In‐Sensor Computing: Materials, Devices, and Integration Technologies
The number of sensor nodes in the Internet of Things is growing rapidly, leading to a large volume of data generated at sensory terminals. Frequent data transfer between the sensors and computing units causes severe limitations on the system performance in terms of energy efficiency, speed, and secu...
Saved in:
| Published in: | Advanced materials (Weinheim) Vol. 35; no. 37; p. e2203830 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Weinheim
Wiley Subscription Services, Inc
01.09.2023
|
| Subjects: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The number of sensor nodes in the Internet of Things is growing rapidly, leading to a large volume of data generated at sensory terminals. Frequent data transfer between the sensors and computing units causes severe limitations on the system performance in terms of energy efficiency, speed, and security. To efficiently process a substantial amount of sensory data, a novel computation paradigm that can integrate computing functions into sensor networks should be developed. The in‐sensor computing paradigm reduces data transfer and also decreases the high computing complexity by processing data locally. Here, the hardware implementation of the in‐sensor computing paradigm at the device and array levels is discussed. The physical mechanisms that lead to unique sensory response characteristics and their corresponding computing functions are illustrated. In particular, bioinspired device characteristics enable the implementation of the functionalities of neuromorphic computation. The integration technology is also discussed and the perspective on the future development of in‐sensor computing is provided. |
|---|---|
| AbstractList | The number of sensor nodes in the Internet of Things is growing rapidly, leading to a large volume of data generated at sensory terminals. Frequent data transfer between the sensors and computing units causes severe limitations on the system performance in terms of energy efficiency, speed, and security. To efficiently process a substantial amount of sensory data, a novel computation paradigm that can integrate computing functions into sensor networks should be developed. The in‐sensor computing paradigm reduces data transfer and also decreases the high computing complexity by processing data locally. Here, the hardware implementation of the in‐sensor computing paradigm at the device and array levels is discussed. The physical mechanisms that lead to unique sensory response characteristics and their corresponding computing functions are illustrated. In particular, bioinspired device characteristics enable the implementation of the functionalities of neuromorphic computation. The integration technology is also discussed and the perspective on the future development of in‐sensor computing is provided. The number of sensor nodes in the Internet of Things is growing rapidly, leading to a large volume of data generated at sensory terminals. Frequent data transfer between the sensors and computing units causes severe limitations on the system performance in terms of energy efficiency, speed, and security. To efficiently process a substantial amount of sensory data, a novel computation paradigm that can integrate computing functions into sensor networks should be developed. The in-sensor computing paradigm reduces data transfer and also decreases the high computing complexity by processing data locally. Here, the hardware implementation of the in-sensor computing paradigm at the device and array levels is discussed. The physical mechanisms that lead to unique sensory response characteristics and their corresponding computing functions are illustrated. In particular, bioinspired device characteristics enable the implementation of the functionalities of neuromorphic computation. The integration technology is also discussed and the perspective on the future development of in-sensor computing is provided.The number of sensor nodes in the Internet of Things is growing rapidly, leading to a large volume of data generated at sensory terminals. Frequent data transfer between the sensors and computing units causes severe limitations on the system performance in terms of energy efficiency, speed, and security. To efficiently process a substantial amount of sensory data, a novel computation paradigm that can integrate computing functions into sensor networks should be developed. The in-sensor computing paradigm reduces data transfer and also decreases the high computing complexity by processing data locally. Here, the hardware implementation of the in-sensor computing paradigm at the device and array levels is discussed. The physical mechanisms that lead to unique sensory response characteristics and their corresponding computing functions are illustrated. In particular, bioinspired device characteristics enable the implementation of the functionalities of neuromorphic computation. The integration technology is also discussed and the perspective on the future development of in-sensor computing is provided. |
| Author | Wan, Tianqing Li, Qiao Shao, Bangjie Chai, Yang Zhou, Yue Ma, Sijie |
| Author_xml | – sequence: 1 givenname: Tianqing surname: Wan fullname: Wan, Tianqing organization: Department of Applied Physics The Hong Kong Polytechnic University Hong Kong China – sequence: 2 givenname: Bangjie surname: Shao fullname: Shao, Bangjie organization: Department of Applied Physics The Hong Kong Polytechnic University Hong Kong China – sequence: 3 givenname: Sijie surname: Ma fullname: Ma, Sijie organization: Department of Applied Physics The Hong Kong Polytechnic University Hong Kong China – sequence: 4 givenname: Yue surname: Zhou fullname: Zhou, Yue organization: Department of Applied Physics The Hong Kong Polytechnic University Hong Kong China – sequence: 5 givenname: Qiao surname: Li fullname: Li, Qiao organization: Department of Applied Physics The Hong Kong Polytechnic University Hong Kong China – sequence: 6 givenname: Yang orcidid: 0000-0002-8943-0861 surname: Chai fullname: Chai, Yang organization: Department of Applied Physics The Hong Kong Polytechnic University Hong Kong China, Shenzhen Research Institute The Hong Kong Polytechnic University Shenzhen China |
| BookMark | eNp1kL1OwzAURi1UJNrCyhyJhYGU6784YUMFSqUiBsocOY5TXCV2sRMkNh6BZ-RJSCliqMRdvjuc7-rqjNDAOqsROsUwwQDkUpaNnBAgBGhK4QANMSc4ZpDxARpCRnmcJSw9QqMQ1gCQJZAM0Wxuvz4-n7QNzkdT12y61tjVVfQgW-2NrMNFdKPfjNL9Im0ZzW2rV162xtloqdWLdbVbGR2O0WHV0_rkN8fo-e52Ob2PF4-z-fR6ESsK0MZFVlCRFIpJ4FKkRHGalRjTQvBCgGRC81RWlS4VFpzRkmrKElZJLjiGTCg6Rue7uxvvXjsd2rwxQem6lla7LuQkSYUgwDDr0bM9dO06b_vvcpImrB_KeU9NdpTyLgSvq3zjTSP9e44h33rNt17zP699ge0VlGl_hLRemvq_2jdL8X2- |
| CitedBy_id | crossref_primary_10_1002_adfm_202403158 crossref_primary_10_1039_D4NH00656A crossref_primary_10_1088_2631_7990_adbd98 crossref_primary_10_1109_JIOT_2022_3219847 crossref_primary_10_1109_JFLEX_2023_3321256 crossref_primary_10_1002_smll_202300468 crossref_primary_10_1002_adma_202500011 crossref_primary_10_1002_admt_202201772 crossref_primary_10_1021_acsnano_5c06915 crossref_primary_10_1088_1361_6463_ad32ec crossref_primary_10_1007_s40820_024_01599_8 crossref_primary_10_1002_adfm_202309807 crossref_primary_10_1038_s44335_025_00034_4 crossref_primary_10_1038_s41467_025_60703_7 crossref_primary_10_1039_D4MH01348D crossref_primary_10_1002_smtd_202401368 crossref_primary_10_3390_s24102958 crossref_primary_10_1002_adfm_202423333 crossref_primary_10_1109_TCSI_2024_3391281 crossref_primary_10_1002_advs_202403043 crossref_primary_10_1016_j_nanoen_2024_110583 crossref_primary_10_1002_adma_202503475 crossref_primary_10_1002_aisy_202401073 crossref_primary_10_1038_s41565_023_01379_2 crossref_primary_10_1109_TED_2025_3565192 crossref_primary_10_1002_smm2_70008 crossref_primary_10_1038_s41565_024_01665_7 crossref_primary_10_1063_5_0185502 crossref_primary_10_1002_advs_202304355 crossref_primary_10_1038_s41928_024_01124_0 crossref_primary_10_3390_nano15080579 crossref_primary_10_1002_adma_202410952 crossref_primary_10_1038_s44222_025_00324_3 crossref_primary_10_3390_s25010035 crossref_primary_10_1002_admt_202400841 crossref_primary_10_1002_adfm_202316802 crossref_primary_10_1002_adma_202312094 crossref_primary_10_1038_s41467_023_36205_9 crossref_primary_10_1002_adma_202502254 crossref_primary_10_1109_TBCAS_2023_3334144 crossref_primary_10_1002_adma_202311288 crossref_primary_10_1109_LSENS_2024_3497148 crossref_primary_10_1063_5_0234566 crossref_primary_10_1038_s41467_023_43944_2 crossref_primary_10_1002_fle2_70003 crossref_primary_10_1016_j_device_2025_100900 crossref_primary_10_1016_j_matlet_2024_135981 crossref_primary_10_1007_s11432_023_3888_0 crossref_primary_10_1364_AO_566987 crossref_primary_10_1002_adma_202301924 crossref_primary_10_1002_adfm_202414186 crossref_primary_10_1002_advs_202408597 crossref_primary_10_1002_aisy_202200210 crossref_primary_10_1002_aisy_202200298 crossref_primary_10_1002_adfm_202303198 crossref_primary_10_1002_adts_202301074 crossref_primary_10_1021_acsaelm_5c00356 crossref_primary_10_1039_D3NR00900A crossref_primary_10_1002_aisy_202401057 crossref_primary_10_1016_j_mtnano_2024_100494 crossref_primary_10_1088_1674_4926_23120051 crossref_primary_10_1063_5_0230234 crossref_primary_10_1016_j_jii_2024_100565 crossref_primary_10_1002_aisy_202400640 crossref_primary_10_1016_j_mtcomm_2024_108363 crossref_primary_10_1021_acssensors_5c00029 crossref_primary_10_1002_adma_202411225 crossref_primary_10_1038_s41699_024_00458_9 crossref_primary_10_1016_j_nxnano_2024_100102 crossref_primary_10_1002_smll_202504118 crossref_primary_10_1073_pnas_2413060122 crossref_primary_10_1002_adma_202300329 crossref_primary_10_1002_aisy_202500526 crossref_primary_10_1038_s41928_023_01055_2 crossref_primary_10_1109_LED_2023_3248076 crossref_primary_10_1038_s44287_025_00197_z crossref_primary_10_1007_s40820_025_01743_y crossref_primary_10_1002_smsc_202300139 crossref_primary_10_1038_s41563_024_01820_4 crossref_primary_10_1038_s41467_024_47630_9 crossref_primary_10_1002_aelm_202300108 crossref_primary_10_1016_j_device_2024_100550 crossref_primary_10_1002_adma_202416073 crossref_primary_10_1002_adma_202400614 crossref_primary_10_1002_adfm_202302929 crossref_primary_10_1002_aisy_202200196 crossref_primary_10_1007_s40843_023_2655_0 crossref_primary_10_1021_acsami_5c00535 crossref_primary_10_1039_D3MH01734F crossref_primary_10_1021_acsnano_4c09199 crossref_primary_10_1021_acsnano_5c04090 crossref_primary_10_1038_s44306_024_00058_9 crossref_primary_10_1002_adma_202210907 crossref_primary_10_1109_ACCESS_2024_3462743 crossref_primary_10_1002_inf2_12429 crossref_primary_10_1038_s41467_025_61924_6 crossref_primary_10_1002_smm2_1285 crossref_primary_10_1002_advs_202300471 crossref_primary_10_1039_D5CS00251F crossref_primary_10_1002_adma_202406607 crossref_primary_10_1002_adom_202400358 crossref_primary_10_1002_smll_202504001 crossref_primary_10_1039_D5NR00456J crossref_primary_10_1109_COMST_2023_3319952 crossref_primary_10_1088_2631_7990_adebbe crossref_primary_10_1002_advs_202409353 crossref_primary_10_1063_5_0179426 crossref_primary_10_1002_aidi_202500053 crossref_primary_10_1016_j_mee_2025_112329 crossref_primary_10_1038_s44335_024_00018_w crossref_primary_10_1002_adma_202305353 crossref_primary_10_1002_smtd_202402151 crossref_primary_10_1007_s40820_022_00945_y crossref_primary_10_1002_adma_202412252 crossref_primary_10_1007_s40820_025_01787_0 crossref_primary_10_1002_adma_202407476 crossref_primary_10_1002_adfm_202406239 crossref_primary_10_1002_advs_202302506 crossref_primary_10_1002_sdtp_17135 crossref_primary_10_1039_D4NH00230J crossref_primary_10_1002_adma_202311472 crossref_primary_10_1002_advs_202402175 crossref_primary_10_1364_OPTICA_555491 crossref_primary_10_1002_adfm_202306149 crossref_primary_10_1002_adma_202402903 crossref_primary_10_1039_D4NH00421C crossref_primary_10_1038_s41467_022_34230_8 crossref_primary_10_1016_j_jcis_2024_09_030 crossref_primary_10_1002_advs_202303447 crossref_primary_10_1039_D4NH00405A crossref_primary_10_1007_s42765_023_00318_z crossref_primary_10_3788_LOP251303 crossref_primary_10_1002_adfm_202423360 crossref_primary_10_1021_acsami_5c01496 crossref_primary_10_1038_s41467_024_55508_z |
| Cites_doi | 10.1007/s40820-020-00419-z 10.1038/srep18082 10.1016/j.jmps.2017.11.026 10.1063/1.4975761 10.1007/978-3-319-95037-2 10.1021/acsnano.1c07292 10.1002/aisy.202000224 10.1002/adfm.201800080 10.1109/ACCESS.2015.2503432 10.1038/nature14441 10.1088/1674-4926/42/1/013105 10.1152/jn.1991.66.2.505 10.1109/50.108720 10.1038/s41586-020-1942-4 10.1002/adma.201900021 10.1038/srep18596 10.1007/978-1-4614-5040-5 10.1109/LED.2022.3148765 10.1007/s11432-021-3336-8 10.1038/nnano.2016.1 10.1002/adfm.202005582 10.1016/j.apsusc.2019.143754 10.1038/s41565-021-01003-1 10.1038/ncomms14734 10.1021/acsami.1c09460 10.1038/s41467-017-02572-3 10.1038/s41928-018-0092-2 10.1038/s41467-020-15105-2 10.1021/nn202852j 10.1109/JSTQE.2019.2945548 10.1021/acsnano.6b05063 10.1038/nphys2566 10.1063/1.355310 10.1002/adma.201906171 10.1038/d41586-020-00592-6 10.1038/s41565-019-0501-3 10.1109/ISSCC.2017.7870303 10.1016/j.nanoen.2019.104000 10.1126/sciadv.aba6173 10.1002/adfm.202001598 10.1016/0022-3697(64)90035-6 10.1002/adma.201404794 10.1038/356150a0 10.1038/s41598-022-05944-y 10.1038/nature22994 10.1038/nature08131 10.1038/s41566-020-00754-y 10.1002/adfm.202104327 10.1039/C9TC03898A 10.1002/adma.201907288 10.1103/PhysRevE.84.046703 10.1038/s41928-017-0002-z 10.23919/VLSIT.2019.8776560 10.1038/s41928-020-0433-9 10.1002/adfm.202007587 10.1109/MCAS.2017.2713305 10.1039/C6CP06004H 10.1007/s12274-020-3033-0 10.1038/s41467-022-29456-5 10.1126/sciadv.abg1455 10.1038/ncomms15199 10.1038/nnano.2011.235 10.3390/app12031607 10.1063/1.1713220 10.1103/PhysRevE.83.031105 10.1109/TNNLS.2015.2391182 10.1002/adma.202107754 10.1002/adfm.201902374 10.1038/s41928-020-00501-9 10.1002/adfm.202103982 10.1039/C9NR08872E 10.1038/ncomms12174 10.1002/smll.202200185 10.1093/nsr/nwaa172 10.1038/372197a0 10.1021/acs.nanolett.5b00190 10.1038/nphys3620 10.1126/science.aao0098 10.1038/s41928-018-0054-8 10.1038/s41928-021-00615-8 10.1088/1742-6596/1432/1/012068 10.1002/aelm.201900765 10.1038/s41928-022-00713-1 10.1002/adfm.202104192 10.1021/acsnano.7b07568 10.1109/MSSC.2019.2922889 10.1038/s41586-020-2038-x 10.1002/adma.202002653 10.1364/OE.27.005181 10.1016/j.nanoen.2021.106291 |
| ContentType | Journal Article |
| Copyright | 2023 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202203830 |
| DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| ExternalDocumentID | 10_1002_adma_202203830 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE FOJGT G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O8X O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WTY WXSBR WYISQ XG1 XPP XV2 YR2 ZY4 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD JG9 7X8 ALUQN |
| ID | FETCH-LOGICAL-c300t-b9b376bc4a05a782c539d113b75b70a47e58affedc17543d3e3464fa5751097c3 |
| ISICitedReferencesCount | 186 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000825769800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Thu Jul 10 21:40:23 EDT 2025 Sun Nov 09 08:48:40 EST 2025 Tue Nov 18 22:01:36 EST 2025 Sat Nov 29 07:21:43 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 37 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-b9b376bc4a05a782c539d113b75b70a47e58affedc17543d3e3464fa5751097c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8943-0861 |
| PQID | 2864444355 |
| PQPubID | 2045203 |
| ParticipantIDs | proquest_miscellaneous_2687720414 proquest_journals_2864444355 crossref_primary_10_1002_adma_202203830 crossref_citationtrail_10_1002_adma_202203830 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 Lichtsteiner P. (e_1_2_8_6_1) 2006 Tang K.‐T. (e_1_2_8_12_1) 2019 e_1_2_8_15_1 e_1_2_8_38_1 Hsu T.‐H. (e_1_2_8_5_1) 2020 Zhan C. (e_1_2_8_67_1) 2007 Pershin Y. V. (e_1_2_8_19_1) 2014 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 Chen B. (e_1_2_8_96_1) 2015 Amer G. M. H. (e_1_2_8_69_1) 2015 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_21_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 Finateu T. (e_1_2_8_4_1) 2020 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 Peng H.‐T. (e_1_2_8_80_1) 2018; 24 Helfmeier C. (e_1_2_8_57_1) 2014 e_1_2_8_70_1 Chen A. (e_1_2_8_91_1) 2018 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_78_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 Hsu T.‐H. (e_1_2_8_11_1) 2019 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_100_1 Dhankhar P. (e_1_2_8_68_1) 2013; 2 Zhou Y. (e_1_2_8_83_1) 2019 e_1_2_8_31_1 e_1_2_8_77_1 Wen B. (e_1_2_8_7_1) 2006 e_1_2_8_54_1 e_1_2_8_73_1 e_1_2_8_50_1 Yang K. (e_1_2_8_55_1) 2017 e_1_2_8_104_1 |
| References_xml | – ident: e_1_2_8_39_1 doi: 10.1007/s40820-020-00419-z – ident: e_1_2_8_51_1 doi: 10.1038/srep18082 – ident: e_1_2_8_60_1 doi: 10.1016/j.jmps.2017.11.026 – ident: e_1_2_8_100_1 doi: 10.1063/1.4975761 – ident: e_1_2_8_3_1 doi: 10.1007/978-3-319-95037-2 – ident: e_1_2_8_64_1 doi: 10.1021/acsnano.1c07292 – ident: e_1_2_8_77_1 doi: 10.1002/aisy.202000224 – start-page: 110 volume-title: IEEE Int. Solid‐State Circuits Conf. ‐ (ISSCC) year: 2020 ident: e_1_2_8_5_1 – ident: e_1_2_8_28_1 doi: 10.1002/adfm.201800080 – ident: e_1_2_8_56_1 doi: 10.1109/ACCESS.2015.2503432 – ident: e_1_2_8_103_1 doi: 10.1038/nature14441 – start-page: 112 volume-title: IEEE Int. Solid‐State Circuits Conf. ‐ (ISSCC) year: 2020 ident: e_1_2_8_4_1 – ident: e_1_2_8_16_1 doi: 10.1088/1674-4926/42/1/013105 – ident: e_1_2_8_66_1 doi: 10.1152/jn.1991.66.2.505 – ident: e_1_2_8_94_1 doi: 10.1109/50.108720 – ident: e_1_2_8_102_1 doi: 10.1038/s41586-020-1942-4 – ident: e_1_2_8_40_1 doi: 10.1002/adma.201900021 – ident: e_1_2_8_58_1 doi: 10.1038/srep18596 – ident: e_1_2_8_65_1 doi: 10.1007/978-1-4614-5040-5 – ident: e_1_2_8_49_1 doi: 10.1109/LED.2022.3148765 – ident: e_1_2_8_13_1 doi: 10.1007/s11432-021-3336-8 – volume-title: 2019 IEEE Int. Electron Devices Meeting (IEDM) year: 2019 ident: e_1_2_8_11_1 – ident: e_1_2_8_92_1 doi: 10.1038/nnano.2016.1 – ident: e_1_2_8_75_1 doi: 10.1002/adfm.202005582 – ident: e_1_2_8_24_1 doi: 10.1016/j.apsusc.2019.143754 – ident: e_1_2_8_72_1 doi: 10.1038/s41565-021-01003-1 – volume-title: 2019 IEEE Int. Electron Devices Meeting (IEDM) year: 2019 ident: e_1_2_8_83_1 – ident: e_1_2_8_84_1 doi: 10.1038/ncomms14734 – ident: e_1_2_8_46_1 doi: 10.1021/acsami.1c09460 – start-page: 519 volume-title: Fourth Int. Conf. on Image and Graphics (ICIG 2007) year: 2007 ident: e_1_2_8_67_1 – ident: e_1_2_8_37_1 doi: 10.1038/s41467-017-02572-3 – ident: e_1_2_8_98_1 doi: 10.1038/s41928-018-0092-2 – ident: e_1_2_8_32_1 doi: 10.1038/s41467-020-15105-2 – ident: e_1_2_8_62_1 doi: 10.1021/nn202852j – ident: e_1_2_8_79_1 doi: 10.1109/JSTQE.2019.2945548 – volume-title: 2014 Int. Workshop on Computational Electronics (IWCE) year: 2014 ident: e_1_2_8_19_1 – volume-title: 2015 IEEE Int. Electron Devices Meeting (IEDM) year: 2015 ident: e_1_2_8_96_1 – ident: e_1_2_8_59_1 doi: 10.1021/acsnano.6b05063 – ident: e_1_2_8_17_1 doi: 10.1038/nphys2566 – ident: e_1_2_8_20_1 doi: 10.1063/1.355310 – ident: e_1_2_8_43_1 doi: 10.1002/adma.201906171 – start-page: 2060 volume-title: IEEE Int. Solid‐State Circuits Conf. ‐ Dig. Tech. Pap. year: 2006 ident: e_1_2_8_6_1 – ident: e_1_2_8_9_1 doi: 10.1038/d41586-020-00592-6 – ident: e_1_2_8_14_1 doi: 10.1038/s41565-019-0501-3 – start-page: 146 volume-title: 2017 IEEE Int. Solid‐State Circuits Conf. (ISSCC) year: 2017 ident: e_1_2_8_55_1 doi: 10.1109/ISSCC.2017.7870303 – ident: e_1_2_8_74_1 doi: 10.1016/j.nanoen.2019.104000 – ident: e_1_2_8_73_1 doi: 10.1126/sciadv.aba6173 – ident: e_1_2_8_76_1 doi: 10.1002/adfm.202001598 – ident: e_1_2_8_22_1 doi: 10.1016/0022-3697(64)90035-6 – volume-title: 2014 Design, Automation & Test in Europe Conf. & Exhibition (DATE) year: 2014 ident: e_1_2_8_57_1 – ident: e_1_2_8_47_1 doi: 10.1002/adma.201404794 – volume-title: 2018 IEEE Int. Electron Devices Meeting (IEDM) year: 2018 ident: e_1_2_8_91_1 – ident: e_1_2_8_70_1 doi: 10.1038/356150a0 – ident: e_1_2_8_93_1 doi: 10.1038/s41598-022-05944-y – ident: e_1_2_8_8_1 doi: 10.1038/nature22994 – ident: e_1_2_8_71_1 doi: 10.1038/nature08131 – ident: e_1_2_8_78_1 doi: 10.1038/s41566-020-00754-y – ident: e_1_2_8_42_1 doi: 10.1002/adfm.202104327 – ident: e_1_2_8_52_1 doi: 10.1039/C9TC03898A – ident: e_1_2_8_88_1 doi: 10.1002/adma.201907288 – start-page: 2268 volume-title: IEEE Int. Solid State Circuits Conf. ‐ Dig. Tech. Pap. year: 2006 ident: e_1_2_8_7_1 – ident: e_1_2_8_101_1 doi: 10.1103/PhysRevE.84.046703 – ident: e_1_2_8_90_1 doi: 10.1038/s41928-017-0002-z – start-page: T166 volume-title: 2019 Symp. on VLSI Technology year: 2019 ident: e_1_2_8_12_1 doi: 10.23919/VLSIT.2019.8776560 – ident: e_1_2_8_86_1 doi: 10.1038/s41928-020-0433-9 – ident: e_1_2_8_41_1 doi: 10.1002/adfm.202007587 – ident: e_1_2_8_54_1 doi: 10.1109/MCAS.2017.2713305 – ident: e_1_2_8_25_1 doi: 10.1039/C6CP06004H – ident: e_1_2_8_53_1 doi: 10.1007/s12274-020-3033-0 – ident: e_1_2_8_26_1 doi: 10.1038/s41467-022-29456-5 – ident: e_1_2_8_85_1 doi: 10.1126/sciadv.abg1455 – ident: e_1_2_8_89_1 doi: 10.1038/ncomms15199 – ident: e_1_2_8_61_1 doi: 10.1038/nnano.2011.235 – ident: e_1_2_8_1_1 doi: 10.3390/app12031607 – ident: e_1_2_8_21_1 doi: 10.1063/1.1713220 – ident: e_1_2_8_97_1 doi: 10.1103/PhysRevE.83.031105 – ident: e_1_2_8_18_1 doi: 10.1109/TNNLS.2015.2391182 – ident: e_1_2_8_82_1 doi: 10.1002/adma.202107754 – ident: e_1_2_8_34_1 doi: 10.1002/adfm.201902374 – ident: e_1_2_8_10_1 doi: 10.1038/s41928-020-00501-9 – ident: e_1_2_8_45_1 doi: 10.1002/adfm.202103982 – volume-title: 2015 2nd World Symp. on Web Applications and Networking (WSWAN) year: 2015 ident: e_1_2_8_69_1 – ident: e_1_2_8_44_1 doi: 10.1039/C9NR08872E – ident: e_1_2_8_30_1 doi: 10.1038/ncomms12174 – ident: e_1_2_8_38_1 doi: 10.1002/smll.202200185 – ident: e_1_2_8_87_1 doi: 10.1093/nsr/nwaa172 – ident: e_1_2_8_95_1 doi: 10.1038/372197a0 – ident: e_1_2_8_23_1 doi: 10.1021/acs.nanolett.5b00190 – volume: 24 year: 2018 ident: e_1_2_8_80_1 publication-title: IEEE J. Sel. Top. Quantum Electron. – ident: e_1_2_8_29_1 doi: 10.1038/nphys3620 – ident: e_1_2_8_31_1 doi: 10.1126/science.aao0098 – ident: e_1_2_8_104_1 doi: 10.1038/s41928-018-0054-8 – ident: e_1_2_8_35_1 doi: 10.1038/s41928-021-00615-8 – ident: e_1_2_8_2_1 doi: 10.1088/1742-6596/1432/1/012068 – ident: e_1_2_8_33_1 doi: 10.1002/aelm.201900765 – ident: e_1_2_8_36_1 doi: 10.1038/s41928-022-00713-1 – ident: e_1_2_8_48_1 doi: 10.1002/adfm.202104192 – ident: e_1_2_8_63_1 doi: 10.1021/acsnano.7b07568 – volume: 2 start-page: 86 year: 2013 ident: e_1_2_8_68_1 publication-title: Int. J. Comput. Sci. Mobile Comput. – ident: e_1_2_8_99_1 doi: 10.1109/MSSC.2019.2922889 – ident: e_1_2_8_15_1 doi: 10.1038/s41586-020-2038-x – ident: e_1_2_8_50_1 doi: 10.1002/adma.202002653 – ident: e_1_2_8_81_1 doi: 10.1364/OE.27.005181 – ident: e_1_2_8_27_1 doi: 10.1016/j.nanoen.2021.106291 |
| SSID | ssj0009606 |
| Score | 2.7091203 |
| Snippet | The number of sensor nodes in the Internet of Things is growing rapidly, leading to a large volume of data generated at sensory terminals. Frequent data... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | e2203830 |
| SubjectTerms | Data processing Data transfer (computers) Internet of Things Materials science Sensors |
| Title | In‐Sensor Computing: Materials, Devices, and Integration Technologies |
| URI | https://www.proquest.com/docview/2864444355 https://www.proquest.com/docview/2687720414 |
| Volume | 35 |
| WOSCitedRecordID | wos000825769800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbolgMcEE-xbamChOBATbN-xHFvCLYCqSwItuqKS-Q4Dl3UJtt9oP78jmPHzUpFKgcuUeSMksjzZTweO9-H0Ctu8pJLIjCB8IcZJwbLxCisEylIoWLFiBObEKNROpnIb76qtGjkBERVpZeXcvZfXQ1t4Gz76-w_uDvcFBrgHJwOR3A7HG_l-M8V_gFz03r-1ik2-D-av6ile7qLMiFAuP3AjjPCQiHU2tvdhS1FbbtZ4Ly9kU1OT8y0OjVWkTkUFE684DHg7qIdFxsOSFW7BY7q1-9pZ8dtU3-ddpp-ntarZmRYmW5NgtCw6SqEUWJnpk4-8525oc3HXkdV4jHm2F98JDWExDB7jm8M8442VhUNc1THcJ1Pe_Q1Ozw-OsrGw8n49ewCW6kxuyTvdVc20CYRXKY9tPnxOxheczUnjSRreOGW6zMm--uPXM9l1ofyJj8ZP0QP_MQieu8A8QjdMdVjdL9DN_kEDQM0ogCNgygAYy_ysNiLABRRBxRRFxRP0fHhcPzhE_YyGljTOF7iXOYwiuSaqZgrSAg1p7IYDGgueC7gYxSGp6osTaEhlWS0oIayhJXKrsjFUmj6DPWqujLPUQTjA-O5XestNWNFkedClZDdFDHlCdWkj3DbIZn2HPNW6uQsc-zYJLMdmIUO7KM3wX7m2FX-arnT9m_mP7ZFRlLI5hkk_LyPXobLEB_topeqTL0CmyQVVohpwLZuYbON7l3jeQf1lvOVeYHu6j_L6WK-izbEJN31cLkC8PSEHw |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-Sensor+Computing%3A+Materials%2C+Devices%2C+and+Integration+Technologies&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wan%2C+Tianqing&rft.au=Shao%2C+Bangjie&rft.au=Ma%2C+Sijie&rft.au=Zhou%2C+Yue&rft.date=2023-09-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=35&rft.issue=37&rft.spage=e2203830&rft_id=info:doi/10.1002%2Fadma.202203830&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |