FluteDB: An efficient and scalable in-memory time series database for sensor-cloud

Recently, with the widespread use of large-scale sensor network, time series data is vastly generated and requires to be processed. However, those traditional databases show their limitations on storage when handling such a large stream data in cloud, and even their actual reliability and availabili...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of parallel and distributed computing Ročník 122; s. 95 - 108
Hlavní autoři: Li, Chen, Li, Bo, Bhuiyan, Md Zakirul Alam, Wang, Lihong, Si, Jinghui, Wei, Guanyu, Li, Jianxin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.12.2018
Témata:
ISSN:0743-7315, 1096-0848
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently, with the widespread use of large-scale sensor network, time series data is vastly generated and requires to be processed. However, those traditional databases show their limitations on storage when handling such a large stream data in cloud, and even their actual reliability and availability are also difficult to be guaranteed. To deal with the problem, this paper proposes FluteDB, an efficient and scalable in-memory time series database for sensor-cloud. We adequately analyze the unique characteristics of time series data and its relevant operations to strike the right balance among efficiency, scalability, resources consumption, reliability and availability. Specifically, on basis of the aggregate analysis of root cause for ongoing time series problems, FluteDB targeted optimizes the strategies for key operations in memory and physical storage, at the expense of partial acceptable data precision and consistency. FluteDB’s enhanced strategies are primarily comprised of Triggered Time Series Merge Tree (TTSM Tree), time series enhanced cache management and corresponding compression algorithms for different data types. The validations of all sub-modules have demonstrated that our improved strategies outperform existing methods in real time series environment significantly. Global experimental results also show that the integrated FluteDB reduces query latency by 17x, improves write rate by 98x and saves about 47% storage resources. The average available service time and recovery rate and degree of FluteDB are competitive with the state-of-the-art reliability and availability strategy in real and simulated faults, which demonstrates FluteDB can provide highly stable large-scale data cloud services. •FluteDB is an efficient and scalable time series database for sensor-cloud.•The index in FluteDB equips flexible storage tricks for time series data.•FluteDB improves efficiency by adjusting disk accesses according to data temperature.•FluteDB optimizes its data encapsulation and fault tolerant strategies.
AbstractList Recently, with the widespread use of large-scale sensor network, time series data is vastly generated and requires to be processed. However, those traditional databases show their limitations on storage when handling such a large stream data in cloud, and even their actual reliability and availability are also difficult to be guaranteed. To deal with the problem, this paper proposes FluteDB, an efficient and scalable in-memory time series database for sensor-cloud. We adequately analyze the unique characteristics of time series data and its relevant operations to strike the right balance among efficiency, scalability, resources consumption, reliability and availability. Specifically, on basis of the aggregate analysis of root cause for ongoing time series problems, FluteDB targeted optimizes the strategies for key operations in memory and physical storage, at the expense of partial acceptable data precision and consistency. FluteDB’s enhanced strategies are primarily comprised of Triggered Time Series Merge Tree (TTSM Tree), time series enhanced cache management and corresponding compression algorithms for different data types. The validations of all sub-modules have demonstrated that our improved strategies outperform existing methods in real time series environment significantly. Global experimental results also show that the integrated FluteDB reduces query latency by 17x, improves write rate by 98x and saves about 47% storage resources. The average available service time and recovery rate and degree of FluteDB are competitive with the state-of-the-art reliability and availability strategy in real and simulated faults, which demonstrates FluteDB can provide highly stable large-scale data cloud services. •FluteDB is an efficient and scalable time series database for sensor-cloud.•The index in FluteDB equips flexible storage tricks for time series data.•FluteDB improves efficiency by adjusting disk accesses according to data temperature.•FluteDB optimizes its data encapsulation and fault tolerant strategies.
Author Li, Chen
Li, Jianxin
Li, Bo
Wei, Guanyu
Wang, Lihong
Si, Jinghui
Bhuiyan, Md Zakirul Alam
Author_xml – sequence: 1
  givenname: Chen
  surname: Li
  fullname: Li, Chen
  email: lichen@act.buaa.edu.cn
  organization: Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing, China
– sequence: 2
  givenname: Bo
  surname: Li
  fullname: Li, Bo
  email: libo@act.buaa.edu.cn
  organization: Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing, China
– sequence: 3
  givenname: Md Zakirul Alam
  surname: Bhuiyan
  fullname: Bhuiyan, Md Zakirul Alam
  email: mbhuiyan3@fordham.edu
  organization: Department of Computer and Information Sciences, Fordham University, Bronx, NY, USA
– sequence: 4
  givenname: Lihong
  surname: Wang
  fullname: Wang, Lihong
  email: wlh@isc.org.cn
  organization: National Internet Emergency Center, Beijing, China
– sequence: 5
  givenname: Jinghui
  surname: Si
  fullname: Si, Jinghui
  email: sijh@act.buaa.edu.cn
  organization: Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing, China
– sequence: 6
  givenname: Guanyu
  surname: Wei
  fullname: Wei, Guanyu
  email: weigy@act.buaa.edu.cn
  organization: Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing, China
– sequence: 7
  givenname: Jianxin
  surname: Li
  fullname: Li, Jianxin
  email: lijx@act.buaa.edu.cn
  organization: Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing, China
BookMark eNp90M1qwzAMwHEzOljb7QV28gskk-06SccuXfcJhcHYzkaxFXBIk2K7g779UrrTDj0JBH-BfjM26YeeGLsVkAsQxV2btztncwmiyqHMQYoLNhWwLDKoFtWETaFcqKxUQl-xWYwtgBC6rKbs86XbJ3p6vOernlPTeOupTxx7x6PFDuuOuO-zLW2HcODJb4lHCp4id5iwxki8GcK46-MQMtsNe3fNLhvsIt38zTn7fnn-Wr9lm4_X9_Vqk1kFkLJaS1GAayRhU6OUugRUVsJS4cJJDZWVQpMSCotF7VxRlU1tl9qi01pWCtWcydNdG4YYAzVmF_wWw8EIMEcV05qjijmqGCjNqDJG1b_I-oTJD30K6Lvz6cMppfGpH0_BxCOWJecD2WTc4M_lvxjVf_k
CitedBy_id crossref_primary_10_1016_j_aei_2023_102224
crossref_primary_10_1016_j_ins_2019_08_064
crossref_primary_10_3390_math9172146
crossref_primary_10_1016_j_bdr_2021_100206
crossref_primary_10_4018_JDM_339915
crossref_primary_10_1016_j_bdr_2021_100256
Cites_doi 10.1109/TPDS.2016.2552174
10.1145/2783258.2783348
10.1007/s00778-005-0171-7
10.1145/146941.146943
10.1109/TNET.2002.803864
10.1007/s11047-015-9536-z
10.1007/s002360050048
10.1109/TR.2013.2270415
10.1145/3035918.3056102
10.1145/954339.954341
10.1145/2213836.2213862
10.1007/978-3-319-72395-2_41
10.1145/568518.568520
10.1109/TIT.1977.1055714
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jpdc.2018.07.021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1096-0848
EndPage 108
ExternalDocumentID 10_1016_j_jpdc_2018_07_021
S0743731518305422
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADHUB
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
E.L
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
TWZ
WUQ
XJT
XOL
XPP
ZMT
ZU3
ZY4
~G-
~G0
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-b52160df2eafba22570a3c2093a4d2508c215e313a64bdd687fbc95cad55283a3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000448232400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0743-7315
IngestDate Sat Nov 29 07:17:08 EST 2025
Tue Nov 18 21:51:50 EST 2025
Fri Feb 23 02:31:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Disaster tolerant
Sensor-cloud
Scalability
Time series
In-memory database
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-b52160df2eafba22570a3c2093a4d2508c215e313a64bdd687fbc95cad55283a3
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_jpdc_2018_07_021
crossref_citationtrail_10_1016_j_jpdc_2018_07_021
elsevier_sciencedirect_doi_10_1016_j_jpdc_2018_07_021
PublicationCentury 2000
PublicationDate December 2018
2018-12-00
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationTitle Journal of parallel and distributed computing
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Tuomas, Scott, Cavallaro, Huang, Justin, Justin, Kaushik (b22) 2015; 8
L. Chen, L. jianxin, S. Jinghui, Z. Yangyang, FluteDB: An Efficient and Dependable Time-Series Database Storage Engine, SpaCCS Workshops, 2017, pp. 446–456.
Stavros, Kushal, Samuel, M. Timothy (b16) 2016; 10
Mario, Hugo J., Fernando, Eric S. (b6) 2017; 16
New York City Taxi Trip Duration, 2017
(Accessed 17 2017).
R. Sean, W. Eric, W. Edmund, A. Ethan, S. Nat, Littletable A time-series database and its uses, in: Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD, 2017, pp. 125–138.
Michael (b8) 2002; 10
C. Yongjie, T. Hanghang, F. Wei, J. Ping, H. Qing, Facets: Fast comprehensive mining of coevolving high-order time series, in: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, pp. 79–88.
TimescaleDB: SQL made scalable for time-series data, 2017.
Stefan, László (b17) 2003; 35
OpenTSDB - A Distributed, Scalable Monitoring System, 2017
Robson E.D., Azzedine, Raed (b13) 2017; 28
Kaushik, Eamonn J., Sharad, Michael (b5) 2002; 27
The world’s most popular open source database, 2017.
Mendel, John K. (b7) 1992; 10
The world’s most advanced open source database, 2017
(Accessed 17 December 2017).
S. Russell, R. Raghu, bLSM: a general purpose log structured merge tree, in: Proceedings of the 2012 ACM International Conference on Management of Data, SIGMOD 2012, pp. 217–228.
Patrick E., Edward, Dieter, Elizabeth J. (b12) 1996; 33
Mostafa A. (b9) 1985; 11
Storage Engine of InfluxData, 2017.
Jacob, Abraham (b4) 1977; 23
Christopher M., Edward, Wai Gen (b2) 2007; 16
Gregory, Liudong, Hanoch, Yuanshun (b3) 2013; 62
Mendel (10.1016/j.jpdc.2018.07.021_b7) 1992; 10
Robson E.D. (10.1016/j.jpdc.2018.07.021_b13) 2017; 28
Jacob (10.1016/j.jpdc.2018.07.021_b4) 1977; 23
Michael (10.1016/j.jpdc.2018.07.021_b8) 2002; 10
10.1016/j.jpdc.2018.07.021_b19
Kaushik (10.1016/j.jpdc.2018.07.021_b5) 2002; 27
10.1016/j.jpdc.2018.07.021_b18
Christopher M. (10.1016/j.jpdc.2018.07.021_b2) 2007; 16
Mostafa A. (10.1016/j.jpdc.2018.07.021_b9) 1985; 11
Patrick E. (10.1016/j.jpdc.2018.07.021_b12) 1996; 33
10.1016/j.jpdc.2018.07.021_b20
Mario (10.1016/j.jpdc.2018.07.021_b6) 2017; 16
10.1016/j.jpdc.2018.07.021_b11
Stavros (10.1016/j.jpdc.2018.07.021_b16) 2016; 10
Gregory (10.1016/j.jpdc.2018.07.021_b3) 2013; 62
10.1016/j.jpdc.2018.07.021_b10
10.1016/j.jpdc.2018.07.021_b21
Tuomas (10.1016/j.jpdc.2018.07.021_b22) 2015; 8
10.1016/j.jpdc.2018.07.021_b23
10.1016/j.jpdc.2018.07.021_b1
10.1016/j.jpdc.2018.07.021_b15
Stefan (10.1016/j.jpdc.2018.07.021_b17) 2003; 35
10.1016/j.jpdc.2018.07.021_b14
References_xml – volume: 23
  start-page: 337
  year: 1977
  end-page: 343
  ident: b4
  article-title: A universal algorithm for sequential data compression
  publication-title: IEEE Trans. Inform. Theory
– volume: 10
  start-page: 349
  year: 2016
  end-page: 360
  ident: b16
  article-title: The tiledb array data storage manager
  publication-title: Publ. Very Large Database Endowment (PVLDB)
– reference: Storage Engine of InfluxData, 2017.
– reference: TimescaleDB: SQL made scalable for time-series data, 2017.
– reference: C. Yongjie, T. Hanghang, F. Wei, J. Ping, H. Qing, Facets: Fast comprehensive mining of coevolving high-order time series, in: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, pp. 79–88.
– volume: 10
  start-page: 26
  year: 1992
  end-page: 52
  ident: b7
  article-title: The design and implementation of a log-structured file system
  publication-title: ACM Trans. Comput. Syst.
– reference: . (Accessed 17 2017).
– reference: . (Accessed 17 December 2017).
– volume: 28
  start-page: 215
  year: 2017
  end-page: 229
  ident: b13
  article-title: Time series-oriented load prediction model and migration policies for distributed simulation systems
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 11
  start-page: 1047
  year: 1985
  end-page: 1058
  ident: b9
  article-title: Data compression in scientific and statistical databases
  publication-title: IEEE Trans. Softw. Eng.
– reference: R. Sean, W. Eric, W. Edmund, A. Ethan, S. Nat, Littletable A time-series database and its uses, in: Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD, 2017, pp. 125–138.
– reference: The world’s most popular open source database, 2017.
– reference: New York City Taxi Trip Duration, 2017,
– reference: S. Russell, R. Raghu, bLSM: a general purpose log structured merge tree, in: Proceedings of the 2012 ACM International Conference on Management of Data, SIGMOD 2012, pp. 217–228.
– volume: 10
  start-page: 604
  year: 2002
  end-page: 612
  ident: b8
  article-title: Compressed bloom filters
  publication-title: IEEE/ACM Trans. Netw.
– volume: 35
  start-page: 374
  year: 2003
  end-page: 398
  ident: b17
  article-title: A survey of web cache replacement strategies
  publication-title: ACM Comput. Surv.
– reference: OpenTSDB - A Distributed, Scalable Monitoring System, 2017,
– volume: 16
  start-page: 165
  year: 2017
  end-page: 174
  ident: b6
  article-title: Time series forecasting with genetic programming
  publication-title: Nat. Comput.
– reference: The world’s most advanced open source database, 2017,
– volume: 27
  start-page: 188
  year: 2002
  end-page: 228
  ident: b5
  article-title: Locally adaptive dimensionality reduction for indexing large time series databases
  publication-title: ACM Trans. Database Syst.
– volume: 62
  start-page: 637
  year: 2013
  end-page: 647
  ident: b3
  article-title: Reliability of series-parallel systems with random failure propagation time
  publication-title: IEEE Trans. Reliab.
– volume: 33
  start-page: 351
  year: 1996
  end-page: 385
  ident: b12
  article-title: The log-structured merge-tree (LSM-Tree)
  publication-title: Acta Inf.
– volume: 16
  start-page: 417
  year: 2007
  end-page: 437
  ident: b2
  article-title: The partitioned exponential file for database storage management
  publication-title: VLDB J.
– volume: 8
  start-page: 1816
  year: 2015
  end-page: 1827
  ident: b22
  article-title: Gorilla: a fast, scalable, in-memory time series database
  publication-title: Publ. Very Large Database Endowment (PVLDB)
– reference: L. Chen, L. jianxin, S. Jinghui, Z. Yangyang, FluteDB: An Efficient and Dependable Time-Series Database Storage Engine, SpaCCS Workshops, 2017, pp. 446–456.
– volume: 28
  start-page: 215
  issue: 1
  year: 2017
  ident: 10.1016/j.jpdc.2018.07.021_b13
  article-title: Time series-oriented load prediction model and migration policies for distributed simulation systems
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2016.2552174
– ident: 10.1016/j.jpdc.2018.07.021_b23
  doi: 10.1145/2783258.2783348
– volume: 16
  start-page: 417
  issue: 4
  year: 2007
  ident: 10.1016/j.jpdc.2018.07.021_b2
  article-title: The partitioned exponential file for database storage management
  publication-title: VLDB J.
  doi: 10.1007/s00778-005-0171-7
– volume: 10
  start-page: 26
  issue: 1
  year: 1992
  ident: 10.1016/j.jpdc.2018.07.021_b7
  article-title: The design and implementation of a log-structured file system
  publication-title: ACM Trans. Comput. Syst.
  doi: 10.1145/146941.146943
– ident: 10.1016/j.jpdc.2018.07.021_b19
– ident: 10.1016/j.jpdc.2018.07.021_b18
– volume: 10
  start-page: 604
  issue: 5
  year: 2002
  ident: 10.1016/j.jpdc.2018.07.021_b8
  article-title: Compressed bloom filters
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2002.803864
– volume: 16
  start-page: 165
  issue: 1
  year: 2017
  ident: 10.1016/j.jpdc.2018.07.021_b6
  article-title: Time series forecasting with genetic programming
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-015-9536-z
– volume: 8
  start-page: 1816
  issue: 12
  year: 2015
  ident: 10.1016/j.jpdc.2018.07.021_b22
  article-title: Gorilla: a fast, scalable, in-memory time series database
  publication-title: Publ. Very Large Database Endowment (PVLDB)
– volume: 33
  start-page: 351
  issue: 4
  year: 1996
  ident: 10.1016/j.jpdc.2018.07.021_b12
  article-title: The log-structured merge-tree (LSM-Tree)
  publication-title: Acta Inf.
  doi: 10.1007/s002360050048
– volume: 62
  start-page: 637
  issue: 3
  year: 2013
  ident: 10.1016/j.jpdc.2018.07.021_b3
  article-title: Reliability of series-parallel systems with random failure propagation time
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2013.2270415
– ident: 10.1016/j.jpdc.2018.07.021_b15
  doi: 10.1145/3035918.3056102
– ident: 10.1016/j.jpdc.2018.07.021_b21
– volume: 10
  start-page: 349
  issue: 4
  year: 2016
  ident: 10.1016/j.jpdc.2018.07.021_b16
  article-title: The tiledb array data storage manager
  publication-title: Publ. Very Large Database Endowment (PVLDB)
– volume: 35
  start-page: 374
  issue: 4
  year: 2003
  ident: 10.1016/j.jpdc.2018.07.021_b17
  article-title: A survey of web cache replacement strategies
  publication-title: ACM Comput. Surv.
  doi: 10.1145/954339.954341
– ident: 10.1016/j.jpdc.2018.07.021_b20
– ident: 10.1016/j.jpdc.2018.07.021_b14
  doi: 10.1145/2213836.2213862
– ident: 10.1016/j.jpdc.2018.07.021_b1
  doi: 10.1007/978-3-319-72395-2_41
– volume: 27
  start-page: 188
  issue: 2
  year: 2002
  ident: 10.1016/j.jpdc.2018.07.021_b5
  article-title: Locally adaptive dimensionality reduction for indexing large time series databases
  publication-title: ACM Trans. Database Syst.
  doi: 10.1145/568518.568520
– ident: 10.1016/j.jpdc.2018.07.021_b10
– ident: 10.1016/j.jpdc.2018.07.021_b11
– volume: 11
  start-page: 1047
  issue: 10
  year: 1985
  ident: 10.1016/j.jpdc.2018.07.021_b9
  article-title: Data compression in scientific and statistical databases
  publication-title: IEEE Trans. Softw. Eng.
– volume: 23
  start-page: 337
  issue: 3
  year: 1977
  ident: 10.1016/j.jpdc.2018.07.021_b4
  article-title: A universal algorithm for sequential data compression
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1977.1055714
SSID ssj0011578
Score 2.2412007
Snippet Recently, with the widespread use of large-scale sensor network, time series data is vastly generated and requires to be processed. However, those traditional...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 95
SubjectTerms Disaster tolerant
In-memory database
Scalability
Sensor-cloud
Time series
Title FluteDB: An efficient and scalable in-memory time series database for sensor-cloud
URI https://dx.doi.org/10.1016/j.jpdc.2018.07.021
Volume 122
WOSCitedRecordID wos000448232400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0848
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011578
  issn: 0743-7315
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FLQcuvBHlpT1wi4y8fmTX3FJoBahUCBUp4mKtd9eqI9eOkrhqfwT_mRnvrpMWqOiBixWt4onj78vsZDzzDSFvMs4MU0wHSnMVJKooAqmZCeIYxc7g96Rlj_QRPz4Ws1n2dTT66XthzmveNOLiIlv8V6hhDcDG1tlbwD0YhQV4DaDDEWCH4z8BfwjGzYd9l_EzvUSELyRfASJ9r1TVBGdYY3vZD5cf44WZ1RjLRXFb62sPV_AHt10Gqm67K8M8t0JY1A2va2PVBjRK8OL0LNM3yi26td8Vsd6nss_2N41ndmW_HfIBp111abOxX_T4BwS2yw7YU8uzTc7f-qWj6rR1ll26gomt0g_r1VATlce2h3NwwbY32TlRO3XTbcesl3343dPbpMP87XyhUYmSiV6D1XZbX5XVvrbdDUWIvr5tnqONHG3kIc9DlCXYjXiagZPcnX46mH0eHkux1G7t_ju4LixbMHj9Sv4c6WxFLycPyD2HGZ1aujwkI9M8Ivf9SA_qPPxj8s2x5x2dNnTgDgV8qecOHbhDkTvUcod67lDgDt3mzhPy_fDg5P3HwI3dCFQchuuggIhuEuoyMrIsZIRjDmWsojCLZaIhYhYKwkQTs1hOkkLrieBlobJUSZ2iUpCMn5Kdpm3MM0LDspSZwCEHIkkilWQcc-6aCzGRUVGEe4T5W5Qrp0mPo1Hq_O_g7JHxcM7CKrLc-O7U3_ncxZQ2VsyBSDec9_xWn_KC3N1w_SXZWS8784rcUefrarV87Vj0C-d-mCk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FluteDB%3A+An+efficient+and+scalable+in-memory+time+series+database+for+sensor-cloud&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Li%2C+Chen&rft.au=Li%2C+Bo&rft.au=Bhuiyan%2C+Md+Zakirul+Alam&rft.au=Wang%2C+Lihong&rft.date=2018-12-01&rft.issn=0743-7315&rft.volume=122&rft.spage=95&rft.epage=108&rft_id=info:doi/10.1016%2Fj.jpdc.2018.07.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpdc_2018_07_021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon