Bayesian network modeling of accident investigation reports for aviation safety assessment
Safety assurance is of paramount importance in the air transportation system. In this paper, we analyze the historical passenger airline accidents that happened from 1982 to 2006 as reported in the National Transportation Safety Board (NTSB) aviation accident database. A four-step procedure is formu...
Uloženo v:
| Vydáno v: | Reliability engineering & system safety Ročník 209; s. 107371 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.05.2021
|
| Témata: | |
| ISSN: | 0951-8320, 1879-0836 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Safety assurance is of paramount importance in the air transportation system. In this paper, we analyze the historical passenger airline accidents that happened from 1982 to 2006 as reported in the National Transportation Safety Board (NTSB) aviation accident database. A four-step procedure is formulated to construct a Bayesian network to capture the causal relationships embedded in the sequences of these accidents. First of all, with respect to each accident, a graphical representation is developed to facilitate the visualization of the escalation of initiating events into aviation accidents in the system. Next, we develop a Bayesian network representation of all the accidents by aggregating the accident-wise graphical representations together, where the causal and dependent relationships among a wide variety of contributory factors and outcomes in terms of aircraft damage and personnel injury are captured. In the Bayesian network, the prior probabilities are estimated based on the accident occurrence times and the aircraft departure data from the Bureau of Transportation Statistics (BTS). To estimate the conditional probabilities in the Bayesian network, we develop a monotonically increasing function, whose parameters are calibrated using the probability information on single events in the available data. Finally, we develop a computer program to automate the generation of the Bayesian network in compliance with the XML format used in the commercial GeNIe modeler. The constructed Bayesian network is then fed into GeNIe modeler for accident analysis. The mapping of the NTSB data to a Bayesian network facilitates both forward propagation and backward inference in probabilistic analysis, thereby supporting accident investigations and risk analysis. Several accident cases are used to demonstrate the developed approach.
•A Bayesian network is developed to model event sequences in NTSB accident database.•We develop an end-to-end approach to automate the construction of Bayesian network.•Two case studies are conducted to show the performance of the Bayesian network. |
|---|---|
| AbstractList | Safety assurance is of paramount importance in the air transportation system. In this paper, we analyze the historical passenger airline accidents that happened from 1982 to 2006 as reported in the National Transportation Safety Board (NTSB) aviation accident database. A four-step procedure is formulated to construct a Bayesian network to capture the causal relationships embedded in the sequences of these accidents. First of all, with respect to each accident, a graphical representation is developed to facilitate the visualization of the escalation of initiating events into aviation accidents in the system. Next, we develop a Bayesian network representation of all the accidents by aggregating the accident-wise graphical representations together, where the causal and dependent relationships among a wide variety of contributory factors and outcomes in terms of aircraft damage and personnel injury are captured. In the Bayesian network, the prior probabilities are estimated based on the accident occurrence times and the aircraft departure data from the Bureau of Transportation Statistics (BTS). To estimate the conditional probabilities in the Bayesian network, we develop a monotonically increasing function, whose parameters are calibrated using the probability information on single events in the available data. Finally, we develop a computer program to automate the generation of the Bayesian network in compliance with the XML format used in the commercial GeNIe modeler. The constructed Bayesian network is then fed into GeNIe modeler for accident analysis. The mapping of the NTSB data to a Bayesian network facilitates both forward propagation and backward inference in probabilistic analysis, thereby supporting accident investigations and risk analysis. Several accident cases are used to demonstrate the developed approach.
•A Bayesian network is developed to model event sequences in NTSB accident database.•We develop an end-to-end approach to automate the construction of Bayesian network.•Two case studies are conducted to show the performance of the Bayesian network. |
| ArticleNumber | 107371 |
| Author | Zhang, Xiaoge Mahadevan, Sankaran |
| Author_xml | – sequence: 1 givenname: Xiaoge surname: Zhang fullname: Zhang, Xiaoge email: zxgcqupt@gmail.com – sequence: 2 givenname: Sankaran surname: Mahadevan fullname: Mahadevan, Sankaran email: sankaran.mahadevan@vanderbilt.edu |
| BookMark | eNp9kE1LAzEQhoMo2Fb_gKf8ga2TzX4k4EWLX1DwohcvIZudlNQ2KUmo9N-7az156GUGXniGd54pOffBIyE3DOYMWHO7nkdMaV5COQYtb9kZmTDRygIEb87JBGTNCsFLuCTTlNYAUMm6nZDPB33A5LSnHvN3iF90G3rcOL-iwVJtjOvRZ-r8HlN2K51d8DTiLsScqA2R6r07hklbzAeqUxqabAfoilxYvUl4_bdn5OPp8X3xUizfnl8X98vCcIBcdBIFtMDayta6kn1nW1ELtKxDxKrCsm7qYWJvm95IzsGIRhppGsubqu40nxFxvGtiSCmiVcbl3045ardRDNToSK3V6EiNjtTR0YCW_9BddFsdD6ehuyOEw1N7h1El49Ab7F1Ek1Uf3Cn8BwwPhVA |
| CitedBy_id | crossref_primary_10_3390_aerospace9040178 crossref_primary_10_3390_app14167239 crossref_primary_10_1016_j_ress_2024_110089 crossref_primary_10_1016_j_ress_2024_110760 crossref_primary_10_1016_j_psep_2024_08_080 crossref_primary_10_1016_j_ress_2024_110003 crossref_primary_10_1155_2023_1440763 crossref_primary_10_1038_s41598_024_65845_0 crossref_primary_10_1016_j_ress_2022_108835 crossref_primary_10_1016_j_ocecoaman_2022_106323 crossref_primary_10_1111_risa_70028 crossref_primary_10_3390_systems13030142 crossref_primary_10_1016_j_ress_2025_111733 crossref_primary_10_1016_j_eswa_2025_127306 crossref_primary_10_1109_ACCESS_2025_3558631 crossref_primary_10_1016_j_marpolbul_2023_115796 crossref_primary_10_3390_sci7030124 crossref_primary_10_1007_s00773_024_01013_3 crossref_primary_10_1016_j_ress_2022_108828 crossref_primary_10_1016_j_ress_2022_108702 crossref_primary_10_32604_cmes_2022_020541 crossref_primary_10_1016_j_ssci_2025_106814 crossref_primary_10_3390_aerospace11110890 crossref_primary_10_1049_cit2_12363 crossref_primary_10_1002_prs_12508 crossref_primary_10_1016_j_ress_2024_110185 crossref_primary_10_1016_j_engstruct_2023_117153 crossref_primary_10_1007_s12665_025_12495_8 crossref_primary_10_1016_j_nexres_2025_100290 crossref_primary_10_1007_s00500_022_07647_y crossref_primary_10_1016_j_ress_2023_109905 crossref_primary_10_3390_su13105396 crossref_primary_10_1080_00207543_2024_2423802 crossref_primary_10_1016_j_ress_2023_109864 crossref_primary_10_1016_j_ress_2023_109346 crossref_primary_10_1016_j_rsma_2023_103193 crossref_primary_10_1080_17445302_2025_2516684 crossref_primary_10_3390_aerospace10050446 crossref_primary_10_1016_j_ress_2022_108497 crossref_primary_10_1016_j_ress_2024_110469 crossref_primary_10_1061__ASCE_CO_1943_7862_0002366 crossref_primary_10_1016_j_oceaneng_2022_111516 crossref_primary_10_1080_03088839_2025_2507218 crossref_primary_10_1016_j_cie_2022_108627 crossref_primary_10_1038_s41598_025_96028_0 crossref_primary_10_1016_j_ress_2023_109915 crossref_primary_10_1108_ECAM_11_2024_1502 crossref_primary_10_1016_j_ress_2022_108766 crossref_primary_10_30518_jav_1583144 crossref_primary_10_1109_JIOT_2024_3424550 crossref_primary_10_1016_j_ress_2022_108522 crossref_primary_10_1016_j_asoc_2025_113416 crossref_primary_10_1016_j_eswa_2023_121423 crossref_primary_10_1016_j_ress_2023_109353 crossref_primary_10_1016_j_ress_2023_109356 crossref_primary_10_1016_j_ress_2023_109630 crossref_primary_10_1016_j_ress_2024_110514 crossref_primary_10_1016_j_engappai_2022_105512 crossref_primary_10_1016_j_ress_2024_110045 crossref_primary_10_1108_EC_06_2022_0384 crossref_primary_10_3390_aerospace9090513 crossref_primary_10_1142_S0217595924400049 crossref_primary_10_3390_machines12080524 crossref_primary_10_1016_j_ress_2023_109449 crossref_primary_10_3390_aerospace10010009 crossref_primary_10_1016_j_ress_2022_108751 crossref_primary_10_1016_j_engappai_2024_109322 crossref_primary_10_1016_j_ress_2021_107820 crossref_primary_10_1016_j_eng_2025_01_002 crossref_primary_10_1016_j_ress_2022_108474 crossref_primary_10_1016_j_ress_2022_108750 crossref_primary_10_1016_j_oceaneng_2024_119639 crossref_primary_10_1016_j_ress_2024_110569 crossref_primary_10_1016_j_apm_2023_03_025 crossref_primary_10_5662_wjm_v14_i3_91058 crossref_primary_10_1016_j_jsr_2022_12_002 crossref_primary_10_1016_j_ssci_2023_106101 crossref_primary_10_1016_j_autcon_2022_104541 crossref_primary_10_1016_j_engfailanal_2023_107558 crossref_primary_10_1016_j_ress_2022_108903 crossref_primary_10_1155_2021_9199951 crossref_primary_10_1016_j_jlp_2023_105054 crossref_primary_10_1016_j_ssci_2022_105942 crossref_primary_10_1016_j_enbuild_2025_115845 crossref_primary_10_1016_j_ress_2023_109577 crossref_primary_10_1016_j_ress_2024_110455 crossref_primary_10_1080_00102202_2025_2536211 crossref_primary_10_1016_j_ins_2025_121888 crossref_primary_10_1111_risa_14347 crossref_primary_10_1016_j_ress_2025_111035 crossref_primary_10_1016_j_nucengdes_2023_112242 crossref_primary_10_1080_01969722_2025_2468189 crossref_primary_10_1016_j_oceaneng_2024_119452 crossref_primary_10_1016_j_eswa_2022_117994 crossref_primary_10_1007_s40747_021_00312_1 crossref_primary_10_1016_j_ress_2022_108578 crossref_primary_10_1016_j_ress_2022_108573 crossref_primary_10_1016_j_iref_2024_103728 crossref_primary_10_1061_NHREFO_NHENG_2012 crossref_primary_10_1007_s10489_025_06289_5 crossref_primary_10_1016_j_ress_2023_109781 crossref_primary_10_3390_app15179690 crossref_primary_10_1016_j_ress_2024_110032 crossref_primary_10_1016_j_autcon_2023_105193 crossref_primary_10_1016_j_ress_2025_110971 crossref_primary_10_3390_urbansci9090387 crossref_primary_10_1016_j_oceaneng_2022_111797 crossref_primary_10_1007_s13272_025_00858_7 crossref_primary_10_1016_j_measurement_2021_110628 crossref_primary_10_3390_su152416657 crossref_primary_10_1109_TKDE_2022_3219862 crossref_primary_10_1016_j_envsoft_2021_105233 crossref_primary_10_1088_1742_6596_2716_1_012078 crossref_primary_10_3390_buildings14092897 crossref_primary_10_1016_j_eswa_2025_126670 crossref_primary_10_1080_10447318_2023_2223859 crossref_primary_10_3390_modelling6020027 crossref_primary_10_1108_IJQRM_06_2023_0201 crossref_primary_10_1111_risa_14486 |
| Cites_doi | 10.1016/j.dss.2018.10.009 10.1016/j.ress.2009.11.014 10.1016/j.ress.2004.06.004 10.1017/S0001924000000907 10.1016/j.ress.2011.03.012 10.1109/TR.2008.928208 10.1109/TSMCB.2011.2148197 10.1016/j.trc.2013.10.004 10.1111/j.1539-6924.2012.01854.x 10.1016/j.ress.2018.07.021 10.1080/0266476042000214501 10.1016/j.ress.2007.03.035 10.1016/j.ress.2013.04.006 10.1111/0272-4332.204048 10.1109/TGRS.2016.2520487 10.2514/atcq.9.3.135 10.1007/s00500-020-04693-2 10.1109/TITS.2018.2813364 10.1109/TITS.2006.869623 10.1016/j.ress.2018.10.012 10.1016/j.compstruc.2004.03.072 10.1016/j.ssci.2013.12.007 10.1016/j.ress.2009.10.007 10.1016/j.ress.2015.01.016 10.1016/j.dss.2020.113246 10.1016/j.engappai.2010.06.002 10.1016/j.ssci.2019.04.040 10.1016/j.ress.2014.06.006 10.1016/j.psep.2012.01.005 10.1016/j.ress.2016.12.010 10.1016/j.ress.2017.01.009 10.1080/13669877.2014.896402 10.1016/j.ress.2009.02.024 10.1109/TSE.2012.20 10.1016/j.probengmech.2018.10.002 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ress.2020.107371 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0836 |
| ExternalDocumentID | 10_1016_j_ress_2020_107371 S0951832020308607 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-b9e8070174f5a49dbf7858ef1beee44e25654e2edf6dc9330c869c9c6f3645ba3 |
| ISICitedReferencesCount | 138 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663909200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0951-8320 |
| IngestDate | Sat Nov 29 07:08:07 EST 2025 Tue Nov 18 22:42:24 EST 2025 Fri Feb 23 02:45:06 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | National Transportation Safety Board System safety Safety assessment Bayesian network Air transportation system |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-b9e8070174f5a49dbf7858ef1beee44e25654e2edf6dc9330c869c9c6f3645ba3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ress_2020_107371 crossref_primary_10_1016_j_ress_2020_107371 elsevier_sciencedirect_doi_10_1016_j_ress_2020_107371 |
| PublicationCentury | 2000 |
| PublicationDate | May 2021 2021-05-00 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Reliability engineering & system safety |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Jones, Jenkinson, Yang, Wang (b6) 2010; 95 (b49) 2019 Ale, Bellamy, Cooper, Ababei, Kurowicka, Morales, Spouge (b22) 2010; 95 Boudali, Dugan (b5) 2005; 87 (b32) 2019 Khakzad, Khan, Amyotte, Cozzani (b16) 2013; 33 Khakzad, Khan, Amyotte (b10) 2013; 91 Ferrari, Cribari-Neto (b48) 2004; 31 Liang, Lee (b8) 2014; 38 Weber, Medina-Oliva, Simon, Iung (b14) 2012; 25 Cano, Masegosa, Moral (b38) 2011; 41 Yang, Bonsall, Wang (b51) 2008; 57 Ale, Bellamy, Cooke, Duyvis, Kurowicka, Lin, Morales, Roelen, Spouge (b25) 2008; 31 Ancel, Shih, Jones, Reveley, Luxhøj, Evans (b29) 2015; 18 (b35) 2019 (b45) 2019 Bury (b46) 1999 Zhang, Shields (b17) 2019; 55 Baraldi, Podofillini, Mkrtchyan, Zio, Dang (b9) 2015; 138 Zhang, Wu, Skibniewski, Zhong, Lu (b40) 2014; 131 Chen, Liu, Chen, Li, Zhao (b20) 2018; 20 Sun, Zhang, Yu (b37) 2006; 7 Washington, Clothier, Neogi, Silva, Hayhurst, Williams (b43) 2019; 118 (b53) 2019 Zhang, Mahadevan, Deng (b4) 2017; 162 Dejaeger, Verbraken, Baesens (b11) 2012; 39 D’Addabbo, Refice, Pasquariello, Lovergine, Capolongo, Manfreda (b41) 2016; 54 (b1) 2019 Zhang, Mahadevan (b2) 2019; 116 Luxhoj (b21) 2003 Jensen (b39) 1996 Luersen, Le Riche (b50) 2004; 82 Zhang, Mahadevan (b13) 2020 Teunis, Havelaar (b47) 2000; 20 Ale, Van Gulijk, Hanea, Hanea, Hudson, Lin, Sillem (b26) 2014; 69 Stamatelatos, Dezfuli, Apostolakis, Everline, Guarro, Mathias, Mosleh, Paulos, Riha, Smith (b28) 2011 Ale, Bellamy, Van der Boom, Cooke, Goossens, Hale, Kurowicka, Lin, Roelen, Cooper (b34) 2008 (b54) 2019 Wang, Fang, Zio (b12) 2019 (b30) 2019 Khakzad, Khan, Amyotte (b42) 2011; 96 Wang, Yang (b19) 2018; 180 Greenberg, Cook, Harris (b27) 2005; 109 Rao, Puranik (b52) 2018 Ale, Bellamy, Van der Boom, Cooper, Cooke, Goossens, Hale, Kurowicka, Morales, Roelen (b3) 2009; 94 Zhang, Yan, Yang, Wall, Wang (b18) 2013; 118 Papazoglou, Aneziris, Bellamy, Ale, Oh (b23) 2017; 160 Pearl (b36) 2014 Trucco, Cagno, Ruggeri, Grande (b15) 2008; 93 Dai, Deng (b7) 2020; 24 Zhang, Mahadevan, Lau, Weinger (b44) 2020; 194 Luxhøj, Choopavang, Arendt (b24) 2001; 9 Ale B, Bellamy L, BV WQ, Roelen IA, Cooke R, Goossens L, Hale A, Kurowicka D, Smith E. 2005 ASME International Mechanical Engineering Congress and Exposition November 5-11, 2005, Orlando, Florida USA: 2005. (b31) 2019 (10.1016/j.ress.2020.107371_b31) 2019 Wang (10.1016/j.ress.2020.107371_b12) 2019 Khakzad (10.1016/j.ress.2020.107371_b16) 2013; 33 Weber (10.1016/j.ress.2020.107371_b14) 2012; 25 Zhang (10.1016/j.ress.2020.107371_b4) 2017; 162 10.1016/j.ress.2020.107371_b33 Cano (10.1016/j.ress.2020.107371_b38) 2011; 41 Khakzad (10.1016/j.ress.2020.107371_b42) 2011; 96 Ale (10.1016/j.ress.2020.107371_b25) 2008; 31 Ancel (10.1016/j.ress.2020.107371_b29) 2015; 18 Yang (10.1016/j.ress.2020.107371_b51) 2008; 57 (10.1016/j.ress.2020.107371_b54) 2019 Luersen (10.1016/j.ress.2020.107371_b50) 2004; 82 Luxhoj (10.1016/j.ress.2020.107371_b21) 2003 Chen (10.1016/j.ress.2020.107371_b20) 2018; 20 Zhang (10.1016/j.ress.2020.107371_b2) 2019; 116 Teunis (10.1016/j.ress.2020.107371_b47) 2000; 20 Zhang (10.1016/j.ress.2020.107371_b13) 2020 Pearl (10.1016/j.ress.2020.107371_b36) 2014 Rao (10.1016/j.ress.2020.107371_b52) 2018 Dejaeger (10.1016/j.ress.2020.107371_b11) 2012; 39 Greenberg (10.1016/j.ress.2020.107371_b27) 2005; 109 Ale (10.1016/j.ress.2020.107371_b3) 2009; 94 Baraldi (10.1016/j.ress.2020.107371_b9) 2015; 138 (10.1016/j.ress.2020.107371_b30) 2019 Trucco (10.1016/j.ress.2020.107371_b15) 2008; 93 Stamatelatos (10.1016/j.ress.2020.107371_b28) 2011 (10.1016/j.ress.2020.107371_b45) 2019 Jensen (10.1016/j.ress.2020.107371_b39) 1996 Sun (10.1016/j.ress.2020.107371_b37) 2006; 7 Ferrari (10.1016/j.ress.2020.107371_b48) 2004; 31 Ale (10.1016/j.ress.2020.107371_b34) 2008 (10.1016/j.ress.2020.107371_b1) 2019 (10.1016/j.ress.2020.107371_b53) 2019 Liang (10.1016/j.ress.2020.107371_b8) 2014; 38 (10.1016/j.ress.2020.107371_b49) 2019 Zhang (10.1016/j.ress.2020.107371_b44) 2020; 194 Wang (10.1016/j.ress.2020.107371_b19) 2018; 180 (10.1016/j.ress.2020.107371_b32) 2019 Zhang (10.1016/j.ress.2020.107371_b40) 2014; 131 Boudali (10.1016/j.ress.2020.107371_b5) 2005; 87 Papazoglou (10.1016/j.ress.2020.107371_b23) 2017; 160 Bury (10.1016/j.ress.2020.107371_b46) 1999 Jones (10.1016/j.ress.2020.107371_b6) 2010; 95 Dai (10.1016/j.ress.2020.107371_b7) 2020; 24 Khakzad (10.1016/j.ress.2020.107371_b10) 2013; 91 Ale (10.1016/j.ress.2020.107371_b26) 2014; 69 D’Addabbo (10.1016/j.ress.2020.107371_b41) 2016; 54 Washington (10.1016/j.ress.2020.107371_b43) 2019; 118 Zhang (10.1016/j.ress.2020.107371_b18) 2013; 118 Luxhøj (10.1016/j.ress.2020.107371_b24) 2001; 9 Ale (10.1016/j.ress.2020.107371_b22) 2010; 95 Zhang (10.1016/j.ress.2020.107371_b17) 2019; 55 (10.1016/j.ress.2020.107371_b35) 2019 |
| References_xml | – volume: 162 start-page: 111 year: 2017 end-page: 121 ident: b4 article-title: Reliability analysis with linguistic data: An evidential network approach publication-title: Reliab Eng Syst Saf – year: 2019 ident: b32 article-title: Genie modeler: Complete modeling freedom – volume: 91 start-page: 46 year: 2013 end-page: 53 ident: b10 article-title: Dynamic safety analysis of process systems by mapping bow-tie into Bayesian network publication-title: Process Saf Environ Prot – volume: 39 start-page: 237 year: 2012 end-page: 257 ident: b11 article-title: Toward comprehensible software fault prediction models using Bayesian network classifiers publication-title: IEEE Trans Softw Eng – volume: 95 start-page: 469 year: 2010 end-page: 477 ident: b22 article-title: Analysis of the crash of TK 1951 using CATS publication-title: Reliab Eng Syst Saf – year: 1996 ident: b39 article-title: An introduction to Bayesian networks, Vol. 210 – year: 2019 ident: b53 article-title: Loss of engine power fatal for passenger – volume: 95 start-page: 267 year: 2010 end-page: 277 ident: b6 article-title: The use of Bayesian network modelling for maintenance planning in a manufacturing industry publication-title: Reliab Eng Syst Saf – volume: 138 start-page: 176 year: 2015 end-page: 193 ident: b9 article-title: Comparing the treatment of uncertainty in Bayesian networks and fuzzy expert systems used for a human reliability analysis application publication-title: Reliab Eng Syst Saf – volume: 20 start-page: 513 year: 2000 end-page: 520 ident: b47 article-title: The beta Poisson dose-response model is not a single-hit model publication-title: Risk Anal – year: 2019 ident: b54 article-title: ‘Total loss of engine power’ caused plane to land in susquehanna river, NTSB report says – start-page: 18 year: 2008 end-page: 23 ident: b34 article-title: Further development of a causal model for air transport safety (CATS): the complete model publication-title: Ninth International Probabilistic Safety Assessment and Management Conference – year: 2019 ident: b45 article-title: U.S. air carrier aircraft departures, enplaned revenue passengers, and enplaned revenue tons – volume: 20 start-page: 264 year: 2018 end-page: 284 ident: b20 article-title: A rear-end collision risk evaluation and control scheme using a Bayesian network model publication-title: IEEE Trans Intell Transp Syst – volume: 118 start-page: 93 year: 2013 end-page: 105 ident: b18 article-title: Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the yangtze river publication-title: Reliab Eng Syst Saf – volume: 54 start-page: 3612 year: 2016 end-page: 3625 ident: b41 article-title: A Bayesian network for flood detection combining SAR imagery and ancillary data publication-title: IEEE Trans Geosci Remote Sens – volume: 33 start-page: 292 year: 2013 end-page: 306 ident: b16 article-title: Domino effect analysis using Bayesian networks publication-title: Risk Anal Int J – volume: 25 start-page: 671 year: 2012 end-page: 682 ident: b14 article-title: Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas publication-title: Eng Appl Artif Intell – volume: 87 start-page: 337 year: 2005 end-page: 349 ident: b5 article-title: A discrete-time Bayesian network reliability modeling and analysis framework publication-title: Reliab Eng Syst Saf – year: 2019 ident: b49 article-title: SMILE: Structural modeling, inference, and learning engine – volume: 93 start-page: 845 year: 2008 end-page: 856 ident: b15 article-title: A Bayesian belief network modelling of organisational factors in risk analysis: A case study in maritime transportation publication-title: Reliab Eng Syst Saf – volume: 69 start-page: 48 year: 2014 end-page: 56 ident: b26 article-title: Towards BBN based risk modelling of process plants publication-title: Saf Sci – volume: 194 year: 2020 ident: b44 article-title: Multi-source information fusion to assess control room operator performance publication-title: Reliab Eng Syst Saf – year: 2003 ident: b21 article-title: Probabilistic causal analysis for system safety risk assessments in commercial air transport publication-title: Second Workshop on the Investigation and Reporting of Incidents and Accidents, IRIA – volume: 31 start-page: 799 year: 2004 end-page: 815 ident: b48 article-title: Beta regression for modelling rates and proportions publication-title: J Appl Stat – volume: 180 start-page: 277 year: 2018 end-page: 289 ident: b19 article-title: Bayesian network modelling and analysis of accident severity in waterborne transportation: A case study in China publication-title: Reliab Eng Syst Saf – volume: 82 start-page: 2251 year: 2004 end-page: 2260 ident: b50 article-title: Globalized nelder–mead method for engineering optimization publication-title: Comput Struct – volume: 55 start-page: 54 year: 2019 end-page: 66 ident: b17 article-title: Efficient Monte Carlo resampling for probability measure changes from Bayesian updating publication-title: Probab Eng Mech – year: 2019 ident: b35 article-title: NTSB aviation coding manual – year: 2020 ident: b13 article-title: Bayesian neural networks for flight trajectory prediction and safety assessment publication-title: Decis Support Syst – reference: Ale B, Bellamy L, BV WQ, Roelen IA, Cooke R, Goossens L, Hale A, Kurowicka D, Smith E. 2005 ASME International Mechanical Engineering Congress and Exposition November 5-11, 2005, Orlando, Florida USA: 2005. – volume: 31 year: 2008 ident: b25 article-title: Causal model for air transport safety publication-title: Final Rep July – year: 2019 ident: b31 article-title: Regularly scheduled air carriers (part 121) – year: 1999 ident: b46 article-title: Statistical distributions in engineering – year: 2019 ident: b30 article-title: National transportation safety board aviation database – volume: 160 start-page: 162 year: 2017 end-page: 173 ident: b23 article-title: Quantitative occupational risk model: Single hazard publication-title: Reliab Eng Syst Saf – volume: 96 start-page: 925 year: 2011 end-page: 932 ident: b42 article-title: Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches publication-title: Reliab Eng Syst Saf – year: 2019 ident: b1 article-title: IATA forecast predicts 8.2 billion air travelers in 2037 – volume: 116 start-page: 48 year: 2019 end-page: 63 ident: b2 article-title: Ensemble machine learning models for aviation incident risk prediction publication-title: Decis Support Syst – volume: 38 start-page: 146 year: 2014 end-page: 155 ident: b8 article-title: A hybrid Bayesian network approach to detect driver cognitive distraction publication-title: Transp Res C – volume: 118 start-page: 654 year: 2019 end-page: 673 ident: b43 article-title: Adoption of a Bayesian belief network for the system safety assessment of remotely piloted aircraft systems publication-title: Saf Sci – start-page: 3049 year: 2018 ident: b52 article-title: Retrospective analysis of approach stability in general aviation operations publication-title: 2018 Aviation Technology, Integration, and Operations Conference – volume: 18 start-page: 428 year: 2015 end-page: 451 ident: b29 article-title: Predictive safety analytics: inferring aviation accident shaping factors and causation publication-title: J Risk Res – volume: 24 start-page: 10287 year: 2020 end-page: 10294 ident: b7 article-title: A new method to predict the interference effect in quantum-like Bayesian networks publication-title: Soft Comput – year: 2011 ident: b28 article-title: Probabilistic risk assessment procedures guide for NASA managers and practitioners – year: 2014 ident: b36 article-title: Probabilistic reasoning in intelligent systems: networks of plausible inference – volume: 7 start-page: 124 year: 2006 end-page: 132 ident: b37 article-title: A Bayesian network approach to traffic flow forecasting publication-title: IEEE Trans Intell Transp Syst – volume: 57 start-page: 517 year: 2008 end-page: 528 ident: b51 article-title: Fuzzy rule-based Bayesian reasoning approach for prioritization of failures in FMEA publication-title: IEEE Trans Reliab – volume: 94 start-page: 1433 year: 2009 end-page: 1441 ident: b3 article-title: Further development of a causal model for air transport safety (CATS): Building the mathematical heart publication-title: Reliab Eng Syst Saf – volume: 9 start-page: 135 year: 2001 end-page: 174 ident: b24 article-title: Risk assessment of organizational factors in aviation systems publication-title: Air Traff Control Quart – volume: 109 start-page: 557 year: 2005 end-page: 568 ident: b27 article-title: A civil aviation safety assessment model using a Bayesian belief network (BBN) publication-title: Aeronaut J – volume: 131 start-page: 29 year: 2014 end-page: 39 ident: b40 article-title: Bayesian-network-based safety risk analysis in construction projects publication-title: Reliab Eng Syst Saf – year: 2019 ident: b12 article-title: Risk assessment of an electrical power system considering the influence of traffic congestion on a hypothetical scenario of electrified transportation system in new york state publication-title: IEEE Trans Intell Transp Syst – volume: 41 start-page: 1382 year: 2011 end-page: 1394 ident: b38 article-title: A method for integrating expert knowledge when learning Bayesian networks from data publication-title: IEEE Trans Syst Man Cybern B – year: 2019 ident: 10.1016/j.ress.2020.107371_b49 – year: 2014 ident: 10.1016/j.ress.2020.107371_b36 – year: 2019 ident: 10.1016/j.ress.2020.107371_b53 – year: 2019 ident: 10.1016/j.ress.2020.107371_b32 – volume: 116 start-page: 48 year: 2019 ident: 10.1016/j.ress.2020.107371_b2 article-title: Ensemble machine learning models for aviation incident risk prediction publication-title: Decis Support Syst doi: 10.1016/j.dss.2018.10.009 – volume: 95 start-page: 469 issue: 5 year: 2010 ident: 10.1016/j.ress.2020.107371_b22 article-title: Analysis of the crash of TK 1951 using CATS publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2009.11.014 – volume: 87 start-page: 337 issue: 3 year: 2005 ident: 10.1016/j.ress.2020.107371_b5 article-title: A discrete-time Bayesian network reliability modeling and analysis framework publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2004.06.004 – volume: 109 start-page: 557 issue: 1101 year: 2005 ident: 10.1016/j.ress.2020.107371_b27 article-title: A civil aviation safety assessment model using a Bayesian belief network (BBN) publication-title: Aeronaut J doi: 10.1017/S0001924000000907 – volume: 96 start-page: 925 issue: 8 year: 2011 ident: 10.1016/j.ress.2020.107371_b42 article-title: Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2011.03.012 – volume: 57 start-page: 517 issue: 3 year: 2008 ident: 10.1016/j.ress.2020.107371_b51 article-title: Fuzzy rule-based Bayesian reasoning approach for prioritization of failures in FMEA publication-title: IEEE Trans Reliab doi: 10.1109/TR.2008.928208 – volume: 41 start-page: 1382 issue: 5 year: 2011 ident: 10.1016/j.ress.2020.107371_b38 article-title: A method for integrating expert knowledge when learning Bayesian networks from data publication-title: IEEE Trans Syst Man Cybern B doi: 10.1109/TSMCB.2011.2148197 – volume: 38 start-page: 146 year: 2014 ident: 10.1016/j.ress.2020.107371_b8 article-title: A hybrid Bayesian network approach to detect driver cognitive distraction publication-title: Transp Res C doi: 10.1016/j.trc.2013.10.004 – start-page: 18 year: 2008 ident: 10.1016/j.ress.2020.107371_b34 article-title: Further development of a causal model for air transport safety (CATS): the complete model – volume: 33 start-page: 292 issue: 2 year: 2013 ident: 10.1016/j.ress.2020.107371_b16 article-title: Domino effect analysis using Bayesian networks publication-title: Risk Anal Int J doi: 10.1111/j.1539-6924.2012.01854.x – volume: 180 start-page: 277 year: 2018 ident: 10.1016/j.ress.2020.107371_b19 article-title: Bayesian network modelling and analysis of accident severity in waterborne transportation: A case study in China publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.07.021 – year: 2011 ident: 10.1016/j.ress.2020.107371_b28 – year: 1996 ident: 10.1016/j.ress.2020.107371_b39 – year: 2019 ident: 10.1016/j.ress.2020.107371_b35 – volume: 31 start-page: 799 issue: 7 year: 2004 ident: 10.1016/j.ress.2020.107371_b48 article-title: Beta regression for modelling rates and proportions publication-title: J Appl Stat doi: 10.1080/0266476042000214501 – start-page: 3049 year: 2018 ident: 10.1016/j.ress.2020.107371_b52 article-title: Retrospective analysis of approach stability in general aviation operations – volume: 93 start-page: 845 issue: 6 year: 2008 ident: 10.1016/j.ress.2020.107371_b15 article-title: A Bayesian belief network modelling of organisational factors in risk analysis: A case study in maritime transportation publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2007.03.035 – volume: 118 start-page: 93 year: 2013 ident: 10.1016/j.ress.2020.107371_b18 article-title: Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the yangtze river publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2013.04.006 – volume: 20 start-page: 513 issue: 4 year: 2000 ident: 10.1016/j.ress.2020.107371_b47 article-title: The beta Poisson dose-response model is not a single-hit model publication-title: Risk Anal doi: 10.1111/0272-4332.204048 – volume: 54 start-page: 3612 issue: 6 year: 2016 ident: 10.1016/j.ress.2020.107371_b41 article-title: A Bayesian network for flood detection combining SAR imagery and ancillary data publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2016.2520487 – volume: 9 start-page: 135 issue: 3 year: 2001 ident: 10.1016/j.ress.2020.107371_b24 article-title: Risk assessment of organizational factors in aviation systems publication-title: Air Traff Control Quart doi: 10.2514/atcq.9.3.135 – year: 2019 ident: 10.1016/j.ress.2020.107371_b31 – volume: 24 start-page: 10287 year: 2020 ident: 10.1016/j.ress.2020.107371_b7 article-title: A new method to predict the interference effect in quantum-like Bayesian networks publication-title: Soft Comput doi: 10.1007/s00500-020-04693-2 – volume: 31 year: 2008 ident: 10.1016/j.ress.2020.107371_b25 article-title: Causal model for air transport safety publication-title: Final Rep July – year: 2019 ident: 10.1016/j.ress.2020.107371_b12 article-title: Risk assessment of an electrical power system considering the influence of traffic congestion on a hypothetical scenario of electrified transportation system in new york state publication-title: IEEE Trans Intell Transp Syst – year: 2003 ident: 10.1016/j.ress.2020.107371_b21 article-title: Probabilistic causal analysis for system safety risk assessments in commercial air transport – ident: 10.1016/j.ress.2020.107371_b33 – year: 1999 ident: 10.1016/j.ress.2020.107371_b46 – volume: 20 start-page: 264 issue: 1 year: 2018 ident: 10.1016/j.ress.2020.107371_b20 article-title: A rear-end collision risk evaluation and control scheme using a Bayesian network model publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2018.2813364 – volume: 7 start-page: 124 issue: 1 year: 2006 ident: 10.1016/j.ress.2020.107371_b37 article-title: A Bayesian network approach to traffic flow forecasting publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2006.869623 – volume: 194 year: 2020 ident: 10.1016/j.ress.2020.107371_b44 article-title: Multi-source information fusion to assess control room operator performance publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.10.012 – year: 2019 ident: 10.1016/j.ress.2020.107371_b54 – year: 2019 ident: 10.1016/j.ress.2020.107371_b45 – volume: 82 start-page: 2251 issue: 23–26 year: 2004 ident: 10.1016/j.ress.2020.107371_b50 article-title: Globalized nelder–mead method for engineering optimization publication-title: Comput Struct doi: 10.1016/j.compstruc.2004.03.072 – volume: 69 start-page: 48 year: 2014 ident: 10.1016/j.ress.2020.107371_b26 article-title: Towards BBN based risk modelling of process plants publication-title: Saf Sci doi: 10.1016/j.ssci.2013.12.007 – volume: 95 start-page: 267 issue: 3 year: 2010 ident: 10.1016/j.ress.2020.107371_b6 article-title: The use of Bayesian network modelling for maintenance planning in a manufacturing industry publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2009.10.007 – volume: 138 start-page: 176 year: 2015 ident: 10.1016/j.ress.2020.107371_b9 article-title: Comparing the treatment of uncertainty in Bayesian networks and fuzzy expert systems used for a human reliability analysis application publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2015.01.016 – year: 2020 ident: 10.1016/j.ress.2020.107371_b13 article-title: Bayesian neural networks for flight trajectory prediction and safety assessment publication-title: Decis Support Syst doi: 10.1016/j.dss.2020.113246 – volume: 25 start-page: 671 issue: 4 year: 2012 ident: 10.1016/j.ress.2020.107371_b14 article-title: Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2010.06.002 – volume: 118 start-page: 654 year: 2019 ident: 10.1016/j.ress.2020.107371_b43 article-title: Adoption of a Bayesian belief network for the system safety assessment of remotely piloted aircraft systems publication-title: Saf Sci doi: 10.1016/j.ssci.2019.04.040 – volume: 131 start-page: 29 year: 2014 ident: 10.1016/j.ress.2020.107371_b40 article-title: Bayesian-network-based safety risk analysis in construction projects publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2014.06.006 – volume: 91 start-page: 46 issue: 1–2 year: 2013 ident: 10.1016/j.ress.2020.107371_b10 article-title: Dynamic safety analysis of process systems by mapping bow-tie into Bayesian network publication-title: Process Saf Environ Prot doi: 10.1016/j.psep.2012.01.005 – volume: 160 start-page: 162 year: 2017 ident: 10.1016/j.ress.2020.107371_b23 article-title: Quantitative occupational risk model: Single hazard publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2016.12.010 – volume: 162 start-page: 111 year: 2017 ident: 10.1016/j.ress.2020.107371_b4 article-title: Reliability analysis with linguistic data: An evidential network approach publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.01.009 – volume: 18 start-page: 428 issue: 4 year: 2015 ident: 10.1016/j.ress.2020.107371_b29 article-title: Predictive safety analytics: inferring aviation accident shaping factors and causation publication-title: J Risk Res doi: 10.1080/13669877.2014.896402 – volume: 94 start-page: 1433 issue: 9 year: 2009 ident: 10.1016/j.ress.2020.107371_b3 article-title: Further development of a causal model for air transport safety (CATS): Building the mathematical heart publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2009.02.024 – volume: 39 start-page: 237 issue: 2 year: 2012 ident: 10.1016/j.ress.2020.107371_b11 article-title: Toward comprehensible software fault prediction models using Bayesian network classifiers publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2012.20 – year: 2019 ident: 10.1016/j.ress.2020.107371_b30 – year: 2019 ident: 10.1016/j.ress.2020.107371_b1 – volume: 55 start-page: 54 year: 2019 ident: 10.1016/j.ress.2020.107371_b17 article-title: Efficient Monte Carlo resampling for probability measure changes from Bayesian updating publication-title: Probab Eng Mech doi: 10.1016/j.probengmech.2018.10.002 |
| SSID | ssj0004957 |
| Score | 2.6468842 |
| Snippet | Safety assurance is of paramount importance in the air transportation system. In this paper, we analyze the historical passenger airline accidents that... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107371 |
| SubjectTerms | Air transportation system Bayesian network National Transportation Safety Board Safety assessment System safety |
| Title | Bayesian network modeling of accident investigation reports for aviation safety assessment |
| URI | https://dx.doi.org/10.1016/j.ress.2020.107371 |
| Volume | 209 |
| WOSCitedRecordID | wos000663909200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEA6-DnoQn_gmB29LpY_ttjmqKCoigg8WLyVJJz7pyu4q-u-dNElbn-jBS1hCky2dj8nM5JsZQjYDxiGPwPdyLjg6KFJ4IpRtDw8TP1IKT_wykfbyODk5SbtddmqzSwZlO4GkKNKXF_b4r6LGORS2Tp39g7irTXECf6PQcUSx4_grwe_wVygzIwvD8DbNbiy5mUupu4jqvgBVfY1eUd0clJTKZyOt1oArzefkVe3OpiGrqcymxPdrC-qahiWSTHVou_5TZLp7y3vXDcbtDc_B3kad8eKe9y1ebSgiDGriXxVTDDxUEX5TvYY-ayhI9DYj03Plk-42YYS7LR1mQMc91FPu4feFsj8cYBWt0DHW7jK9R6b3yMweo2Q8TGKGam98-3Cve1SnzjJTDNa9uc2rMhTAj2_yte3SsEfOZ8i0dSTotgHALBmBYo5MNcpLzpMrBwVqoUAdFGhPUQcF-g4K1EKBIhSogwI1oqQ1FBbIxf7e-e6BZ3tpeDLy_aEnGKSo3dH_VDFvs1yoJI1TUIEAgHYb0PKNcYRcdXKpg1wy7TDJZEfpe2rBo0UyVvQKWCJUaP5cnoAEgaYNzwW62FyqIAq4LxOhlkngvlImbaF53e_kIftePsukVa15NGVWfnw6dh8_s4aiMQAzxNIP61b-9C-rZLIG-RoZG_afYJ1MyOfh7aC_YYH0BjAmj-k |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+network+modeling+of+accident+investigation+reports+for+aviation+safety+assessment&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Zhang%2C+Xiaoge&rft.au=Mahadevan%2C+Sankaran&rft.date=2021-05-01&rft.issn=0951-8320&rft.volume=209&rft.spage=107371&rft_id=info:doi/10.1016%2Fj.ress.2020.107371&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2020_107371 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |