Handling imbalanced data in intrusion detection using time weighted Adaboost support vector machine classifier and crossover boosted Dwarf Mongoose Optimization algorithm

Cybersecurity threats pose a serious challenge in the present day and age, and Intrusion Detection Systems (IDS) have emerged as an effective solution to counter these threats. In this paper, a novel IDS is proposed that captures data from the NSL-KDD dataset and are preprocessed. The Kernel Princip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 167; S. 112327
Hauptverfasser: Chandrasekaran, Hemalatha, Murugesan, Kanipriya, Mana, Suja Cherukullapurath, Barathi, Bhagavathi Kannu Uma Anu, Ramaswamy, Sumathy
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2024
Schlagworte:
ISSN:1568-4946
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Cybersecurity threats pose a serious challenge in the present day and age, and Intrusion Detection Systems (IDS) have emerged as an effective solution to counter these threats. In this paper, a novel IDS is proposed that captures data from the NSL-KDD dataset and are preprocessed. The Kernel Principal Component Analysis (KPCA) model extracts features presented in the data, and the Crossover Boosted Dwarf Mongoose Optimization (CDMO) algorithm selects the relevant features for classification. The CDMO algorithm offers the advantages of improving exploitation, providing optimal solutions, and balancing global exploitation and local search capabilities. The selected features are classified into five classes using the Time Weighted Adaboost Support Vector Machine (TWASVM) classifier. The TWASVM classifier effectively handles imbalanced data and delivers high-performance results. Experiments conducted on MATLAB R2019a and the proposed model achieved an higher accuracy of 98.6 % and less time complexity of 13 seconds. Comparative analysis demonstrated that the proposed IDS outperforms other state-of-the-art methods. The advantages of CDMO algorithm include improved exploitation, optimal solutions, and a balanced crossover strategy for global exploitation and local search capabilities. The advantages of the TWASVM classifier include the ability to handle imbalanced data and deliver high-performance results. Overall, the proposed IDS offer a novel solution to the challenges of intrusion detection in a rapidly evolving cybersecurity landscape. •Novel IDS using NSL-KDD dataset with KPCA and CDMO for feature selection.•CDMO enhances feature selection with improved exploitation and optimal solutions.•TWASVM classifier handles imbalanced data with 98.6 % accuracy and low complexity.•MATLAB R2019a experiments show superior performance over state-of-the-art methods.•IDS provides an advanced solution for modern cybersecurity intrusion detection.
AbstractList Cybersecurity threats pose a serious challenge in the present day and age, and Intrusion Detection Systems (IDS) have emerged as an effective solution to counter these threats. In this paper, a novel IDS is proposed that captures data from the NSL-KDD dataset and are preprocessed. The Kernel Principal Component Analysis (KPCA) model extracts features presented in the data, and the Crossover Boosted Dwarf Mongoose Optimization (CDMO) algorithm selects the relevant features for classification. The CDMO algorithm offers the advantages of improving exploitation, providing optimal solutions, and balancing global exploitation and local search capabilities. The selected features are classified into five classes using the Time Weighted Adaboost Support Vector Machine (TWASVM) classifier. The TWASVM classifier effectively handles imbalanced data and delivers high-performance results. Experiments conducted on MATLAB R2019a and the proposed model achieved an higher accuracy of 98.6 % and less time complexity of 13 seconds. Comparative analysis demonstrated that the proposed IDS outperforms other state-of-the-art methods. The advantages of CDMO algorithm include improved exploitation, optimal solutions, and a balanced crossover strategy for global exploitation and local search capabilities. The advantages of the TWASVM classifier include the ability to handle imbalanced data and deliver high-performance results. Overall, the proposed IDS offer a novel solution to the challenges of intrusion detection in a rapidly evolving cybersecurity landscape. •Novel IDS using NSL-KDD dataset with KPCA and CDMO for feature selection.•CDMO enhances feature selection with improved exploitation and optimal solutions.•TWASVM classifier handles imbalanced data with 98.6 % accuracy and low complexity.•MATLAB R2019a experiments show superior performance over state-of-the-art methods.•IDS provides an advanced solution for modern cybersecurity intrusion detection.
ArticleNumber 112327
Author Barathi, Bhagavathi Kannu Uma Anu
Chandrasekaran, Hemalatha
Murugesan, Kanipriya
Ramaswamy, Sumathy
Mana, Suja Cherukullapurath
Author_xml – sequence: 1
  givenname: Hemalatha
  surname: Chandrasekaran
  fullname: Chandrasekaran, Hemalatha
  organization: Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, India
– sequence: 2
  givenname: Kanipriya
  orcidid: 0009-0009-0943-4757
  surname: Murugesan
  fullname: Murugesan, Kanipriya
  email: mkanipriya@gmail.com
  organization: Department of Computational Intelligence, SRM Institute of Science and Technology, Kattankulathur, India
– sequence: 3
  givenname: Suja Cherukullapurath
  surname: Mana
  fullname: Mana, Suja Cherukullapurath
  organization: Department of Computer Science and Engineering, PES University, Bengaluru, India
– sequence: 4
  givenname: Bhagavathi Kannu Uma Anu
  surname: Barathi
  fullname: Barathi, Bhagavathi Kannu Uma Anu
  organization: Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, India
– sequence: 5
  givenname: Sumathy
  surname: Ramaswamy
  fullname: Ramaswamy, Sumathy
  organization: Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, India
BookMark eNp9kctOwzAQRb0AiecPsPIPtPiRpInEBvGWQGzYWxNn0k6V2JVtiuCT-EqclhULJEv2WPfeGR-fsAPnHTJ2IcVcClldrucQvZ0roYq5lEqrxQE7lmVVz4qmqI7YSYxrkYWNqo_Z9yO4biC35DS2MICz2PEOEnByeaXwHsk73mFCm6ZTrrM40Yj8A2m5Sll_3UHrfUw8vm82PiS-zWIf-Ah2RQ65HSBG6gkDz924DT5Gv83VzpUDbj8g9PzFu2W-QP66yfn0BbuGMCx9oLQaz9hhD0PE89_9lL3d373dPM6eXx-ebq6fZ1YLkWbtAmpVqkbY3pa9ahd1K2rddVBpvWh7q6ESpZBoWw0ay0LJtmiwbgSouhKoT1m9j92NGbA3ltJulBSABiOFmTCbtZkwmwmz2WPOVvXHugk0Qvj833S1N2F-0zYzMtESTv9AIWM0naf_7D861qCf
CitedBy_id crossref_primary_10_1016_j_iswa_2025_200519
crossref_primary_10_1016_j_seppur_2025_134210
crossref_primary_10_1038_s41598_025_15631_3
crossref_primary_10_1016_j_microc_2025_114295
crossref_primary_10_1007_s10586_025_05378_x
Cites_doi 10.58496/BJN/2023/001
10.3390/math10234565
10.58496/BJML/2024/002
10.26599/BDMA.2020.9020003
10.1111/coin.12433
10.1007/s11042-020-09916-0
10.1007/s10699-019-09589-5
10.1016/j.inffus.2019.07.006
10.1109/ACCESS.2021.3051074
10.1016/j.compeleceng.2022.107876
10.1109/ACCESS.2023.3254915
10.58496/BJML/2023/005
10.1016/j.engappai.2022.104960
10.1109/ACCESS.2021.3116612
10.1007/s11042-020-08724-w
10.1007/s00500-020-05017-0
10.1016/j.iot.2023.100773
10.25046/aj050310
10.58496/BJN/2024/006
10.3390/math10030530
10.1109/ACCESS.2020.3040740
10.1109/COMST.2018.2847722
10.1155/2019/7130868
10.1109/ACCESS.2023.3327016
10.1016/j.cose.2020.102164
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2024.112327
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_asoc_2024_112327
S1568494624011013
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-b7a825290cfc5f2b78b083dda6337bfc3a60501ecb3a3e5421b49e890a2860e3
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001344312900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 03:06:06 EST 2025
Tue Nov 18 22:28:06 EST 2025
Sat Dec 14 16:15:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dwarf mongoose
AdaBoost
Support vector machine and global exploitation
Attacks, crossover
Intrusion detection
Imbalanced Data
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-b7a825290cfc5f2b78b083dda6337bfc3a60501ecb3a3e5421b49e890a2860e3
ORCID 0009-0009-0943-4757
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2024_112327
crossref_primary_10_1016_j_asoc_2024_112327
elsevier_sciencedirect_doi_10_1016_j_asoc_2024_112327
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – sequence: 0
  name: Elsevier B.V
References Mishra, Mahanty, Dash, Mishra (bib17) 2019
Sarkar, Sharma, Singh (bib23) 2023; 15
Liu, Zhu, Liu (bib8) 2020; 79
Rajora (bib30) 2023; 2023
Nagaraja, Uma, Gunupudi (bib7) 2020; 25
Al-Rubaye, Türkben (bib31) 2024; 2024
Kayyidavazhiyil (bib26) 2023
Mishra, Varadharajan, Tupakula, Pilli (bib11) 2018; 21
Ren, Guo, Qian, Yuan, Hao, Jingjing (bib15) 2019; 2019
Gupta, Tripathi, Grover (bib25) 2022; 100
Nazir, Khan (bib21) 2021; 102
Alsaadi, ALmuttari, Ucan, Bayat (bib10) 2022; 38
Elaziz, Ewees, Al-qaness, Alshathri, Ibrahim (bib16) 2022; 10
Du, Yang, Hu, Jiang (bib24) 2023; 11
Alsajri, Steiti (bib29) 2024; 2024
Yonan, Zahra (bib32) 2023; 2023
Zhong, Yu, Ai (bib2) 2020; 3
Xu, Jang-Jaccard, Singh, Wei, Sabrina (bib12) 2021; 9
Hosseini, Sardo (bib6) 2021; 80
Lara, Mayor, Estepa, Estepa, Díaz-Verdejo (bib5) 2023; 22
Upendran, Gopinath (bib18) 2020; 11
Ahmad, Ul Haq, Imran, Alassafi, AlGhamdi (bib22) 2022; 10
Sun, Li, Fujita, Fu, Ai (bib28) 2020; 54
Callegari, Donatini, Giordano, Pagano (bib13) 2018; 16
Moghanian, Saravi, Javidi, Sheybani (bib20) 2020; 8
Rekha, Malik, Tyagi, Nair (bib1) 2020; 5
Riyaz, Ganapathy (bib4) 2020; 24
Darem, Alhashmi, Alkhaldi, Alashjaee, Alanazi, Ebad (bib19) 2023; 11
Asif, Abbas, Khan, Fatima, Khan, Lee (bib3) 2022; 34
Wang, Zeng, Liu, Li (bib14) 2021; 9
Ma, Yue (bib27) 2022; 113
Jakka, Alsmadi (bib9) 2022; 3
Rekha (10.1016/j.asoc.2024.112327_bib1) 2020; 5
Kayyidavazhiyil (10.1016/j.asoc.2024.112327_bib26) 2023
Gupta (10.1016/j.asoc.2024.112327_bib25) 2022; 100
Elaziz (10.1016/j.asoc.2024.112327_bib16) 2022; 10
Yonan (10.1016/j.asoc.2024.112327_bib32) 2023; 2023
Al-Rubaye (10.1016/j.asoc.2024.112327_bib31) 2024; 2024
Nagaraja (10.1016/j.asoc.2024.112327_bib7) 2020; 25
Callegari (10.1016/j.asoc.2024.112327_bib13) 2018; 16
Nazir (10.1016/j.asoc.2024.112327_bib21) 2021; 102
Asif (10.1016/j.asoc.2024.112327_bib3) 2022; 34
Mishra (10.1016/j.asoc.2024.112327_bib17) 2019
Upendran (10.1016/j.asoc.2024.112327_bib18) 2020; 11
Darem (10.1016/j.asoc.2024.112327_bib19) 2023; 11
Wang (10.1016/j.asoc.2024.112327_bib14) 2021; 9
Sun (10.1016/j.asoc.2024.112327_bib28) 2020; 54
Sarkar (10.1016/j.asoc.2024.112327_bib23) 2023; 15
Ren (10.1016/j.asoc.2024.112327_bib15) 2019; 2019
Rajora (10.1016/j.asoc.2024.112327_bib30) 2023; 2023
Ahmad (10.1016/j.asoc.2024.112327_bib22) 2022; 10
Du (10.1016/j.asoc.2024.112327_bib24) 2023; 11
Lara (10.1016/j.asoc.2024.112327_bib5) 2023; 22
Jakka (10.1016/j.asoc.2024.112327_bib9) 2022; 3
Xu (10.1016/j.asoc.2024.112327_bib12) 2021; 9
Zhong (10.1016/j.asoc.2024.112327_bib2) 2020; 3
Hosseini (10.1016/j.asoc.2024.112327_bib6) 2021; 80
Alsaadi (10.1016/j.asoc.2024.112327_bib10) 2022; 38
Alsajri (10.1016/j.asoc.2024.112327_bib29) 2024; 2024
Riyaz (10.1016/j.asoc.2024.112327_bib4) 2020; 24
Moghanian (10.1016/j.asoc.2024.112327_bib20) 2020; 8
Liu (10.1016/j.asoc.2024.112327_bib8) 2020; 79
Mishra (10.1016/j.asoc.2024.112327_bib11) 2018; 21
Ma (10.1016/j.asoc.2024.112327_bib27) 2022; 113
References_xml – start-page: 1
  year: 2023
  end-page: 23
  ident: bib26
  article-title: Intrusion detection using enhanced genetic sine swarm algorithm based deep meta-heuristic ANN classifier on UNSW-NB15 and NSL-KDD dataset
  publication-title: J. Intell. Fuzzy Syst. (Prepr. ).
– volume: 9
  start-page: 140136
  year: 2021
  end-page: 140146
  ident: bib12
  article-title: Improving performance of autoencoder-based network anomaly detection on NSL-KDD dataset
  publication-title: IEEE Access
– volume: 5
  start-page: 72
  year: 2020
  end-page: 81
  ident: bib1
  article-title: Intrusion detection in cyber security: role of machine learning and data mining in cyber security
  publication-title: Adv. Sci., Technol. Eng. Syst. J.
– volume: 8
  start-page: 215202
  year: 2020
  end-page: 215213
  ident: bib20
  article-title: GOAMLP: network intrusion detection with multilayer perceptron and grasshopper optimization algorithm
  publication-title: IEEE Access
– volume: 2024
  start-page: 15
  year: 2024
  end-page: 29
  ident: bib29
  article-title: Intrusion detection system based on machine learning algorithms:(SVM and genetic algorithm)
  publication-title: Babylon. J. Mach. Learn.
– volume: 9
  start-page: 16062
  year: 2021
  end-page: 16091
  ident: bib14
  article-title: Deep belief network integrating improved kernel-based extreme learning machine for network intrusion detection
  publication-title: IEEE Access
– volume: 16
  start-page: 9
  year: 2018
  end-page: 16
  ident: bib13
  article-title: Improving stability of PCA-based network anomaly detection by means of kernel-PCA
  publication-title: Int J. Comput. Sci. Eng.
– volume: 2019
  year: 2019
  ident: bib15
  article-title: Building an effective intrusion detection system by using hybrid data optimization based on machine learning algorithms
  publication-title: Secur Commun. Netw.
– start-page: 167
  year: 2019
  end-page: 175
  ident: bib17
  article-title: Implementation of BFS-NB hybrid model in intrusion detection system
  publication-title: in: Recent Developments in Machine Learning and Data Analytics: IC3 2018
– volume: 10
  start-page: 530
  year: 2022
  ident: bib22
  article-title: An efficient network intrusion detection and classification system
  publication-title: Mathematics
– volume: 113
  year: 2022
  ident: bib27
  article-title: An improved whale optimization algorithm based on multilevel threshold image segmentation using the Otsu method
  publication-title: Eng. Appl. Artif. Intel.
– volume: 102
  year: 2021
  ident: bib21
  article-title: A novel combinatorial optimization based feature selection method for network intrusion detection
  publication-title: Comput. Secur
– volume: 2023
  start-page: 26
  year: 2023
  end-page: 30
  ident: bib30
  article-title: Reviews research on applying machine learning techniques to reduce false positives for network intrusion detection systems
  publication-title: Babylon. J. Mach. Learn.
– volume: 24
  start-page: 17265
  year: 2020
  end-page: 17278
  ident: bib4
  article-title: A deep learning approach for effective intrusion detection in wireless networks using CNN
  publication-title: Soft Comput.
– volume: 11
  start-page: 1255
  year: 2020
  end-page: 1262
  ident: bib18
  article-title: Optimization based Classification Technique for Intrusion Detection System
  publication-title: Int. J. Adv. Res. Eng. Technol.
– volume: 3
  start-page: 181
  year: 2020
  end-page: 195
  ident: bib2
  article-title: Applying big data based deep learning system to intrusion detection
  publication-title: Big Data Min. Anal.
– volume: 21
  start-page: 686
  year: 2018
  end-page: 728
  ident: bib11
  article-title: A detailed investigation and analysis of using machine learning techniques for intrusion detection
  publication-title: IEEE Commun. Surv. Tut
– volume: 25
  start-page: 1049
  year: 2020
  end-page: 1075
  ident: bib7
  article-title: UTTAMA: an intrusion detection system based on feature clustering and feature transformation
  publication-title: Found. Sci.
– volume: 10
  start-page: 4565
  year: 2022
  ident: bib16
  article-title: Feature selection for high dimensional datasets based on quantum-baseD Dwarf Mongoose Optimization
  publication-title: Mathematics
– volume: 80
  start-page: 4999
  year: 2021
  end-page: 5019
  ident: bib6
  article-title: Data mining tools-a case study for network intrusion detection
  publication-title: Multimed. Tools Appl.
– volume: 2023
  start-page: 1
  year: 2023
  end-page: 10
  ident: bib32
  article-title: Node intrusion tendency recognition using network level features based deep learning approach
  publication-title: Babylon. J. Netw.
– volume: 38
  start-page: 855
  year: 2022
  end-page: 875
  ident: bib10
  article-title: An adapting soft computing model for intrusion detection system
  publication-title: Comput. Intell.
– volume: 79
  start-page: 18801
  year: 2020
  end-page: 18814
  ident: bib8
  article-title: Design of multimedia education network security and intrusion detection system
  publication-title: Multimed. Tools Appl.
– volume: 15
  start-page: 423
  year: 2023
  end-page: 434
  ident: bib23
  article-title: A supervised machine learning-based solution for efficient network intrusion detection using ensemble learning based on hyperparameter optimization
  publication-title: Int. J. Inf. Technol.
– volume: 54
  start-page: 128
  year: 2020
  end-page: 144
  ident: bib28
  article-title: Class-imbalanced dynamic financial distress prediction based on Adaboost-SVM ensemble combined with SMOTE and time weighting
  publication-title: Inf. Fusion
– volume: 100
  year: 2022
  ident: bib25
  article-title: Hybrid optimization and deep learning based intrusion detection system
  publication-title: Comput. Electr. Eng.
– volume: 22
  year: 2023
  ident: bib5
  article-title: Smart home anomaly-based IDS: architecture proposal and case study
  publication-title: Internet Things
– volume: 3
  start-page: 8
  year: 2022
  ident: bib9
  article-title: Ensemble Models for Intrusion Detection System Classification
  publication-title: Int. J. Smart Sens. Adhoc Netw.
– volume: 11
  start-page: 24808
  year: 2023
  end-page: 24821
  ident: bib24
  article-title: NIDS-CNNLSTM: network intrusion detection classification model based on deep learning
  publication-title: IEEE Access
– volume: 2024
  start-page: 45
  year: 2024
  end-page: 56
  ident: bib31
  article-title: Using artificial intelligence to evaluating detection of cybersecurity threats in ad hoc networks
  publication-title: Babylon. J. Netw.
– volume: 34
  start-page: 9723
  year: 2022
  end-page: 9731
  ident: bib3
  article-title: MapReduce based intelligent model for intrusion detection using machine learning technique
  publication-title: J. King Saud. Univ. -Com.
– volume: 11
  start-page: 125138
  year: 2023
  end-page: 125158
  ident: bib19
  article-title: Cyber threats classifications and countermeasures in banking and financial sector
  publication-title: IEEE Access
– start-page: 167
  year: 2019
  ident: 10.1016/j.asoc.2024.112327_bib17
  article-title: Implementation of BFS-NB hybrid model in intrusion detection system
– volume: 2023
  start-page: 1
  year: 2023
  ident: 10.1016/j.asoc.2024.112327_bib32
  article-title: Node intrusion tendency recognition using network level features based deep learning approach
  publication-title: Babylon. J. Netw.
  doi: 10.58496/BJN/2023/001
– volume: 10
  start-page: 4565
  issue: 23
  year: 2022
  ident: 10.1016/j.asoc.2024.112327_bib16
  article-title: Feature selection for high dimensional datasets based on quantum-baseD Dwarf Mongoose Optimization
  publication-title: Mathematics
  doi: 10.3390/math10234565
– volume: 2024
  start-page: 15
  year: 2024
  ident: 10.1016/j.asoc.2024.112327_bib29
  article-title: Intrusion detection system based on machine learning algorithms:(SVM and genetic algorithm)
  publication-title: Babylon. J. Mach. Learn.
  doi: 10.58496/BJML/2024/002
– volume: 3
  start-page: 181
  issue: 3
  year: 2020
  ident: 10.1016/j.asoc.2024.112327_bib2
  article-title: Applying big data based deep learning system to intrusion detection
  publication-title: Big Data Min. Anal.
  doi: 10.26599/BDMA.2020.9020003
– volume: 38
  start-page: 855
  issue: 3
  year: 2022
  ident: 10.1016/j.asoc.2024.112327_bib10
  article-title: An adapting soft computing model for intrusion detection system
  publication-title: Comput. Intell.
  doi: 10.1111/coin.12433
– volume: 80
  start-page: 4999
  year: 2021
  ident: 10.1016/j.asoc.2024.112327_bib6
  article-title: Data mining tools-a case study for network intrusion detection
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09916-0
– volume: 25
  start-page: 1049
  issue: 4
  year: 2020
  ident: 10.1016/j.asoc.2024.112327_bib7
  article-title: UTTAMA: an intrusion detection system based on feature clustering and feature transformation
  publication-title: Found. Sci.
  doi: 10.1007/s10699-019-09589-5
– volume: 54
  start-page: 128
  year: 2020
  ident: 10.1016/j.asoc.2024.112327_bib28
  article-title: Class-imbalanced dynamic financial distress prediction based on Adaboost-SVM ensemble combined with SMOTE and time weighting
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.07.006
– volume: 16
  start-page: 9
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2024.112327_bib13
  article-title: Improving stability of PCA-based network anomaly detection by means of kernel-PCA
  publication-title: Int J. Comput. Sci. Eng.
– volume: 9
  start-page: 16062
  year: 2021
  ident: 10.1016/j.asoc.2024.112327_bib14
  article-title: Deep belief network integrating improved kernel-based extreme learning machine for network intrusion detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3051074
– volume: 11
  start-page: 1255
  issue: 9
  year: 2020
  ident: 10.1016/j.asoc.2024.112327_bib18
  article-title: Optimization based Classification Technique for Intrusion Detection System
  publication-title: Int. J. Adv. Res. Eng. Technol.
– volume: 100
  year: 2022
  ident: 10.1016/j.asoc.2024.112327_bib25
  article-title: Hybrid optimization and deep learning based intrusion detection system
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2022.107876
– volume: 11
  start-page: 24808
  year: 2023
  ident: 10.1016/j.asoc.2024.112327_bib24
  article-title: NIDS-CNNLSTM: network intrusion detection classification model based on deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3254915
– volume: 2023
  start-page: 26
  year: 2023
  ident: 10.1016/j.asoc.2024.112327_bib30
  article-title: Reviews research on applying machine learning techniques to reduce false positives for network intrusion detection systems
  publication-title: Babylon. J. Mach. Learn.
  doi: 10.58496/BJML/2023/005
– volume: 113
  year: 2022
  ident: 10.1016/j.asoc.2024.112327_bib27
  article-title: An improved whale optimization algorithm based on multilevel threshold image segmentation using the Otsu method
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2022.104960
– volume: 15
  start-page: 423
  issue: 1
  year: 2023
  ident: 10.1016/j.asoc.2024.112327_bib23
  article-title: A supervised machine learning-based solution for efficient network intrusion detection using ensemble learning based on hyperparameter optimization
  publication-title: Int. J. Inf. Technol.
– volume: 9
  start-page: 140136
  year: 2021
  ident: 10.1016/j.asoc.2024.112327_bib12
  article-title: Improving performance of autoencoder-based network anomaly detection on NSL-KDD dataset
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3116612
– volume: 79
  start-page: 18801
  year: 2020
  ident: 10.1016/j.asoc.2024.112327_bib8
  article-title: Design of multimedia education network security and intrusion detection system
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-08724-w
– volume: 24
  start-page: 17265
  year: 2020
  ident: 10.1016/j.asoc.2024.112327_bib4
  article-title: A deep learning approach for effective intrusion detection in wireless networks using CNN
  publication-title: Soft Comput.
  doi: 10.1007/s00500-020-05017-0
– volume: 34
  start-page: 9723
  issue: 10
  year: 2022
  ident: 10.1016/j.asoc.2024.112327_bib3
  article-title: MapReduce based intelligent model for intrusion detection using machine learning technique
  publication-title: J. King Saud. Univ. -Com.
– start-page: 1
  year: 2023
  ident: 10.1016/j.asoc.2024.112327_bib26
  article-title: Intrusion detection using enhanced genetic sine swarm algorithm based deep meta-heuristic ANN classifier on UNSW-NB15 and NSL-KDD dataset
  publication-title: J. Intell. Fuzzy Syst. (Prepr. ).
– volume: 22
  year: 2023
  ident: 10.1016/j.asoc.2024.112327_bib5
  article-title: Smart home anomaly-based IDS: architecture proposal and case study
  publication-title: Internet Things
  doi: 10.1016/j.iot.2023.100773
– volume: 5
  start-page: 72
  issue: 3
  year: 2020
  ident: 10.1016/j.asoc.2024.112327_bib1
  article-title: Intrusion detection in cyber security: role of machine learning and data mining in cyber security
  publication-title: Adv. Sci., Technol. Eng. Syst. J.
  doi: 10.25046/aj050310
– volume: 2024
  start-page: 45
  year: 2024
  ident: 10.1016/j.asoc.2024.112327_bib31
  article-title: Using artificial intelligence to evaluating detection of cybersecurity threats in ad hoc networks
  publication-title: Babylon. J. Netw.
  doi: 10.58496/BJN/2024/006
– volume: 10
  start-page: 530
  issue: 3
  year: 2022
  ident: 10.1016/j.asoc.2024.112327_bib22
  article-title: An efficient network intrusion detection and classification system
  publication-title: Mathematics
  doi: 10.3390/math10030530
– volume: 8
  start-page: 215202
  year: 2020
  ident: 10.1016/j.asoc.2024.112327_bib20
  article-title: GOAMLP: network intrusion detection with multilayer perceptron and grasshopper optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3040740
– volume: 21
  start-page: 686
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2024.112327_bib11
  article-title: A detailed investigation and analysis of using machine learning techniques for intrusion detection
  publication-title: IEEE Commun. Surv. Tut
  doi: 10.1109/COMST.2018.2847722
– volume: 2019
  year: 2019
  ident: 10.1016/j.asoc.2024.112327_bib15
  article-title: Building an effective intrusion detection system by using hybrid data optimization based on machine learning algorithms
  publication-title: Secur Commun. Netw.
  doi: 10.1155/2019/7130868
– volume: 11
  start-page: 125138
  year: 2023
  ident: 10.1016/j.asoc.2024.112327_bib19
  article-title: Cyber threats classifications and countermeasures in banking and financial sector
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3327016
– volume: 3
  start-page: 8
  issue: 2
  year: 2022
  ident: 10.1016/j.asoc.2024.112327_bib9
  article-title: Ensemble Models for Intrusion Detection System Classification
  publication-title: Int. J. Smart Sens. Adhoc Netw.
– volume: 102
  year: 2021
  ident: 10.1016/j.asoc.2024.112327_bib21
  article-title: A novel combinatorial optimization based feature selection method for network intrusion detection
  publication-title: Comput. Secur
  doi: 10.1016/j.cose.2020.102164
SSID ssj0016928
Score 2.4631393
Snippet Cybersecurity threats pose a serious challenge in the present day and age, and Intrusion Detection Systems (IDS) have emerged as an effective solution to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112327
SubjectTerms AdaBoost
Attacks, crossover
Dwarf mongoose
Imbalanced Data
Intrusion detection
Support vector machine and global exploitation
Title Handling imbalanced data in intrusion detection using time weighted Adaboost support vector machine classifier and crossover boosted Dwarf Mongoose Optimization algorithm
URI https://dx.doi.org/10.1016/j.asoc.2024.112327
Volume 167
WOSCitedRecordID wos001344312900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016928
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FLQcuvBHlpT1wW7ly_PYxLUUBpILUIOVmre116jR2IsdOy1_iP_FfmNmHE6WoAiQuVmJ7d53Mtzuz4_lmCHkXBSKU9DNMFmV5IhMW50PHKjxMr-R6bh6rYhPh-Xk0ncZfB4OfhguzWYR1Hd3cxKv_Kmo4B8JG6uxfiLvvFE7AZxA6HEHscPwjwY8xb4JkqlQpxi3iC36MA0XPRlkjxwIlnotWqCrhnfQWYI15di39pHD_KAdsLNctW3crNNDZRjr3WSVDLwXL0OYuC2SqSF4cqlqMBWWyFXTw_po3BS4YsyUGxH-BhanSjE_GF7NlU7aX1a5hbKzhNagFGefetUapquCDOm9A4V7xRnlsx6KCH9de8h3EdDOxVlc_87pcNeX37VWuuG8X3ZyzU8BpdwV7b77qYAL0DvETTIMuixyzk0s-4xv8hn3VHftWcTaqu10niePtBZzcZu-oxT6ILC_WLlCjDVR1kFuaRTk55sccJs0xDoHkK1flNdjL2H2BHWO_YC2BdYU1lQ-d0I9h0T0cfTybfupfcwWxLP7bP4hmdakAxP2Rfm857VhDk0fkgd7G0JGC32MyEPUT8tCUCKFaYzwlPwwa6RaNFNFIy5r2aKQ9GqlEI0U0UoNGatBINRqpQiPVaKRbNFIYjfZopBqNVKKRGjTSXTTSHo3PyOTD2eR0bOnyIFbm2nZrpSGPHN-J7azI_MJJwyiF_USe88B1w7TIXA5bdXsostTlrvA9Z5h6sYhimztRYAv3OTmol7V4QaiXOYJHUexHQeBlsc-dHDaenpN6sGTBHv2IDM0_n2Q6dT5WcFkkJkZynqC0EpRWoqR1RFjfZqUSx9x5t28EmmjTV5m0CeDvjnYv_7HdK3J_O01ekwMQt3hD7mWbtlw3bzVMfwFDI-Aw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Handling+imbalanced+data+in+intrusion+detection+using+time+weighted+Adaboost+support+vector+machine+classifier+and+crossover+boosted+Dwarf+Mongoose+Optimization+algorithm&rft.jtitle=Applied+soft+computing&rft.au=Chandrasekaran%2C+Hemalatha&rft.au=Murugesan%2C+Kanipriya&rft.au=Mana%2C+Suja+Cherukullapurath&rft.au=Barathi%2C+Bhagavathi+Kannu+Uma+Anu&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.volume=167&rft_id=info:doi/10.1016%2Fj.asoc.2024.112327&rft.externalDocID=S1568494624011013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon