An extended variational autoencoder for cross-subject electromyograph gesture recognition

•The study proposes a novel cross-subject gesture recognition approach.•An extended VAE is designed to disentangle input data into three representations.•A competitive voting strategy is to further bolster accuracy and stability in recognition.•The performance of the proposed method is evaluated on...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomedical signal processing and control Ročník 99; s. 106828
Hlavní autoři: Zhang, Zhen, Ming, Yuewei, Shen, Quming, Wang, Yanyu, Zhang, Yuhui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.01.2025
Témata:
ISSN:1746-8094
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •The study proposes a novel cross-subject gesture recognition approach.•An extended VAE is designed to disentangle input data into three representations.•A competitive voting strategy is to further bolster accuracy and stability in recognition.•The performance of the proposed method is evaluated on the Myo dataset.•The source code and the Myo dataset will be publicly available. Surface electromyographic hand gesture recognition has gained significant attention in recent years, especially within the field of human–computer interfaces. However, cross-subject tasks remain challenging due to inherent individual differences. To address this, a novel approach for hand gesture recognition is proposed that leverages a subject-generalized variational autoencoder. This approach involves an extended variational autoencoder designed to disentangle input data into three distinct feature-specific representations. The primary classifier within the variational autoencoder focuses on gesture recognition, while two auxiliary classifiers work together to extract subject-specific and gesture-specific features. The gesture-specific features capture generalized characteristics applicable across all subjects, enabling direct application to new subjects. To enhance accuracy and stability, a competitive voting strategy is implemented. The effectiveness of the proposed method was evaluated using a dataset comprising six representative gestures performed by eight subjects. Comparative analysis with baseline models shows that our approach outperforms others, demonstrating superior generalization with an average accuracy of 90.52% in cross-subject validation.
AbstractList •The study proposes a novel cross-subject gesture recognition approach.•An extended VAE is designed to disentangle input data into three representations.•A competitive voting strategy is to further bolster accuracy and stability in recognition.•The performance of the proposed method is evaluated on the Myo dataset.•The source code and the Myo dataset will be publicly available. Surface electromyographic hand gesture recognition has gained significant attention in recent years, especially within the field of human–computer interfaces. However, cross-subject tasks remain challenging due to inherent individual differences. To address this, a novel approach for hand gesture recognition is proposed that leverages a subject-generalized variational autoencoder. This approach involves an extended variational autoencoder designed to disentangle input data into three distinct feature-specific representations. The primary classifier within the variational autoencoder focuses on gesture recognition, while two auxiliary classifiers work together to extract subject-specific and gesture-specific features. The gesture-specific features capture generalized characteristics applicable across all subjects, enabling direct application to new subjects. To enhance accuracy and stability, a competitive voting strategy is implemented. The effectiveness of the proposed method was evaluated using a dataset comprising six representative gestures performed by eight subjects. Comparative analysis with baseline models shows that our approach outperforms others, demonstrating superior generalization with an average accuracy of 90.52% in cross-subject validation.
ArticleNumber 106828
Author Shen, Quming
Zhang, Yuhui
Ming, Yuewei
Wang, Yanyu
Zhang, Zhen
Author_xml – sequence: 1
  givenname: Zhen
  orcidid: 0000-0001-6966-0208
  surname: Zhang
  fullname: Zhang, Zhen
  email: zhangzhen_ta@shu.edu.cn
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
– sequence: 2
  givenname: Yuewei
  surname: Ming
  fullname: Ming, Yuewei
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
– sequence: 3
  givenname: Quming
  surname: Shen
  fullname: Shen, Quming
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
– sequence: 4
  givenname: Yanyu
  surname: Wang
  fullname: Wang, Yanyu
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
– sequence: 5
  givenname: Yuhui
  surname: Zhang
  fullname: Zhang, Yuhui
  organization: Department of Spine Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
BookMark eNp9kD1rwzAQhjWk0CTtH-ikP-BUsl1Zhi4h9AsCXdqhk9DHKZVxpCApofn3tZNOHbLcwR3Pce8zQxMfPCB0R8mCEsruu4VKO70oSVkPA8ZLPkFT2tSs4KStr9EspY6Qmje0nqKvpcfwk8EbMPggo5PZBS97LPc5gNfBQMQ2RKxjSKlIe9WBzhj6ocawPYZNlLtvvIGU9xFwBB023o03btCVlX2C278-R5_PTx-r12L9_vK2Wq4LXRGSCyVpBQQeNGUNV7bSDWOgFVOWGdOoujRcDXvbtKqkpG1bKi1QTgzTVW2IrOaoPN89fRjBil10WxmPghIxChGdGIWIUYg4Cxkg_g_SLp-i5yhdfxl9PKMwhDo4iCJpN5gC44b0WZjgLuG_kJ-Djw
CitedBy_id crossref_primary_10_3390_s25134119
Cites_doi 10.1016/j.bspc.2023.105935
10.1109/TAI.2021.3098253
10.1016/j.engappai.2024.108952
10.1142/S0218001421510125
10.1109/TNSRE.2023.3293334
10.3390/s19143170
10.1109/TNSRE.2022.3173946
10.3390/bioengineering10091101
10.1109/JBHI.2020.3009383
10.1109/TNSRE.2015.2420654
10.3390/s20041113
10.3390/s17030458
10.1109/TNSRE.2019.2896269
10.3390/s20092467
10.1115/1.4056325
10.3390/s20143994
10.18494/SAM.2020.2652
10.1016/j.rser.2022.112473
10.1016/j.bspc.2023.104613
10.1088/1741-2552/ad184f
10.1016/j.engappai.2023.107251
10.1109/EMBC40787.2023.10340691
10.1109/ETCM.2017.8247458
10.1016/j.neucom.2021.12.081
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2024.106828
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2024_106828
S1746809424008863
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-ba13e0e5c1678bf3c766ecb6bf6dd7b42d8be0ef79b2109991afe180d6c34d0a3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001315504100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Sat Nov 29 02:51:28 EST 2025
Tue Nov 18 22:18:28 EST 2025
Sat Nov 09 16:00:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Variational autoencoder
Competitive voting
Surface electromyographic
Cross-subject
Feature disentanglement
Gesture recognition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-ba13e0e5c1678bf3c766ecb6bf6dd7b42d8be0ef79b2109991afe180d6c34d0a3
ORCID 0000-0001-6966-0208
ParticipantIDs crossref_primary_10_1016_j_bspc_2024_106828
crossref_citationtrail_10_1016_j_bspc_2024_106828
elsevier_sciencedirect_doi_10_1016_j_bspc_2024_106828
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Yang, Qian, Zhang (b0030) 2019; 19
Ilse M, Tomczak J M, Louizos C, Welling M. Diva: Domain invariant variational autoencoders. Medical Imaging with Deep Learning. PMLR, 2020: 322-348.
Hoshino, Kanoga, Tsubaki, Aoyama (b0095) 2022; 489
Côté-Allard, Fall, Drouin, Campeau-Lecours, Gosselin, Glette, Laviolette, Gosselin (b0115) 2019; 27
Du, Jin, Wei, Hu, Geng (b0110) 2017; 17
D.P. Kingma, Welling M. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
Liu, Peng, Tan, Oyemakinde, Wang, Li, Li (b0145) 2024; 20
Zhang, Shen, Wang (b0060) 2024; 91
Benalcazar M E, Motoche C, Zea J A, Jaramillo A G, Anchundia C E, Zambrano P, Segura M, Benalcazar P, Perez M. Real-time hand gesture recognition using the Myo armband and muscle activity detection. 2017 IEEE 2nd Ecuador Tech. Chapters Meet. ETCM 2017 2018, 2017-Janua, 1-6.
Ye Y, He Y, Pan T, Dong Q, Yuan J, Zhou W. Cross-subject EMG hand gesture recognition based on dynamic domain generalization. 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 2023, 1-4.
Tang, Yang, Zhang, Zhang (b0075) 2022; 162
Dai, Wong, Kankanhali, Li, Geng (b0140) 2023; 10
Su, Liu, Qian, Zhang, Zhang (b0055) 2021; 35
Wang, Chen, Zhang, Yang (b0130) 2023; 31
Zhang, Liu, Wang, Song, Zhang (b0020) 2024; 127
Xu, Shen, Qian, Zhang (b0045) 2020; 20
Wang, Chen, Zhang, Yang, Hu (b0085) 2023; 31
Wang, Zhao, Zhang (b0005) 2023; 121055
Guerrero-López A, Sevilla-Salcedo C, Gómez-Verdejo V, Olmos P M. Multi-view hierarchical Variational AutoEncoders with Factor Analysis latent space. arXiv preprint arXiv:2207.09185, 2022.
Tang, Kuo, Zhang (b0080) 2023
Zhang, Ming, Wang (bib166) 2024; 136
I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, A. Lerchner, beta-vae: Learning basic visual concepts with a constrained variational framework, in: International conference on learning representations, 2016.
Zhang, Zhang, Wu, Li, Chen, Chen (b0100) 2022; 30
Zou, Cheng (b0105) 2021; 2
Hua, Wang, Lam, Wen (b0025) 2023; 83
Wang, Lan, Liu, Ouyang, Qin, Lu, Chen, Zeng, Yu (b0120) 2023; 35
Zhang, He, Yang (b0050) 2020; 20
Ge, Wu, Han, Zhao (b0010) 2023; 6
Jaramillo-Yánez, Benalcázar, Mena-Maldonado (b0015) 2020; 20
Liu, Sheng, Zhang, Jiang, Zhu (b0065) 2015; 24
Fan, Jiang, Lin, Li, Fiaidhi, Ma, Wu (b0090) 2021
Zhang, Yu, Qian (b0040) 2020; 32
Chen, Li, Hu, Zhang, Chen (b0070) 2020; 25
Fan, Jiang, Liu, Meng, Jia, Dai (b0135) 2024; 2024
Zhang (10.1016/j.bspc.2024.106828_b0060) 2024; 91
Ge (10.1016/j.bspc.2024.106828_b0010) 2023; 6
Tang (10.1016/j.bspc.2024.106828_b0080) 2023
Zhang (10.1016/j.bspc.2024.106828_bib166) 2024; 136
Zou (10.1016/j.bspc.2024.106828_b0105) 2021; 2
Wang (10.1016/j.bspc.2024.106828_b0130) 2023; 31
10.1016/j.bspc.2024.106828_b0125
Du (10.1016/j.bspc.2024.106828_b0110) 2017; 17
Liu (10.1016/j.bspc.2024.106828_b0145) 2024; 20
Hua (10.1016/j.bspc.2024.106828_b0025) 2023; 83
Chen (10.1016/j.bspc.2024.106828_b0070) 2020; 25
10.1016/j.bspc.2024.106828_b0165
Zhang (10.1016/j.bspc.2024.106828_b0020) 2024; 127
Su (10.1016/j.bspc.2024.106828_b0055) 2021; 35
Liu (10.1016/j.bspc.2024.106828_b0065) 2015; 24
Jaramillo-Yánez (10.1016/j.bspc.2024.106828_b0015) 2020; 20
Wang (10.1016/j.bspc.2024.106828_b0005) 2023; 121055
Hoshino (10.1016/j.bspc.2024.106828_b0095) 2022; 489
10.1016/j.bspc.2024.106828_b0160
Zhang (10.1016/j.bspc.2024.106828_b0100) 2022; 30
Côté-Allard (10.1016/j.bspc.2024.106828_b0115) 2019; 27
Wang (10.1016/j.bspc.2024.106828_b0120) 2023; 35
Zhang (10.1016/j.bspc.2024.106828_b0040) 2020; 32
Zhang (10.1016/j.bspc.2024.106828_b0030) 2019; 19
Wang (10.1016/j.bspc.2024.106828_b0085) 2023; 31
10.1016/j.bspc.2024.106828_b0035
10.1016/j.bspc.2024.106828_b0155
Dai (10.1016/j.bspc.2024.106828_b0140) 2023; 10
Zhang (10.1016/j.bspc.2024.106828_b0050) 2020; 20
10.1016/j.bspc.2024.106828_b0150
Fan (10.1016/j.bspc.2024.106828_b0135) 2024; 2024
Tang (10.1016/j.bspc.2024.106828_b0075) 2022; 162
Xu (10.1016/j.bspc.2024.106828_b0045) 2020; 20
Fan (10.1016/j.bspc.2024.106828_b0090) 2021
References_xml – reference: D.P. Kingma, Welling M. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
– volume: 19
  start-page: 3170
  year: 2019
  ident: b0030
  article-title: Real-time surface EMG pattern recognition for hand gestures based on an artificial neural network
  publication-title: Sensors
– volume: 121055
  year: 2023
  ident: b0005
  article-title: A deep learning approach using attention mechanism and transfer learning for electromyographic hand gesture estimation
  publication-title: Expert Syst. Appl.
– volume: 6
  year: 2023
  ident: b0010
  article-title: Gesture recognition and master–slave control of a manipulator based on sEMG and convolutional neural network–gated recurrent unit
  publication-title: Journal of Engineering and Science in Medical Diagnostics and Therapy
– reference: Benalcazar M E, Motoche C, Zea J A, Jaramillo A G, Anchundia C E, Zambrano P, Segura M, Benalcazar P, Perez M. Real-time hand gesture recognition using the Myo armband and muscle activity detection. 2017 IEEE 2nd Ecuador Tech. Chapters Meet. ETCM 2017 2018, 2017-Janua, 1-6.
– start-page: 127864
  year: 2023
  ident: b0080
  article-title: Zhang Z
– volume: 20
  start-page: 3994
  year: 2020
  ident: b0050
  article-title: A novel surface electromyographic signal-based hand gesture prediction using a recurrent neural network
  publication-title: Sensors
– reference: Ye Y, He Y, Pan T, Dong Q, Yuan J, Zhou W. Cross-subject EMG hand gesture recognition based on dynamic domain generalization. 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 2023, 1-4.
– volume: 31
  start-page: 2974
  year: 2023
  end-page: 2987
  ident: b0130
  article-title: Iterative self-training based domain adaptation for cross-user sEMG gesture recognition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– reference: Guerrero-López A, Sevilla-Salcedo C, Gómez-Verdejo V, Olmos P M. Multi-view hierarchical Variational AutoEncoders with Factor Analysis latent space. arXiv preprint arXiv:2207.09185, 2022.
– volume: 10
  start-page: 1101
  year: 2023
  ident: b0140
  article-title: Improved network and training scheme for cross-trial surface rlectromyography (sEMG)-based gesture recognition
  publication-title: Bioengineering
– volume: 24
  start-page: 444
  year: 2015
  end-page: 454
  ident: b0065
  article-title: Towards zero retraining for myoelectric control based on common model component analysis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 27
  start-page: 760
  year: 2019
  end-page: 771
  ident: b0115
  article-title: Deep learning for electromyographic hand gesture signal classification using transfer learning
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 35
  start-page: 2151012
  year: 2021
  ident: b0055
  article-title: Hand gesture recognition based on sEMG signal and convolutional neural network
  publication-title: Int. J. Pattern Recognit Artif Intell.
– volume: 35
  start-page: 8052
  year: 2023
  end-page: 8072
  ident: b0120
  article-title: Generalizing to unseen domains: A survey on domain generalization
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 83
  year: 2023
  ident: b0025
  article-title: An incremental learning method with hybrid data over/down-sampling for sEMG-based gesture classification
  publication-title: Biomed. Signal Process. Control
– volume: 162
  year: 2022
  ident: b0075
  article-title: Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy
  publication-title: Renew. Sustain. Energy Rev.
– volume: 136
  year: 2024
  ident: bib166
  article-title: A federated transfer learning approach for surface electromyographic hand gesture recognition with emphasis on privacy preservation
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 489
  start-page: 599
  year: 2022
  end-page: 612
  ident: b0095
  article-title: Comparing subject-to-subject transfer learning methods in surface electromyogram-based motion recognition with shallow and deep classifiers
  publication-title: Neurocomputing
– volume: 32
  start-page: 1523
  year: 2020
  end-page: 1532
  ident: b0040
  article-title: Classification of finger movements for prosthesis control with surface electromyography
  publication-title: Sensors and Materials
– volume: 2
  start-page: 447
  year: 2021
  end-page: 458
  ident: b0105
  article-title: A transfer learning model for gesture recognition based on the deep features extracted by CNN
  publication-title: IEEE Transactions on Artificial Intelligence
– volume: 17
  start-page: 458
  year: 2017
  ident: b0110
  article-title: Surface EMG-based inter-session gesture recognition enhanced by deep domain adaptation
  publication-title: Sensors
– volume: 91
  year: 2024
  ident: b0060
  article-title: Electromyographic hand gesture recognition using convolutional neural network with multi-attention
  publication-title: Biomed. Signal Process. Control
– volume: 31
  start-page: 2974
  year: 2023
  end-page: 2987
  ident: b0085
  article-title: Iterative Self-Training based Domain Adaptation for Cross-User sEMG Gesture Recognition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 20
  start-page: 1113
  year: 2020
  ident: b0045
  article-title: Advanced hand gesture prediction robust to electrode shift with an arbitrary angle
  publication-title: Sensors
– start-page: 1
  year: 2021
  end-page: 11
  ident: b0090
  article-title: Improving sEMG-based motion intention recognition for upper-limb amputees using transfer learning
  publication-title: Neural Comput. & Applic.
– volume: 20
  year: 2024
  ident: b0145
  article-title: A novel unsupervised dynamic feature domain adaptation strategy for cross-individual myoelectric gesture recognition
  publication-title: J. Neural Eng.
– volume: 25
  start-page: 1292
  year: 2020
  end-page: 1304
  ident: b0070
  article-title: Hand gesture recognition based on surface electromyography using convolutional neural network with transfer learning method
  publication-title: IEEE J. Biomed. Health Inform.
– reference: Ilse M, Tomczak J M, Louizos C, Welling M. Diva: Domain invariant variational autoencoders. Medical Imaging with Deep Learning. PMLR, 2020: 322-348.
– volume: 2024
  year: 2024
  ident: b0135
  article-title: Surface EMG feature disentanglement for robust pattern recognition
  publication-title: Expert Syst. Appl.
– volume: 127
  year: 2024
  ident: b0020
  article-title: Online electromyographic hand gesture recognition using deep learning and transfer learning
  publication-title: Eng. Appl. Artif. Intel.
– volume: 30
  start-page: 1374
  year: 2022
  end-page: 1383
  ident: b0100
  article-title: Domain adaptation with self-guided adaptive sampling strategy: Feature alignment for cross-user myoelectric pattern recognition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 20
  start-page: 2467
  year: 2020
  ident: b0015
  article-title: Real-time hand gesture recognition using surface electromyography and machine learning: a systematic literature review
  publication-title: Sensors
– reference: I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, A. Lerchner, beta-vae: Learning basic visual concepts with a constrained variational framework, in: International conference on learning representations, 2016.
– volume: 91
  year: 2024
  ident: 10.1016/j.bspc.2024.106828_b0060
  article-title: Electromyographic hand gesture recognition using convolutional neural network with multi-attention
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.105935
– volume: 2
  start-page: 447
  issue: 5
  year: 2021
  ident: 10.1016/j.bspc.2024.106828_b0105
  article-title: A transfer learning model for gesture recognition based on the deep features extracted by CNN
  publication-title: IEEE Transactions on Artificial Intelligence
  doi: 10.1109/TAI.2021.3098253
– volume: 136
  year: 2024
  ident: 10.1016/j.bspc.2024.106828_bib166
  article-title: A federated transfer learning approach for surface electromyographic hand gesture recognition with emphasis on privacy preservation
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2024.108952
– volume: 35
  start-page: 2151012
  issue: 11
  year: 2021
  ident: 10.1016/j.bspc.2024.106828_b0055
  article-title: Hand gesture recognition based on sEMG signal and convolutional neural network
  publication-title: Int. J. Pattern Recognit Artif Intell.
  doi: 10.1142/S0218001421510125
– volume: 2024
  issue: 237
  year: 2024
  ident: 10.1016/j.bspc.2024.106828_b0135
  article-title: Surface EMG feature disentanglement for robust pattern recognition
  publication-title: Expert Syst. Appl.
– volume: 31
  start-page: 2974
  year: 2023
  ident: 10.1016/j.bspc.2024.106828_b0085
  article-title: Iterative Self-Training based Domain Adaptation for Cross-User sEMG Gesture Recognition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3293334
– volume: 121055
  year: 2023
  ident: 10.1016/j.bspc.2024.106828_b0005
  article-title: A deep learning approach using attention mechanism and transfer learning for electromyographic hand gesture estimation
  publication-title: Expert Syst. Appl.
– volume: 19
  start-page: 3170
  issue: 14
  year: 2019
  ident: 10.1016/j.bspc.2024.106828_b0030
  article-title: Real-time surface EMG pattern recognition for hand gestures based on an artificial neural network
  publication-title: Sensors
  doi: 10.3390/s19143170
– volume: 30
  start-page: 1374
  year: 2022
  ident: 10.1016/j.bspc.2024.106828_b0100
  article-title: Domain adaptation with self-guided adaptive sampling strategy: Feature alignment for cross-user myoelectric pattern recognition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3173946
– volume: 10
  start-page: 1101
  year: 2023
  ident: 10.1016/j.bspc.2024.106828_b0140
  article-title: Improved network and training scheme for cross-trial surface rlectromyography (sEMG)-based gesture recognition
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10091101
– volume: 25
  start-page: 1292
  issue: 4
  year: 2020
  ident: 10.1016/j.bspc.2024.106828_b0070
  article-title: Hand gesture recognition based on surface electromyography using convolutional neural network with transfer learning method
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.3009383
– volume: 24
  start-page: 444
  issue: 4
  year: 2015
  ident: 10.1016/j.bspc.2024.106828_b0065
  article-title: Towards zero retraining for myoelectric control based on common model component analysis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2420654
– volume: 31
  start-page: 2974
  year: 2023
  ident: 10.1016/j.bspc.2024.106828_b0130
  article-title: Iterative self-training based domain adaptation for cross-user sEMG gesture recognition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3293334
– volume: 20
  start-page: 1113
  issue: 4
  year: 2020
  ident: 10.1016/j.bspc.2024.106828_b0045
  article-title: Advanced hand gesture prediction robust to electrode shift with an arbitrary angle
  publication-title: Sensors
  doi: 10.3390/s20041113
– ident: 10.1016/j.bspc.2024.106828_b0165
– volume: 17
  start-page: 458
  issue: 3
  year: 2017
  ident: 10.1016/j.bspc.2024.106828_b0110
  article-title: Surface EMG-based inter-session gesture recognition enhanced by deep domain adaptation
  publication-title: Sensors
  doi: 10.3390/s17030458
– start-page: 127864
  year: 2023
  ident: 10.1016/j.bspc.2024.106828_b0080
– volume: 27
  start-page: 760
  issue: 4
  year: 2019
  ident: 10.1016/j.bspc.2024.106828_b0115
  article-title: Deep learning for electromyographic hand gesture signal classification using transfer learning
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2896269
– volume: 20
  start-page: 2467
  issue: 9
  year: 2020
  ident: 10.1016/j.bspc.2024.106828_b0015
  article-title: Real-time hand gesture recognition using surface electromyography and machine learning: a systematic literature review
  publication-title: Sensors
  doi: 10.3390/s20092467
– volume: 6
  issue: 2
  year: 2023
  ident: 10.1016/j.bspc.2024.106828_b0010
  article-title: Gesture recognition and master–slave control of a manipulator based on sEMG and convolutional neural network–gated recurrent unit
  publication-title: Journal of Engineering and Science in Medical Diagnostics and Therapy
  doi: 10.1115/1.4056325
– volume: 20
  start-page: 3994
  issue: 14
  year: 2020
  ident: 10.1016/j.bspc.2024.106828_b0050
  article-title: A novel surface electromyographic signal-based hand gesture prediction using a recurrent neural network
  publication-title: Sensors
  doi: 10.3390/s20143994
– ident: 10.1016/j.bspc.2024.106828_b0150
– volume: 32
  start-page: 1523
  year: 2020
  ident: 10.1016/j.bspc.2024.106828_b0040
  article-title: Classification of finger movements for prosthesis control with surface electromyography
  publication-title: Sensors and Materials
  doi: 10.18494/SAM.2020.2652
– ident: 10.1016/j.bspc.2024.106828_b0155
– volume: 162
  year: 2022
  ident: 10.1016/j.bspc.2024.106828_b0075
  article-title: Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112473
– volume: 83
  year: 2023
  ident: 10.1016/j.bspc.2024.106828_b0025
  article-title: An incremental learning method with hybrid data over/down-sampling for sEMG-based gesture classification
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.104613
– volume: 20
  issue: 6
  year: 2024
  ident: 10.1016/j.bspc.2024.106828_b0145
  article-title: A novel unsupervised dynamic feature domain adaptation strategy for cross-individual myoelectric gesture recognition
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ad184f
– volume: 127
  year: 2024
  ident: 10.1016/j.bspc.2024.106828_b0020
  article-title: Online electromyographic hand gesture recognition using deep learning and transfer learning
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2023.107251
– ident: 10.1016/j.bspc.2024.106828_b0125
  doi: 10.1109/EMBC40787.2023.10340691
– ident: 10.1016/j.bspc.2024.106828_b0160
– ident: 10.1016/j.bspc.2024.106828_b0035
  doi: 10.1109/ETCM.2017.8247458
– volume: 489
  start-page: 599
  year: 2022
  ident: 10.1016/j.bspc.2024.106828_b0095
  article-title: Comparing subject-to-subject transfer learning methods in surface electromyogram-based motion recognition with shallow and deep classifiers
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.12.081
– volume: 35
  start-page: 8052
  issue: 8
  year: 2023
  ident: 10.1016/j.bspc.2024.106828_b0120
  article-title: Generalizing to unseen domains: A survey on domain generalization
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2024.106828_b0090
  article-title: Improving sEMG-based motion intention recognition for upper-limb amputees using transfer learning
  publication-title: Neural Comput. & Applic.
SSID ssj0048714
Score 2.3690746
Snippet •The study proposes a novel cross-subject gesture recognition approach.•An extended VAE is designed to disentangle input data into three representations.•A...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106828
SubjectTerms Competitive voting
Cross-subject
Feature disentanglement
Gesture recognition
Surface electromyographic
Variational autoencoder
Title An extended variational autoencoder for cross-subject electromyograph gesture recognition
URI https://dx.doi.org/10.1016/j.bspc.2024.106828
Volume 99
WOSCitedRecordID wos001315504100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0048714
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELbK4wAHxGMRb_mwtyooTtLEOVYrECBAILFS4RLFr90iCBVtuuxlfzvj2E5DeWg5cImqNHGizKfxeDzfNwh9l4qTSKahB8ZVXhQE3KMh9T2fpYQqLngQV0Th0-T8nPZ66UWr9c9xYcZ3SVHQp6d08KWmhnNgbE2d_YS560HhBPwGo8MRzA7H_zJ8V8v2m8x2ewwrYZfty8vRg1at1OIRurawmh-9Ycl0JqZt2-Hc_zUS1m297aT3FuoCI2s-t_9bsfYNpbL_Sw8_MIwDx3m0JfCv8tI3vyfcszPbT-W6lH9kv871WL7IZXnvptUq4W-vBedVNlMVQaeRqjDeNYm0-rHpauzcr-mPZP0nLFCpIYu_cu0my3C7z4YDLT0ZRPuTi1_qaE_Nb3XVoStou830GJkeIzNjzKC5IOmk4BXnuscHvRM3l8NqrlKHr1_c0q5MheD0m7wd2jTClatltGTXGbhr8LGCWrJYRYsN9ck1dN0tsEMKbiAFN5CCASn4BVLwFFKwRQpuIOUb-nl4cPXjyLOdNjwe-v7IYzkJpS87nEDswlTIkziWnMVMxUIkLAoEZfC_SlIWkGpNkStJqC9iHkbCz8N1NFs8FHIDYS3mI2RKGOUqUirNOWcQE7JQ8JhIJjYRcR8p41aGXndDucveN88matf3DIwIy4dXd9y3z2wYacLDDKD0wX1bn3rKNlqYQHwHzY4eS7mL5vl41B8-7lkcPQNJHZon
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+extended+variational+autoencoder+for+cross-subject+electromyograph+gesture+recognition&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Zhang%2C+Zhen&rft.au=Ming%2C+Yuewei&rft.au=Shen%2C+Quming&rft.au=Wang%2C+Yanyu&rft.date=2025-01-01&rft.issn=1746-8094&rft.volume=99&rft.spage=106828&rft_id=info:doi/10.1016%2Fj.bspc.2024.106828&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2024_106828
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon