In‐Sensor Computing: Materials, Devices, and Integration Technologies

The number of sensor nodes in the Internet of Things is growing rapidly, leading to a large volume of data generated at sensory terminals. Frequent data transfer between the sensors and computing units causes severe limitations on the system performance in terms of energy efficiency, speed, and secu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced materials (Weinheim) Ročník 35; číslo 37; s. e2203830
Hlavní autoři: Wan, Tianqing, Shao, Bangjie, Ma, Sijie, Zhou, Yue, Li, Qiao, Chai, Yang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Weinheim Wiley Subscription Services, Inc 01.09.2023
Témata:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The number of sensor nodes in the Internet of Things is growing rapidly, leading to a large volume of data generated at sensory terminals. Frequent data transfer between the sensors and computing units causes severe limitations on the system performance in terms of energy efficiency, speed, and security. To efficiently process a substantial amount of sensory data, a novel computation paradigm that can integrate computing functions into sensor networks should be developed. The in‐sensor computing paradigm reduces data transfer and also decreases the high computing complexity by processing data locally. Here, the hardware implementation of the in‐sensor computing paradigm at the device and array levels is discussed. The physical mechanisms that lead to unique sensory response characteristics and their corresponding computing functions are illustrated. In particular, bioinspired device characteristics enable the implementation of the functionalities of neuromorphic computation. The integration technology is also discussed and the perspective on the future development of in‐sensor computing is provided.
AbstractList The number of sensor nodes in the Internet of Things is growing rapidly, leading to a large volume of data generated at sensory terminals. Frequent data transfer between the sensors and computing units causes severe limitations on the system performance in terms of energy efficiency, speed, and security. To efficiently process a substantial amount of sensory data, a novel computation paradigm that can integrate computing functions into sensor networks should be developed. The in‐sensor computing paradigm reduces data transfer and also decreases the high computing complexity by processing data locally. Here, the hardware implementation of the in‐sensor computing paradigm at the device and array levels is discussed. The physical mechanisms that lead to unique sensory response characteristics and their corresponding computing functions are illustrated. In particular, bioinspired device characteristics enable the implementation of the functionalities of neuromorphic computation. The integration technology is also discussed and the perspective on the future development of in‐sensor computing is provided.
The number of sensor nodes in the Internet of Things is growing rapidly, leading to a large volume of data generated at sensory terminals. Frequent data transfer between the sensors and computing units causes severe limitations on the system performance in terms of energy efficiency, speed, and security. To efficiently process a substantial amount of sensory data, a novel computation paradigm that can integrate computing functions into sensor networks should be developed. The in-sensor computing paradigm reduces data transfer and also decreases the high computing complexity by processing data locally. Here, the hardware implementation of the in-sensor computing paradigm at the device and array levels is discussed. The physical mechanisms that lead to unique sensory response characteristics and their corresponding computing functions are illustrated. In particular, bioinspired device characteristics enable the implementation of the functionalities of neuromorphic computation. The integration technology is also discussed and the perspective on the future development of in-sensor computing is provided.The number of sensor nodes in the Internet of Things is growing rapidly, leading to a large volume of data generated at sensory terminals. Frequent data transfer between the sensors and computing units causes severe limitations on the system performance in terms of energy efficiency, speed, and security. To efficiently process a substantial amount of sensory data, a novel computation paradigm that can integrate computing functions into sensor networks should be developed. The in-sensor computing paradigm reduces data transfer and also decreases the high computing complexity by processing data locally. Here, the hardware implementation of the in-sensor computing paradigm at the device and array levels is discussed. The physical mechanisms that lead to unique sensory response characteristics and their corresponding computing functions are illustrated. In particular, bioinspired device characteristics enable the implementation of the functionalities of neuromorphic computation. The integration technology is also discussed and the perspective on the future development of in-sensor computing is provided.
Author Wan, Tianqing
Li, Qiao
Shao, Bangjie
Chai, Yang
Zhou, Yue
Ma, Sijie
Author_xml – sequence: 1
  givenname: Tianqing
  surname: Wan
  fullname: Wan, Tianqing
  organization: Department of Applied Physics The Hong Kong Polytechnic University Hong Kong China
– sequence: 2
  givenname: Bangjie
  surname: Shao
  fullname: Shao, Bangjie
  organization: Department of Applied Physics The Hong Kong Polytechnic University Hong Kong China
– sequence: 3
  givenname: Sijie
  surname: Ma
  fullname: Ma, Sijie
  organization: Department of Applied Physics The Hong Kong Polytechnic University Hong Kong China
– sequence: 4
  givenname: Yue
  surname: Zhou
  fullname: Zhou, Yue
  organization: Department of Applied Physics The Hong Kong Polytechnic University Hong Kong China
– sequence: 5
  givenname: Qiao
  surname: Li
  fullname: Li, Qiao
  organization: Department of Applied Physics The Hong Kong Polytechnic University Hong Kong China
– sequence: 6
  givenname: Yang
  orcidid: 0000-0002-8943-0861
  surname: Chai
  fullname: Chai, Yang
  organization: Department of Applied Physics The Hong Kong Polytechnic University Hong Kong China, Shenzhen Research Institute The Hong Kong Polytechnic University Shenzhen China
BookMark eNp1kL1OwzAURi1UJNrCyhyJhYGU6784YUMFSqUiBsocOY5TXCV2sRMkNh6BZ-RJSCliqMRdvjuc7-rqjNDAOqsROsUwwQDkUpaNnBAgBGhK4QANMSc4ZpDxARpCRnmcJSw9QqMQ1gCQJZAM0Wxuvz4-n7QNzkdT12y61tjVVfQgW-2NrMNFdKPfjNL9Im0ZzW2rV162xtloqdWLdbVbGR2O0WHV0_rkN8fo-e52Ob2PF4-z-fR6ESsK0MZFVlCRFIpJ4FKkRHGalRjTQvBCgGRC81RWlS4VFpzRkmrKElZJLjiGTCg6Rue7uxvvXjsd2rwxQem6lla7LuQkSYUgwDDr0bM9dO06b_vvcpImrB_KeU9NdpTyLgSvq3zjTSP9e44h33rNt17zP699ge0VlGl_hLRemvq_2jdL8X2-
CitedBy_id crossref_primary_10_1002_adfm_202403158
crossref_primary_10_1039_D4NH00656A
crossref_primary_10_1088_2631_7990_adbd98
crossref_primary_10_1109_JIOT_2022_3219847
crossref_primary_10_1109_JFLEX_2023_3321256
crossref_primary_10_1002_smll_202300468
crossref_primary_10_1002_adma_202500011
crossref_primary_10_1002_admt_202201772
crossref_primary_10_1021_acsnano_5c06915
crossref_primary_10_1088_1361_6463_ad32ec
crossref_primary_10_1007_s40820_024_01599_8
crossref_primary_10_1002_adfm_202309807
crossref_primary_10_1038_s44335_025_00034_4
crossref_primary_10_1038_s41467_025_60703_7
crossref_primary_10_1039_D4MH01348D
crossref_primary_10_1002_smtd_202401368
crossref_primary_10_3390_s24102958
crossref_primary_10_1002_adfm_202423333
crossref_primary_10_1109_TCSI_2024_3391281
crossref_primary_10_1002_advs_202403043
crossref_primary_10_1016_j_nanoen_2024_110583
crossref_primary_10_1002_adma_202503475
crossref_primary_10_1002_aisy_202401073
crossref_primary_10_1038_s41565_023_01379_2
crossref_primary_10_1109_TED_2025_3565192
crossref_primary_10_1002_smm2_70008
crossref_primary_10_1038_s41565_024_01665_7
crossref_primary_10_1063_5_0185502
crossref_primary_10_1002_advs_202304355
crossref_primary_10_1038_s41928_024_01124_0
crossref_primary_10_3390_nano15080579
crossref_primary_10_1002_adma_202410952
crossref_primary_10_1038_s44222_025_00324_3
crossref_primary_10_3390_s25010035
crossref_primary_10_1002_admt_202400841
crossref_primary_10_1002_adfm_202316802
crossref_primary_10_1002_adma_202312094
crossref_primary_10_1038_s41467_023_36205_9
crossref_primary_10_1002_adma_202502254
crossref_primary_10_1109_TBCAS_2023_3334144
crossref_primary_10_1002_adma_202311288
crossref_primary_10_1109_LSENS_2024_3497148
crossref_primary_10_1063_5_0234566
crossref_primary_10_1038_s41467_023_43944_2
crossref_primary_10_1002_fle2_70003
crossref_primary_10_1016_j_device_2025_100900
crossref_primary_10_1016_j_matlet_2024_135981
crossref_primary_10_1007_s11432_023_3888_0
crossref_primary_10_1364_AO_566987
crossref_primary_10_1002_adma_202301924
crossref_primary_10_1002_adfm_202414186
crossref_primary_10_1002_advs_202408597
crossref_primary_10_1002_aisy_202200210
crossref_primary_10_1002_aisy_202200298
crossref_primary_10_1002_adfm_202303198
crossref_primary_10_1002_adts_202301074
crossref_primary_10_1021_acsaelm_5c00356
crossref_primary_10_1039_D3NR00900A
crossref_primary_10_1002_aisy_202401057
crossref_primary_10_1016_j_mtnano_2024_100494
crossref_primary_10_1088_1674_4926_23120051
crossref_primary_10_1063_5_0230234
crossref_primary_10_1016_j_jii_2024_100565
crossref_primary_10_1002_aisy_202400640
crossref_primary_10_1016_j_mtcomm_2024_108363
crossref_primary_10_1021_acssensors_5c00029
crossref_primary_10_1002_adma_202411225
crossref_primary_10_1038_s41699_024_00458_9
crossref_primary_10_1016_j_nxnano_2024_100102
crossref_primary_10_1002_smll_202504118
crossref_primary_10_1073_pnas_2413060122
crossref_primary_10_1002_adma_202300329
crossref_primary_10_1002_aisy_202500526
crossref_primary_10_1038_s41928_023_01055_2
crossref_primary_10_1109_LED_2023_3248076
crossref_primary_10_1038_s44287_025_00197_z
crossref_primary_10_1007_s40820_025_01743_y
crossref_primary_10_1002_smsc_202300139
crossref_primary_10_1038_s41563_024_01820_4
crossref_primary_10_1038_s41467_024_47630_9
crossref_primary_10_1002_aelm_202300108
crossref_primary_10_1016_j_device_2024_100550
crossref_primary_10_1002_adma_202416073
crossref_primary_10_1002_adma_202400614
crossref_primary_10_1002_adfm_202302929
crossref_primary_10_1002_aisy_202200196
crossref_primary_10_1007_s40843_023_2655_0
crossref_primary_10_1021_acsami_5c00535
crossref_primary_10_1039_D3MH01734F
crossref_primary_10_1021_acsnano_4c09199
crossref_primary_10_1021_acsnano_5c04090
crossref_primary_10_1038_s44306_024_00058_9
crossref_primary_10_1002_adma_202210907
crossref_primary_10_1109_ACCESS_2024_3462743
crossref_primary_10_1002_inf2_12429
crossref_primary_10_1038_s41467_025_61924_6
crossref_primary_10_1002_smm2_1285
crossref_primary_10_1002_advs_202300471
crossref_primary_10_1039_D5CS00251F
crossref_primary_10_1002_adma_202406607
crossref_primary_10_1002_adom_202400358
crossref_primary_10_1002_smll_202504001
crossref_primary_10_1039_D5NR00456J
crossref_primary_10_1109_COMST_2023_3319952
crossref_primary_10_1088_2631_7990_adebbe
crossref_primary_10_1002_advs_202409353
crossref_primary_10_1063_5_0179426
crossref_primary_10_1002_aidi_202500053
crossref_primary_10_1016_j_mee_2025_112329
crossref_primary_10_1038_s44335_024_00018_w
crossref_primary_10_1002_adma_202305353
crossref_primary_10_1002_smtd_202402151
crossref_primary_10_1007_s40820_022_00945_y
crossref_primary_10_1002_adma_202412252
crossref_primary_10_1007_s40820_025_01787_0
crossref_primary_10_1002_adma_202407476
crossref_primary_10_1002_adfm_202406239
crossref_primary_10_1002_advs_202302506
crossref_primary_10_1002_sdtp_17135
crossref_primary_10_1039_D4NH00230J
crossref_primary_10_1002_adma_202311472
crossref_primary_10_1002_advs_202402175
crossref_primary_10_1364_OPTICA_555491
crossref_primary_10_1002_adfm_202306149
crossref_primary_10_1002_adma_202402903
crossref_primary_10_1039_D4NH00421C
crossref_primary_10_1038_s41467_022_34230_8
crossref_primary_10_1016_j_jcis_2024_09_030
crossref_primary_10_1002_advs_202303447
crossref_primary_10_1039_D4NH00405A
crossref_primary_10_1007_s42765_023_00318_z
crossref_primary_10_3788_LOP251303
crossref_primary_10_1002_adfm_202423360
crossref_primary_10_1021_acsami_5c01496
crossref_primary_10_1038_s41467_024_55508_z
Cites_doi 10.1007/s40820-020-00419-z
10.1038/srep18082
10.1016/j.jmps.2017.11.026
10.1063/1.4975761
10.1007/978-3-319-95037-2
10.1021/acsnano.1c07292
10.1002/aisy.202000224
10.1002/adfm.201800080
10.1109/ACCESS.2015.2503432
10.1038/nature14441
10.1088/1674-4926/42/1/013105
10.1152/jn.1991.66.2.505
10.1109/50.108720
10.1038/s41586-020-1942-4
10.1002/adma.201900021
10.1038/srep18596
10.1007/978-1-4614-5040-5
10.1109/LED.2022.3148765
10.1007/s11432-021-3336-8
10.1038/nnano.2016.1
10.1002/adfm.202005582
10.1016/j.apsusc.2019.143754
10.1038/s41565-021-01003-1
10.1038/ncomms14734
10.1021/acsami.1c09460
10.1038/s41467-017-02572-3
10.1038/s41928-018-0092-2
10.1038/s41467-020-15105-2
10.1021/nn202852j
10.1109/JSTQE.2019.2945548
10.1021/acsnano.6b05063
10.1038/nphys2566
10.1063/1.355310
10.1002/adma.201906171
10.1038/d41586-020-00592-6
10.1038/s41565-019-0501-3
10.1109/ISSCC.2017.7870303
10.1016/j.nanoen.2019.104000
10.1126/sciadv.aba6173
10.1002/adfm.202001598
10.1016/0022-3697(64)90035-6
10.1002/adma.201404794
10.1038/356150a0
10.1038/s41598-022-05944-y
10.1038/nature22994
10.1038/nature08131
10.1038/s41566-020-00754-y
10.1002/adfm.202104327
10.1039/C9TC03898A
10.1002/adma.201907288
10.1103/PhysRevE.84.046703
10.1038/s41928-017-0002-z
10.23919/VLSIT.2019.8776560
10.1038/s41928-020-0433-9
10.1002/adfm.202007587
10.1109/MCAS.2017.2713305
10.1039/C6CP06004H
10.1007/s12274-020-3033-0
10.1038/s41467-022-29456-5
10.1126/sciadv.abg1455
10.1038/ncomms15199
10.1038/nnano.2011.235
10.3390/app12031607
10.1063/1.1713220
10.1103/PhysRevE.83.031105
10.1109/TNNLS.2015.2391182
10.1002/adma.202107754
10.1002/adfm.201902374
10.1038/s41928-020-00501-9
10.1002/adfm.202103982
10.1039/C9NR08872E
10.1038/ncomms12174
10.1002/smll.202200185
10.1093/nsr/nwaa172
10.1038/372197a0
10.1021/acs.nanolett.5b00190
10.1038/nphys3620
10.1126/science.aao0098
10.1038/s41928-018-0054-8
10.1038/s41928-021-00615-8
10.1088/1742-6596/1432/1/012068
10.1002/aelm.201900765
10.1038/s41928-022-00713-1
10.1002/adfm.202104192
10.1021/acsnano.7b07568
10.1109/MSSC.2019.2922889
10.1038/s41586-020-2038-x
10.1002/adma.202002653
10.1364/OE.27.005181
10.1016/j.nanoen.2021.106291
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202203830
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
ExternalDocumentID 10_1002_adma_202203830
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
FOJGT
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O8X
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WTY
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZY4
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
JG9
7X8
ALUQN
ID FETCH-LOGICAL-c300t-b9b376bc4a05a782c539d113b75b70a47e58affedc17543d3e3464fa5751097c3
ISICitedReferencesCount 186
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000825769800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 21:40:23 EDT 2025
Sun Nov 09 08:48:40 EST 2025
Tue Nov 18 22:01:36 EST 2025
Sat Nov 29 07:21:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-b9b376bc4a05a782c539d113b75b70a47e58affedc17543d3e3464fa5751097c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8943-0861
PQID 2864444355
PQPubID 2045203
ParticipantIDs proquest_miscellaneous_2687720414
proquest_journals_2864444355
crossref_primary_10_1002_adma_202203830
crossref_citationtrail_10_1002_adma_202203830
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
Lichtsteiner P. (e_1_2_8_6_1) 2006
Tang K.‐T. (e_1_2_8_12_1) 2019
e_1_2_8_15_1
e_1_2_8_38_1
Hsu T.‐H. (e_1_2_8_5_1) 2020
Zhan C. (e_1_2_8_67_1) 2007
Pershin Y. V. (e_1_2_8_19_1) 2014
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
Chen B. (e_1_2_8_96_1) 2015
Amer G. M. H. (e_1_2_8_69_1) 2015
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_21_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
Finateu T. (e_1_2_8_4_1) 2020
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
Peng H.‐T. (e_1_2_8_80_1) 2018; 24
Helfmeier C. (e_1_2_8_57_1) 2014
e_1_2_8_70_1
Chen A. (e_1_2_8_91_1) 2018
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_78_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
Hsu T.‐H. (e_1_2_8_11_1) 2019
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_100_1
Dhankhar P. (e_1_2_8_68_1) 2013; 2
Zhou Y. (e_1_2_8_83_1) 2019
e_1_2_8_31_1
e_1_2_8_77_1
Wen B. (e_1_2_8_7_1) 2006
e_1_2_8_54_1
e_1_2_8_73_1
e_1_2_8_50_1
Yang K. (e_1_2_8_55_1) 2017
e_1_2_8_104_1
References_xml – ident: e_1_2_8_39_1
  doi: 10.1007/s40820-020-00419-z
– ident: e_1_2_8_51_1
  doi: 10.1038/srep18082
– ident: e_1_2_8_60_1
  doi: 10.1016/j.jmps.2017.11.026
– ident: e_1_2_8_100_1
  doi: 10.1063/1.4975761
– ident: e_1_2_8_3_1
  doi: 10.1007/978-3-319-95037-2
– ident: e_1_2_8_64_1
  doi: 10.1021/acsnano.1c07292
– ident: e_1_2_8_77_1
  doi: 10.1002/aisy.202000224
– start-page: 110
  volume-title: IEEE Int. Solid‐State Circuits Conf. ‐ (ISSCC)
  year: 2020
  ident: e_1_2_8_5_1
– ident: e_1_2_8_28_1
  doi: 10.1002/adfm.201800080
– ident: e_1_2_8_56_1
  doi: 10.1109/ACCESS.2015.2503432
– ident: e_1_2_8_103_1
  doi: 10.1038/nature14441
– start-page: 112
  volume-title: IEEE Int. Solid‐State Circuits Conf. ‐ (ISSCC)
  year: 2020
  ident: e_1_2_8_4_1
– ident: e_1_2_8_16_1
  doi: 10.1088/1674-4926/42/1/013105
– ident: e_1_2_8_66_1
  doi: 10.1152/jn.1991.66.2.505
– ident: e_1_2_8_94_1
  doi: 10.1109/50.108720
– ident: e_1_2_8_102_1
  doi: 10.1038/s41586-020-1942-4
– ident: e_1_2_8_40_1
  doi: 10.1002/adma.201900021
– ident: e_1_2_8_58_1
  doi: 10.1038/srep18596
– ident: e_1_2_8_65_1
  doi: 10.1007/978-1-4614-5040-5
– ident: e_1_2_8_49_1
  doi: 10.1109/LED.2022.3148765
– ident: e_1_2_8_13_1
  doi: 10.1007/s11432-021-3336-8
– volume-title: 2019 IEEE Int. Electron Devices Meeting (IEDM)
  year: 2019
  ident: e_1_2_8_11_1
– ident: e_1_2_8_92_1
  doi: 10.1038/nnano.2016.1
– ident: e_1_2_8_75_1
  doi: 10.1002/adfm.202005582
– ident: e_1_2_8_24_1
  doi: 10.1016/j.apsusc.2019.143754
– ident: e_1_2_8_72_1
  doi: 10.1038/s41565-021-01003-1
– volume-title: 2019 IEEE Int. Electron Devices Meeting (IEDM)
  year: 2019
  ident: e_1_2_8_83_1
– ident: e_1_2_8_84_1
  doi: 10.1038/ncomms14734
– ident: e_1_2_8_46_1
  doi: 10.1021/acsami.1c09460
– start-page: 519
  volume-title: Fourth Int. Conf. on Image and Graphics (ICIG 2007)
  year: 2007
  ident: e_1_2_8_67_1
– ident: e_1_2_8_37_1
  doi: 10.1038/s41467-017-02572-3
– ident: e_1_2_8_98_1
  doi: 10.1038/s41928-018-0092-2
– ident: e_1_2_8_32_1
  doi: 10.1038/s41467-020-15105-2
– ident: e_1_2_8_62_1
  doi: 10.1021/nn202852j
– ident: e_1_2_8_79_1
  doi: 10.1109/JSTQE.2019.2945548
– volume-title: 2014 Int. Workshop on Computational Electronics (IWCE)
  year: 2014
  ident: e_1_2_8_19_1
– volume-title: 2015 IEEE Int. Electron Devices Meeting (IEDM)
  year: 2015
  ident: e_1_2_8_96_1
– ident: e_1_2_8_59_1
  doi: 10.1021/acsnano.6b05063
– ident: e_1_2_8_17_1
  doi: 10.1038/nphys2566
– ident: e_1_2_8_20_1
  doi: 10.1063/1.355310
– ident: e_1_2_8_43_1
  doi: 10.1002/adma.201906171
– start-page: 2060
  volume-title: IEEE Int. Solid‐State Circuits Conf. ‐ Dig. Tech. Pap.
  year: 2006
  ident: e_1_2_8_6_1
– ident: e_1_2_8_9_1
  doi: 10.1038/d41586-020-00592-6
– ident: e_1_2_8_14_1
  doi: 10.1038/s41565-019-0501-3
– start-page: 146
  volume-title: 2017 IEEE Int. Solid‐State Circuits Conf. (ISSCC)
  year: 2017
  ident: e_1_2_8_55_1
  doi: 10.1109/ISSCC.2017.7870303
– ident: e_1_2_8_74_1
  doi: 10.1016/j.nanoen.2019.104000
– ident: e_1_2_8_73_1
  doi: 10.1126/sciadv.aba6173
– ident: e_1_2_8_76_1
  doi: 10.1002/adfm.202001598
– ident: e_1_2_8_22_1
  doi: 10.1016/0022-3697(64)90035-6
– volume-title: 2014 Design, Automation & Test in Europe Conf. & Exhibition (DATE)
  year: 2014
  ident: e_1_2_8_57_1
– ident: e_1_2_8_47_1
  doi: 10.1002/adma.201404794
– volume-title: 2018 IEEE Int. Electron Devices Meeting (IEDM)
  year: 2018
  ident: e_1_2_8_91_1
– ident: e_1_2_8_70_1
  doi: 10.1038/356150a0
– ident: e_1_2_8_93_1
  doi: 10.1038/s41598-022-05944-y
– ident: e_1_2_8_8_1
  doi: 10.1038/nature22994
– ident: e_1_2_8_71_1
  doi: 10.1038/nature08131
– ident: e_1_2_8_78_1
  doi: 10.1038/s41566-020-00754-y
– ident: e_1_2_8_42_1
  doi: 10.1002/adfm.202104327
– ident: e_1_2_8_52_1
  doi: 10.1039/C9TC03898A
– ident: e_1_2_8_88_1
  doi: 10.1002/adma.201907288
– start-page: 2268
  volume-title: IEEE Int. Solid State Circuits Conf. ‐ Dig. Tech. Pap.
  year: 2006
  ident: e_1_2_8_7_1
– ident: e_1_2_8_101_1
  doi: 10.1103/PhysRevE.84.046703
– ident: e_1_2_8_90_1
  doi: 10.1038/s41928-017-0002-z
– start-page: T166
  volume-title: 2019 Symp. on VLSI Technology
  year: 2019
  ident: e_1_2_8_12_1
  doi: 10.23919/VLSIT.2019.8776560
– ident: e_1_2_8_86_1
  doi: 10.1038/s41928-020-0433-9
– ident: e_1_2_8_41_1
  doi: 10.1002/adfm.202007587
– ident: e_1_2_8_54_1
  doi: 10.1109/MCAS.2017.2713305
– ident: e_1_2_8_25_1
  doi: 10.1039/C6CP06004H
– ident: e_1_2_8_53_1
  doi: 10.1007/s12274-020-3033-0
– ident: e_1_2_8_26_1
  doi: 10.1038/s41467-022-29456-5
– ident: e_1_2_8_85_1
  doi: 10.1126/sciadv.abg1455
– ident: e_1_2_8_89_1
  doi: 10.1038/ncomms15199
– ident: e_1_2_8_61_1
  doi: 10.1038/nnano.2011.235
– ident: e_1_2_8_1_1
  doi: 10.3390/app12031607
– ident: e_1_2_8_21_1
  doi: 10.1063/1.1713220
– ident: e_1_2_8_97_1
  doi: 10.1103/PhysRevE.83.031105
– ident: e_1_2_8_18_1
  doi: 10.1109/TNNLS.2015.2391182
– ident: e_1_2_8_82_1
  doi: 10.1002/adma.202107754
– ident: e_1_2_8_34_1
  doi: 10.1002/adfm.201902374
– ident: e_1_2_8_10_1
  doi: 10.1038/s41928-020-00501-9
– ident: e_1_2_8_45_1
  doi: 10.1002/adfm.202103982
– volume-title: 2015 2nd World Symp. on Web Applications and Networking (WSWAN)
  year: 2015
  ident: e_1_2_8_69_1
– ident: e_1_2_8_44_1
  doi: 10.1039/C9NR08872E
– ident: e_1_2_8_30_1
  doi: 10.1038/ncomms12174
– ident: e_1_2_8_38_1
  doi: 10.1002/smll.202200185
– ident: e_1_2_8_87_1
  doi: 10.1093/nsr/nwaa172
– ident: e_1_2_8_95_1
  doi: 10.1038/372197a0
– ident: e_1_2_8_23_1
  doi: 10.1021/acs.nanolett.5b00190
– volume: 24
  year: 2018
  ident: e_1_2_8_80_1
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– ident: e_1_2_8_29_1
  doi: 10.1038/nphys3620
– ident: e_1_2_8_31_1
  doi: 10.1126/science.aao0098
– ident: e_1_2_8_104_1
  doi: 10.1038/s41928-018-0054-8
– ident: e_1_2_8_35_1
  doi: 10.1038/s41928-021-00615-8
– ident: e_1_2_8_2_1
  doi: 10.1088/1742-6596/1432/1/012068
– ident: e_1_2_8_33_1
  doi: 10.1002/aelm.201900765
– ident: e_1_2_8_36_1
  doi: 10.1038/s41928-022-00713-1
– ident: e_1_2_8_48_1
  doi: 10.1002/adfm.202104192
– ident: e_1_2_8_63_1
  doi: 10.1021/acsnano.7b07568
– volume: 2
  start-page: 86
  year: 2013
  ident: e_1_2_8_68_1
  publication-title: Int. J. Comput. Sci. Mobile Comput.
– ident: e_1_2_8_99_1
  doi: 10.1109/MSSC.2019.2922889
– ident: e_1_2_8_15_1
  doi: 10.1038/s41586-020-2038-x
– ident: e_1_2_8_50_1
  doi: 10.1002/adma.202002653
– ident: e_1_2_8_81_1
  doi: 10.1364/OE.27.005181
– ident: e_1_2_8_27_1
  doi: 10.1016/j.nanoen.2021.106291
SSID ssj0009606
Score 2.7091203
Snippet The number of sensor nodes in the Internet of Things is growing rapidly, leading to a large volume of data generated at sensory terminals. Frequent data...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage e2203830
SubjectTerms Data processing
Data transfer (computers)
Internet of Things
Materials science
Sensors
Title In‐Sensor Computing: Materials, Devices, and Integration Technologies
URI https://www.proquest.com/docview/2864444355
https://www.proquest.com/docview/2687720414
Volume 35
WOSCitedRecordID wos000825769800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB7RLQc4IJ5i21IFCcGBmnrjJHa4VWUrkJYFwVZdcYkcx6GLINnuA_XnM44dNysVqRy4RCvv5CHPl5nxI98H8AKDoipioUlesJxEJVdEpJqTMsaEkGguB7KhzB_x8VhMp-lnN6u0bOQEeFWJy8t0_l9djW3obPPp7D-4218UG_A3Oh2P6HY83sjxHyryFcem9eK1VWxwXzR_lCt7dxtlfICw-4EtZ4SBgp9rb3cXthS17WaBX-2FTHF6pmfVuTaKzH5C4cwJHiPuLtq82HBAytoucFTff8w6O26b-ddZp-nbeb1uMsNad-ckQuY3XfkwGpqRqZXPfKOvaXOx11KVOIxZ9hcXSXUYUhw902vDvKWNlUXDHNUx3OTTHn_KTk5Ho2wynE5ezi-IkRozS_JOd2ULtkMep6IH2---oOEVV3PSSLL6B265Pml4uHnLzVpmM5U39cnkPtxzA4vgyALiAdzS1UO426GbfARDD43AQ-Nt4IFxEDhYHAQIiqADiqALisdwejKcHL8nTkaDKEbpiuRpjlkkV5GkscSCUMUsLQYDlvM451RGXMdClqUuFJaSESuYZlESldKsyNGUK_YEelVd6acQYD7AClgwUfIC63CGY2WNZ5R5ImiJhWQfSNshmXIc80bq5Gdm2bHDzHRg5juwD6-8_dyyq_zVcq_t38y9bMssFFjNR1jwx3147v_G-GgWvWSl6zXaJIIbIaZBtHMDm124c4XnPeitFmv9DG6r36vZcrEPW3wq9h1c_gAVoYQD
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-Sensor+Computing%3A+Materials%2C+Devices%2C+and+Integration+Technologies&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wan%2C+Tianqing&rft.au=Shao%2C+Bangjie&rft.au=Ma%2C+Sijie&rft.au=Zhou%2C+Yue&rft.date=2023-09-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=35&rft.issue=37&rft.spage=e2203830&rft_id=info:doi/10.1002%2Fadma.202203830&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon