Process. Control
– volume: 29
  start-page: 113126
  year: 2019
  ident: b0065
  article-title: A recurrence network-based convolutional neural network for fatigue driving detection from EEG
  publication-title: Chaos
– volume: 39
  start-page: 1079
  year: 2022
  end-page: 1088
  ident: b0115
  article-title: Dual-Layer Ranking Feature Selection Method Based on Statistical Formula for Driver Fatigue Detection of EMG Signals
  publication-title: Traitement Du Signal
– volume: 252
  start-page: 109436
  year: 2022
  ident: b0020
  article-title: Driver drowsiness detection in video sequences using hybrid selection of deep features
  publication-title: Knowl.-Based Syst.
– volume: 11
  start-page: 10279
  year: 2021
  ident: b0170
  article-title: Sample-Entropy-Based Method for Real Driving Fatigue Detection with Multichannel Electroencephalogram
  publication-title: Appl. Sciences-Basel
– ident: 10.1016/j.bspc.2023.105270_b0100
  doi: 10.1177/1550147717733391
– volume: 95
  start-page: 350
  year: 2016
  ident: 10.1016/j.bspc.2023.105270_b0145
  article-title: Driver drowsiness detection based on non-intrusive metrics considering individual specifics
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2015.09.002
– volume: 69
  start-page: 102857
  year: 2021
  ident: 10.1016/j.bspc.2023.105270_b0105
  article-title: Driver fatigue detection based on prefrontal EEG using multi-entropy measures and hybrid model
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102857
– volume: 79
  start-page: 104157
  year: 2023
  ident: 10.1016/j.bspc.2023.105270_b0180
  article-title: EEG-based multi-frequency band functional connectivity analysis and the application of spatio-temporal features in emotion recognition
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104157
– volume: 39
  start-page: 500
  issue: 2
  year: 2021
  ident: 10.1016/j.bspc.2023.105270_b0155
  article-title: Respiration Monitoring With RFID in Driving Environments
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2020.3020606
– volume: 17
  start-page: 547
  issue: 2
  year: 2023
  ident: 10.1016/j.bspc.2023.105270_b0050
  article-title: The architecture of functional brain network modulated by driving during adverse weather conditions
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-022-09825-y
– volume: 107
  start-page: 61
  year: 2018
  ident: 10.1016/j.bspc.2023.105270_b0130
  article-title: An automated system for epilepsy detection using EEG brain signals based on deep learning approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.04.021
– volume: 191
  start-page: 116339
  year: 2022
  ident: 10.1016/j.bspc.2023.105270_b0045
  article-title: Two-dimensional phase lag index image representation of electroencephalography for automated recognition of driver fatigue using convolutional neural network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116339
– volume: 153
  start-page: 106520
  year: 2023
  ident: 10.1016/j.bspc.2023.105270_b0185
  article-title: A self-adaptive quantum equilibrium optimizer with artificial bee colony for feature selection
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106520
– volume: 41
  start-page: 316
  issue: 1
  year: 2021
  ident: 10.1016/j.bspc.2023.105270_b0010
  article-title: Automated detection of driver fatigue from electroencephalography through wavelet-based connectivity
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.08.009
– volume: 161
  start-page: 103
  year: 2018
  ident: 10.1016/j.bspc.2023.105270_b0005
  article-title: Automated EEG-based screening of depression using deep convolutional neural network
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.04.012
– volume: 43
  start-page: 095002
  issue: 9
  year: 2022
  ident: 10.1016/j.bspc.2023.105270_b0080
  article-title: Temporal complexity of EEG encodes human alertness
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ac8f80
– volume: 69
  start-page: 102792
  year: 2021
  ident: 10.1016/j.bspc.2023.105270_b0040
  article-title: Recognizing drowsiness in young men during real driving based on electroencephalography using an end-to-end deep learning approach
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102792
– volume: 151
  start-page: 107695
  year: 2021
  ident: 10.1016/j.bspc.2023.105270_b0025
  article-title: EEG based functional connectivity analysis of human pain empathy towards humans and robots
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2020.107695
– volume: 252
  start-page: 109436
  year: 2022
  ident: 10.1016/j.bspc.2023.105270_b0020
  article-title: Driver drowsiness detection in video sequences using hybrid selection of deep features
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.109436
– volume: 29
  start-page: 113126
  issue: 11
  year: 2019
  ident: 10.1016/j.bspc.2023.105270_b0065
  article-title: A recurrence network-based convolutional neural network for fatigue driving detection from EEG
  publication-title: Chaos
  doi: 10.1063/1.5120538
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2023.105270_b0070
  article-title: Core-Brain-Network-Based Multilayer Convolutional Neural Network for Emotion Recognition
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 11
  start-page: 10279
  issue: 21
  year: 2021
  ident: 10.1016/j.bspc.2023.105270_b0170
  article-title: Sample-Entropy-Based Method for Real Driving Fatigue Detection with Multichannel Electroencephalogram
  publication-title: Appl. Sciences-Basel
  doi: 10.3390/app112110279
– volume: 139
  year: 2017
  ident: 10.1016/j.bspc.2023.105270_b0030
  article-title: Drowsiness detection with electrooculography signal using a system dynamics approach
  publication-title: J. Dynamic Syst. Measure. Control-Trans. ASME
– volume: 96
  start-page: 106542
  year: 2020
  ident: 10.1016/j.bspc.2023.105270_b0075
  article-title: An efficient equilibrium optimizer with mutation strategy for numerical optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106542
– volume: 79
  start-page: 104237
  year: 2023
  ident: 10.1016/j.bspc.2023.105270_b0175
  article-title: Recognising drivers? mental fatigue based on EEG multi-dimensional feature selection and fusion
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104237
– volume: 21
  start-page: 6449
  issue: 19
  year: 2021
  ident: 10.1016/j.bspc.2023.105270_b0055
  article-title: Evaluation of a Fatigue Detector Using Eye Closure-Associated Indicators Acquired from Truck Drivers in a Simulator Study
  publication-title: Sensors
  doi: 10.3390/s21196449
– volume: 82
  start-page: 111
  year: 2021
  ident: 10.1016/j.bspc.2023.105270_b0150
  article-title: Differential effects of driver sleepiness and sleep inertia on driving behavior
  publication-title: Transport. Res. Part F-Traffic Psychol. Behaviour
  doi: 10.1016/j.trf.2021.08.001
– volume: 129
  start-page: 200
  year: 2019
  ident: 10.1016/j.bspc.2023.105270_b0035
  article-title: Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2019.04.004
– volume: 53
  start-page: 117
  year: 2016
  ident: 10.1016/j.bspc.2023.105270_b0140
  article-title: Functional brain network and multichannel analysis for the P300-based brain computer interface system of lying detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.01.024
– ident: 10.1016/j.bspc.2023.105270_b0095
  doi: 10.1177/1550147719872452
– volume: 39
  start-page: 1079
  issue: 3
  year: 2022
  ident: 10.1016/j.bspc.2023.105270_b0115
  article-title: Dual-Layer Ranking Feature Selection Method Based on Statistical Formula for Driver Fatigue Detection of EMG Signals
  publication-title: Traitement Du Signal
  doi: 10.18280/ts.390335
– volume: 17
  start-page: 8499
  issue: 22
  year: 2020
  ident: 10.1016/j.bspc.2023.105270_b0160
  article-title: Sex Differences in Time-Domain and Frequency-Domain Heart Rate Variability Measures of Fatigued Drivers
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17228499
– volume: 38
  start-page: 1259
  issue: 5
  year: 2021
  ident: 10.1016/j.bspc.2023.105270_b0125
  article-title: Random Subspace K-NN Based Ensemble Classifier for Driver Fatigue Detection Utilizing Selected EEG Channels
  publication-title: Traitement Du Signal
  doi: 10.18280/ts.380501
– volume: 23
  start-page: 4791
  issue: 5
  year: 2022
  ident: 10.1016/j.bspc.2023.105270_b0015
  article-title: A Multi-Stage, Multi-Feature Machine Learning Approach to Detect Driver Sleepiness in Naturalistic Road Driving Conditions
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3090272
– volume: 43
  start-page: 525
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2023.105270_b0110
  article-title: Detection and analysis: driver state with electrocardiogram (ECG)
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-020-00853-8
– volume: 23
  start-page: 13559
  issue: 8
  year: 2022
  ident: 10.1016/j.bspc.2023.105270_b0060
  article-title: Detection of Train Driver Fatigue and Distraction Based on Forehead EEG: A Time-Series Ensemble Learning Method
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3125737
– volume: 205
  start-page: 116285
  year: 2020
  ident: 10.1016/j.bspc.2023.105270_b0085
  article-title: Inter-subject P300 variability relates to the efficiency of brain networks reconfigured from resting- to task-state: Evidence from a simultaneous event-related EEG-fMRI study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116285
– volume: 8
  start-page: e11204
  issue: 10
  year: 2022
  ident: 10.1016/j.bspc.2023.105270_b0120
  article-title: Computer vision-based approach to detect fatigue driving and face mask for edge computing device
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e11204
– year: 2022
  ident: 10.1016/j.bspc.2023.105270_b0165
  article-title: Comparative analysis of drowsiness and performance in conditionally automated driving and manual driving considering the effect of circadian rhythm
  publication-title: J. Intell. Transp. Syst.
– volume: 35
  start-page: 3573
  year: 2023
  ident: 10.1016/j.bspc.2023.105270_b0135
  article-title: Recent Advances in Fatigue Detection Algorithm Based on EEG
  publication-title: Intelligent Automation Soft Comput.
  doi: 10.32604/iasc.2023.029698
– volume: 71
  start-page: 269
  issue: 1
  year: 2022
  ident: 10.1016/j.bspc.2023.105270_b0090
  article-title: A Novel Learning Model of Driver Fatigue Features Representation for Steering Wheel Angle
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3130152
SSID ssj0048714
Score 2.3310332
Snippet •Phase-based FC between all pairs of EEG channels is assessed using PTE.•The cooperation between model-driven and data-driven approaches is realized.•The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105270
SubjectTerms Convolutional Neural network
Driver status
Electroencephalography
Feature extraction
Phase transfer entropy
Title A novel approach for cross-subject unfavorable driving state detection by cooperation between phase-based functional connectivity and convolutional neural network
URI https://dx.doi.org/10.1016/j.bspc.2023.105270
Volume 86
WOSCitedRecordID wos001045290200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RXpoDt1WqvB_HFSoqHCokirS3yHZimmqVpPuIyt9B4n8yYzuPLagCJPaQXXntZDfzZcYezzfD2NsgxkUHWmJH4srLCSPpOplQkSMUmrNYJkFRmmITydlZulxmn2azHz0XplsldZ1eX2ftfxU1tqGwiTr7F-IeTooN-BmFjkcUOx7_SPCLed105WrIFq4DCbUxdDY7QW6X-a5WvEPZa9bUuup9ClviUG1LUzwcp6WyadrSImSI57pAs-eQ7SvmZBOtK1FSvIy0lSgMVa7u7N_Erylrpn7TMed7G8ma_m-4mdVX6tsa6kJPnrSx9GMYgmWTVPKiGncDjMY6bawd1s5drebrq2o39Wz4wRC6Zd1tPeVmjG8iDZ2ElEHZVEY-LidtnptO1brJsP2LhTDOistjsWkpg6UfUKVj3xQvuZF5-zOdly6FyzTSjPEddugnUYb6_3Dx4WT5sTf5uOjTSeSH32bZWSaQ8OaVfj8Dmsxqzh-yB3Y5AgsDo0dsVtaP2f1Jkson7PsCNKCgBxQgoGAPUDABFFhAgQYUDIAC8Q0mgAILKJgACkZAwRRQgDiAPUCBARRYQD1lX96fnL87dWxlD0firdw6QhZKcS65KkUkCo7TSo4Lp1SkYYAttBWvXKJAh17hiZBjj0AIz5durGLuqeAZO6ibunzOQGTCL1yOLyFDPymzMJMqUSJ2ZZDxND5iXn-3c2nT3lP1lVXexzde5iShnCSUGwkdsfkwpjVJX27tHfVCzO201UxHc8TcLeNe_OO4l-ze-LS8Ygfb9a58ze7Kbltt1m8sNH8Cao7I4w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+approach+for+cross-subject+unfavorable+driving+state+detection+by+cooperation+between+phase-based+functional+connectivity+and+convolutional+neural+network&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Chen%2C+Jichi&rft.au=Wang%2C+Hong&rft.au=He%2C+Enqiu&rft.date=2023-09-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=86&rft_id=info:doi/10.1016%2Fj.bspc.2023.105270&rft.externalDocID=S1746809423007036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon