GaitSCM: Causal representation learning for gait recognition

Gait recognition is a promising biometric technology that aims to identify the target subject via walking pattern. Most existing appearance-based methods focus on learning discriminative spatio-temporal representations from gait silhouettes. However, these methods pay less attention to probing the c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer vision and image understanding Ročník 243; s. 103995
Hlavní autori: Huo, Wei, Wang, Ke, Tang, Jun, Wang, Nian, Liang, Dong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.06.2024
Predmet:
ISSN:1077-3142, 1090-235X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Gait recognition is a promising biometric technology that aims to identify the target subject via walking pattern. Most existing appearance-based methods focus on learning discriminative spatio-temporal representations from gait silhouettes. However, these methods pay less attention to probing the causality between identity factors and identity labels, which often mislead the model to learn gait representations that are susceptible to identity-irrelevant factors. In this paper, we attribute the cause that leads to the decline of model generalization under different external conditions to identity-irrelevant factors. We formulate the causalities among the identity factors, identity-irrelevant factors, and identity labels as a structural causal model (SCM). We accordingly propose a novel gait recognition framework named GaitSCM to learn covariate invariant gait representations, which is mainly composed of three components, including feature extraction module, feature disentanglement module, and backdoor adjustment. Specifically, we design a feature extractor with regard to the movement patterns of different body parts to learn fine-grained gait motion features, and then present a two-branch feature decoupling module to disentangle identity features and identity-irrelevant features with the aid of the classification confusion loss. To relieve the negative effect of identity-irrelevant factors, we develop a backdoor adjustment strategy to eliminate spurious associations between identity and identity-irrelevant features, which further facilitates the proposed framework to generate more powerful identity representations. Extensive experiments conducted on two public datasets validate the effectiveness of our method. The average Rank-1 can reach 93.2% and 90.4% on CASIA-B and OU-MVLP datasets, respectively, which verifies the superiority of GaitSCM. Source code is released at: https://github.com/HuoweiCode/GaitSCM. •A novel causal representation learning framework GaitSCM for gait recognition is proposed.•A causal analysis based on SCM reveals the spurious relation in gait recognition.•Feature decoupling and backdoor adjustment are used to perform causal intervention.•GaitSCM achieves competitive results on the CASIA-B and OU-MVLP datasets.
AbstractList Gait recognition is a promising biometric technology that aims to identify the target subject via walking pattern. Most existing appearance-based methods focus on learning discriminative spatio-temporal representations from gait silhouettes. However, these methods pay less attention to probing the causality between identity factors and identity labels, which often mislead the model to learn gait representations that are susceptible to identity-irrelevant factors. In this paper, we attribute the cause that leads to the decline of model generalization under different external conditions to identity-irrelevant factors. We formulate the causalities among the identity factors, identity-irrelevant factors, and identity labels as a structural causal model (SCM). We accordingly propose a novel gait recognition framework named GaitSCM to learn covariate invariant gait representations, which is mainly composed of three components, including feature extraction module, feature disentanglement module, and backdoor adjustment. Specifically, we design a feature extractor with regard to the movement patterns of different body parts to learn fine-grained gait motion features, and then present a two-branch feature decoupling module to disentangle identity features and identity-irrelevant features with the aid of the classification confusion loss. To relieve the negative effect of identity-irrelevant factors, we develop a backdoor adjustment strategy to eliminate spurious associations between identity and identity-irrelevant features, which further facilitates the proposed framework to generate more powerful identity representations. Extensive experiments conducted on two public datasets validate the effectiveness of our method. The average Rank-1 can reach 93.2% and 90.4% on CASIA-B and OU-MVLP datasets, respectively, which verifies the superiority of GaitSCM. Source code is released at: https://github.com/HuoweiCode/GaitSCM. •A novel causal representation learning framework GaitSCM for gait recognition is proposed.•A causal analysis based on SCM reveals the spurious relation in gait recognition.•Feature decoupling and backdoor adjustment are used to perform causal intervention.•GaitSCM achieves competitive results on the CASIA-B and OU-MVLP datasets.
ArticleNumber 103995
Author Tang, Jun
Liang, Dong
Wang, Nian
Huo, Wei
Wang, Ke
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-6562-6018
  surname: Huo
  fullname: Huo, Wei
  organization: School of Electronic and Information Engineering, Anhui University, Hefei 230601, China
– sequence: 2
  givenname: Ke
  orcidid: 0000-0001-5083-7552
  surname: Wang
  fullname: Wang, Ke
  organization: School of Internet, Anhui University, Hefei 230039, China
– sequence: 3
  givenname: Jun
  orcidid: 0000-0001-8564-6510
  surname: Tang
  fullname: Tang, Jun
  email: tangjun@ahu.edu.cn
  organization: School of Electronic and Information Engineering, Anhui University, Hefei 230601, China
– sequence: 4
  givenname: Nian
  orcidid: 0000-0002-3731-5626
  surname: Wang
  fullname: Wang, Nian
  organization: School of Electronic and Information Engineering, Anhui University, Hefei 230601, China
– sequence: 5
  givenname: Dong
  surname: Liang
  fullname: Liang, Dong
  organization: School of Internet, Anhui University, Hefei 230039, China
BookMark eNp9kM9KAzEQxoNUsK2-gKd9ga2TZP9FepFFq1DxoIK3kM1OSsqaLcm24NubZT156GGYYWZ-w3zfgsxc75CQWworCrS426_0yR5XDFgWG1yI_ILMKQhIGc-_ZmNdlimnGbsiixD2AJRmgs7JeqPs8F6_3ie1OgbVJR4PHgO6QQ22d0mHyjvrdonpfbKLu3FB9ztnx-k1uTSqC3jzl5fk8-nxo35Ot2-bl_phm2oOMKRNZlRFuYAYORYIxghQZdGWRjCa09JkrMmgaascDK-qQje5blExjShMAXxJqumu9n0IHo3Udvpv8Mp2koIcXZB7ObogRxfk5EJE2T_04O238j_nofUEYRR1suhl0BadxtZG9YNse3sO_wX9wHi3
CitedBy_id crossref_primary_10_1016_j_cviu_2025_104463
crossref_primary_10_1109_ACCESS_2024_3513541
crossref_primary_10_1007_s11760_024_03765_2
Cites_doi 10.1109/CVPR52729.2023.00936
10.1109/ICCV48922.2021.01438
10.1016/j.patcog.2021.108453
10.1109/CVPR52688.2022.01138
10.1609/aaai.v36i1.19983
10.1109/CVPR46437.2021.00898
10.1109/CVPR52688.2022.00684
10.1145/3503161.3547936
10.1016/j.ins.2023.03.145
10.1109/TPAMI.2022.3223784
10.1109/TCSVT.2003.821972
10.1016/j.patrec.2019.05.012
10.1109/CVPR42600.2020.01332
10.1109/CVPRW56347.2022.00163
10.1609/aaai.v33i01.33018126
10.1109/TIP.2021.3055936
10.1109/TPAMI.2006.38
10.1109/CVPRW.2017.80
10.1109/CVPR52688.2022.01751
10.1109/TPAMI.2020.2998790
10.1609/aaai.v35i15.17630
10.1016/j.patcog.2019.107069
10.1109/TIFS.2018.2844819
10.1109/CVPR52688.2022.01961
10.1609/aaai.v35i13.17437
10.1145/3394171.3413861
10.1109/CVPR.2019.00483
10.1109/TIP.2022.3229621
10.1109/CVPR42600.2020.01423
10.1016/j.patcog.2003.09.012
10.1109/TCSVT.2023.3241651
10.1109/TCSVT.2022.3175959
10.1109/ICCV48922.2021.01267
10.1109/TCSVT.2020.2975671
10.1109/CVPR.2019.00484
10.1109/ICCVW54120.2021.00456
10.1109/TPAMI.2016.2545669
10.1017/S0266466603004109
10.1609/aaai.v36i3.20271
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.cviu.2024.103995
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1090-235X
ExternalDocumentID 10_1016_j_cviu_2024_103995
S1077314224000766
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HF~
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-b4fa813901395e6e0ff90a76d7f921517f42b40bd850f3886cb5cdea2cee9f603
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001223459200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1077-3142
IngestDate Tue Nov 18 21:02:58 EST 2025
Sat Nov 29 06:43:57 EST 2025
Sat May 04 15:43:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Causal representation learning
Global and local feature extractor
Disentangled representation learning
Gait recognition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-b4fa813901395e6e0ff90a76d7f921517f42b40bd850f3886cb5cdea2cee9f603
ORCID 0000-0001-8564-6510
0000-0001-5083-7552
0000-0002-3731-5626
0000-0002-6562-6018
ParticipantIDs crossref_citationtrail_10_1016_j_cviu_2024_103995
crossref_primary_10_1016_j_cviu_2024_103995
elsevier_sciencedirect_doi_10_1016_j_cviu_2024_103995
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Computer vision and image understanding
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Van der Maaten, Hinton (b26) 2008; 9
Wang, Ning, Tan, Hu (b35) 2004; 14
Chen, Wang, Zheng, Zeng, Zou, Cui (b5) 2023; 636
Takemura, Makihara, Muramatsu, Echigo, Yagi (b31) 2018; 10
Xu, Liu, Sun, Yang, Wang, Wang, Fu (b38) 2022; 45
Yang, Zhang, Cai (b41) 2021; 45
Wu, Huang, Wang, Wang, Tan (b37) 2016; 39
Yue, Zhang, Sun, Hua (b45) 2020; 33
Liu, B., Wang, D., Yang, X., Zhou, Y., Yao, R., Shao, Z., Zhao, J., 2022. Show, deconfound and tell: Image captioning with causal inference. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 18041–18050.
Yu, S., Chen, H., Garcia Reyes, E.B., Poh, N., 2017. Gaitgan: Invariant gait feature extraction using generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 30–37.
He, Zhang, Shan, Wang (b12) 2018; 14
Lin, B., Zhang, S., Bao, F., 2020. Gait recognition with multiple-temporal-scale 3d convolutional neural network. In: Proceedings of the 28th ACM International Conference on Multimedia. pp. 3054–3062.
Li, X., Makihara, Y., Xu, C., Yagi, Y., Ren, M., 2020. Gait recognition via semi-supervised disentangled representation learning to identity and covariate features. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 13309–13319.
Chen, Luo, Weng, Luo, Li, Tian (b3) 2021; 30
Zhu, B., Niu, Y., Hua, X.-S., Zhang, H., 2022. Cross-domain empirical risk minimization for unbiased long-tailed classification. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36, pp. 3589–3597.
Chen, Z., Tian, Z., Zhu, J., Li, C., Du, S., 2022b. C-CAM: Causal CAM for Weakly Supervised Semantic Segmentation on Medical Image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11676–11685.
Teepe, T., Gilg, J., Herzog, F., Hörmann, S., Rigoll, G., 2022. Towards a deeper understanding of skeleton-based gait recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1569–1577.
Huang, Ben, Gong, Zhang, Yan, Wu (b15) 2022; 32
Han, Bhanu (b11) 2005; 28
Liao, Yu, An, Huang (b22) 2020; 98
Wang, Gao, Xu (b34) 2022; 45
Glymour, Pearl, Jewell (b10) 2016
Fan, C., Peng, Y., Cao, C., Liu, X., Hou, S., Chi, J., Huang, Y., Li, Q., He, Z., 2020. Gaitpart: Temporal part-based model for gait recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 14225–14233.
Fan, C., Liang, J., Shen, C., Hou, S., Huang, Y., Yu, S., 2023. OpenGait: Revisiting Gait Recognition Towards Better Practicality. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9707–9716.
Wang, Yang, Wang (b36) 2021; 34
Zhang, Tran, Liu, Liu (b47) 2020; 44
Chao, H., He, Y., Zhang, J., Feng, J., 2019. Gaitset: Regarding gait as a set for cross-view gait recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33, pp. 8126–8133.
Chen, Y., Yang, X., Cham, T.-J., Cai, J., 2022a. Towards unbiased visual emotion recognition via causal intervention. In: Proceedings of the 30th ACM International Conference on Multimedia. pp. 60–69.
Zhang, Z., Tran, L., Yin, X., Atoum, Y., Liu, X., Wan, J., Wang, N., 2019b. Gait recognition via disentangled representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4710–4719.
Zhang, S., Wang, Y., Li, A., 2021. Cross-view gait recognition with deep universal linear embeddings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9095–9104.
Seitzer, Schölkopf, Martius (b29) 2021; 34
Yao, Kusakunniran, Wu, Zhang, Tang, Yang (b42) 2021; 150
Xu, Makihara, Li, Yagi, Lu (b39) 2020; 31
Li, B., Han, Z., Li, H., Fu, H., Zhang, C., 2022a. Trustworthy long-tailed classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6970–6979.
Hu, Y., Wu, Y., Zhang, L., Wu, X., 2021. A generative adversarial framework for bounding confounded causal effects. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35, pp. 12104–12112.
Huang, J., Qin, Y., Qi, J., Sun, Q., Zhang, H., 2022a. Deconfounded visual grounding. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36, pp. 998–1006.
Hermans, Beyer, Leibe (b13) 2017
Huang, X., Zhu, D., Wang, H., Wang, X., Yang, B., He, B., Liu, W., Feng, B., 2021. Context-sensitive temporal feature learning for gait recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 12909–12918.
Lin, B., Zhang, S., Yu, X., 2021. Gait recognition via effective global-local feature representation and local temporal aggregation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 14648–14656.
Zhang, K., Luo, W., Ma, L., Liu, W., Li, H., 2019a. Learning joint gait representation via quintuplet loss minimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4700–4709.
Zhang, Zhang, Li, Jia, Wang, Tan (b50) 2022; 32
Li, Qiu, Zhao, Zhan, Chen, Wei, Huang (b21) 2022; 124
Zhang, Zhang, Tang, Hua, Sun (b51) 2020; 33
Chai, T., Li, A., Zhang, S., Li, Z., Wang, Y., 2022. Lagrange motion analysis and view embeddings for improved gait recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 20249–20258.
Tang, Tao, Qi, Liu, Zhang (b32) 2022
Yam, Nixon, Carter (b40) 2004; 37
Neuberg (b27) 2003; 19
Pearl (b28) 2000
Dang, Luo, Jia, Yan, Chang, Zheng (b7) 2023; 33
Yu, Tan, Tan (b44) 2006; Vol. 4
Staliūnaitė, I., Gorinski, P.J., Iacobacci, I., 2021. Improving commonsense causal reasoning by adversarial training and data augmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35, pp. 13834–13842.
Li, X., Makihara, Y., Xu, C., Yagi, Y., 2021. End-to-end model-based gait recognition using synchronized multi-view pose constraint. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 4106–4115.
10.1016/j.cviu.2024.103995_b24
Van der Maaten (10.1016/j.cviu.2024.103995_b26) 2008; 9
10.1016/j.cviu.2024.103995_b23
Xu (10.1016/j.cviu.2024.103995_b38) 2022; 45
10.1016/j.cviu.2024.103995_b25
10.1016/j.cviu.2024.103995_b20
Han (10.1016/j.cviu.2024.103995_b11) 2005; 28
Takemura (10.1016/j.cviu.2024.103995_b31) 2018; 10
Seitzer (10.1016/j.cviu.2024.103995_b29) 2021; 34
Yu (10.1016/j.cviu.2024.103995_b44) 2006; Vol. 4
Yue (10.1016/j.cviu.2024.103995_b45) 2020; 33
10.1016/j.cviu.2024.103995_b1
10.1016/j.cviu.2024.103995_b2
Wu (10.1016/j.cviu.2024.103995_b37) 2016; 39
10.1016/j.cviu.2024.103995_b4
Hermans (10.1016/j.cviu.2024.103995_b13) 2017
Wang (10.1016/j.cviu.2024.103995_b36) 2021; 34
10.1016/j.cviu.2024.103995_b6
10.1016/j.cviu.2024.103995_b8
10.1016/j.cviu.2024.103995_b9
Glymour (10.1016/j.cviu.2024.103995_b10) 2016
10.1016/j.cviu.2024.103995_b30
10.1016/j.cviu.2024.103995_b33
Wang (10.1016/j.cviu.2024.103995_b35) 2004; 14
Pearl (10.1016/j.cviu.2024.103995_b28) 2000
Zhang (10.1016/j.cviu.2024.103995_b51) 2020; 33
Xu (10.1016/j.cviu.2024.103995_b39) 2020; 31
Zhang (10.1016/j.cviu.2024.103995_b47) 2020; 44
Zhang (10.1016/j.cviu.2024.103995_b50) 2022; 32
He (10.1016/j.cviu.2024.103995_b12) 2018; 14
10.1016/j.cviu.2024.103995_b46
Neuberg (10.1016/j.cviu.2024.103995_b27) 2003; 19
10.1016/j.cviu.2024.103995_b48
Yang (10.1016/j.cviu.2024.103995_b41) 2021; 45
10.1016/j.cviu.2024.103995_b43
Huang (10.1016/j.cviu.2024.103995_b15) 2022; 32
10.1016/j.cviu.2024.103995_b49
Chen (10.1016/j.cviu.2024.103995_b3) 2021; 30
Dang (10.1016/j.cviu.2024.103995_b7) 2023; 33
Yam (10.1016/j.cviu.2024.103995_b40) 2004; 37
10.1016/j.cviu.2024.103995_b14
10.1016/j.cviu.2024.103995_b52
Chen (10.1016/j.cviu.2024.103995_b5) 2023; 636
10.1016/j.cviu.2024.103995_b17
10.1016/j.cviu.2024.103995_b16
10.1016/j.cviu.2024.103995_b19
10.1016/j.cviu.2024.103995_b18
Tang (10.1016/j.cviu.2024.103995_b32) 2022
Wang (10.1016/j.cviu.2024.103995_b34) 2022; 45
Liao (10.1016/j.cviu.2024.103995_b22) 2020; 98
Yao (10.1016/j.cviu.2024.103995_b42) 2021; 150
Li (10.1016/j.cviu.2024.103995_b21) 2022; 124
References_xml – volume: 45
  start-page: 7639
  year: 2022
  end-page: 7653
  ident: b38
  article-title: PatchMix augmentation to identify causal features in few-shot learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 98
  year: 2020
  ident: b22
  article-title: A model-based gait recognition method with body pose and human prior knowledge
  publication-title: Pattern Recognit.
– volume: 636
  year: 2023
  ident: b5
  article-title: GaitAMR: Cross-view gait recognition via aggregated multi-feature representation
  publication-title: Inform. Sci.
– volume: 45
  start-page: 3933
  year: 2022
  end-page: 3948
  ident: b34
  article-title: Weakly-supervised video object grounding via causal intervention
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Yu, S., Chen, H., Garcia Reyes, E.B., Poh, N., 2017. Gaitgan: Invariant gait feature extraction using generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 30–37.
– reference: Li, X., Makihara, Y., Xu, C., Yagi, Y., 2021. End-to-end model-based gait recognition using synchronized multi-view pose constraint. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 4106–4115.
– reference: Chai, T., Li, A., Zhang, S., Li, Z., Wang, Y., 2022. Lagrange motion analysis and view embeddings for improved gait recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 20249–20258.
– volume: 33
  start-page: 655
  year: 2020
  end-page: 666
  ident: b51
  article-title: Causal intervention for weakly-supervised semantic segmentation
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: Lin, B., Zhang, S., Yu, X., 2021. Gait recognition via effective global-local feature representation and local temporal aggregation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 14648–14656.
– reference: Fan, C., Peng, Y., Cao, C., Liu, X., Hou, S., Chi, J., Huang, Y., Li, Q., He, Z., 2020. Gaitpart: Temporal part-based model for gait recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 14225–14233.
– reference: Huang, X., Zhu, D., Wang, H., Wang, X., Yang, B., He, B., Liu, W., Feng, B., 2021. Context-sensitive temporal feature learning for gait recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 12909–12918.
– volume: 30
  start-page: 3041
  year: 2021
  end-page: 3055
  ident: b3
  article-title: Multi-view gait image generation for cross-view gait recognition
  publication-title: IEEE Trans. Image Process.
– volume: 32
  start-page: 6967
  year: 2022
  end-page: 6980
  ident: b15
  article-title: Enhanced spatial-temporal salience for cross-view gait recognition
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 709
  year: 2022
  end-page: 726
  ident: b32
  article-title: Invariant feature learning for generalized long-tailed classification
  publication-title: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXIV
– volume: 37
  start-page: 1057
  year: 2004
  end-page: 1072
  ident: b40
  article-title: Automated person recognition by walking and running via model-based approaches
  publication-title: Pattern Recognit.
– volume: 34
  start-page: 22905
  year: 2021
  end-page: 22918
  ident: b29
  article-title: Causal influence detection for improving efficiency in reinforcement learning
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: Teepe, T., Gilg, J., Herzog, F., Hörmann, S., Rigoll, G., 2022. Towards a deeper understanding of skeleton-based gait recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1569–1577.
– volume: 44
  start-page: 345
  year: 2020
  end-page: 360
  ident: b47
  article-title: On learning disentangled representations for gait recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Huang, J., Qin, Y., Qi, J., Sun, Q., Zhang, H., 2022a. Deconfounded visual grounding. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36, pp. 998–1006.
– reference: Zhang, K., Luo, W., Ma, L., Liu, W., Li, H., 2019a. Learning joint gait representation via quintuplet loss minimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4700–4709.
– reference: Zhang, S., Wang, Y., Li, A., 2021. Cross-view gait recognition with deep universal linear embeddings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9095–9104.
– reference: Fan, C., Liang, J., Shen, C., Hou, S., Huang, Y., Yu, S., 2023. OpenGait: Revisiting Gait Recognition Towards Better Practicality. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9707–9716.
– year: 2016
  ident: b10
  article-title: Causal Inference in Statistics: A Primer
– volume: 28
  start-page: 316
  year: 2005
  end-page: 322
  ident: b11
  article-title: Individual recognition using gait energy image
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Chao, H., He, Y., Zhang, J., Feng, J., 2019. Gaitset: Regarding gait as a set for cross-view gait recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33, pp. 8126–8133.
– reference: Chen, Y., Yang, X., Cham, T.-J., Cai, J., 2022a. Towards unbiased visual emotion recognition via causal intervention. In: Proceedings of the 30th ACM International Conference on Multimedia. pp. 60–69.
– reference: Li, X., Makihara, Y., Xu, C., Yagi, Y., Ren, M., 2020. Gait recognition via semi-supervised disentangled representation learning to identity and covariate features. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 13309–13319.
– volume: 32
  start-page: 509
  year: 2022
  end-page: 523
  ident: b50
  article-title: Learning domain invariant representations for generalizable person re-identification
  publication-title: IEEE Trans. Image Process.
– volume: 34
  start-page: 21164
  year: 2021
  end-page: 21175
  ident: b36
  article-title: Provably efficient causal reinforcement learning with confounded observational data
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 19
  start-page: 675
  year: 2003
  end-page: 685
  ident: b27
  article-title: Causality: models, reasoning, and inference, by judea pearl, cambridge university press, 2000
  publication-title: Econom. Theory
– volume: 33
  start-page: 2734
  year: 2020
  end-page: 2746
  ident: b45
  article-title: Interventional few-shot learning
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: Lin, B., Zhang, S., Bao, F., 2020. Gait recognition with multiple-temporal-scale 3d convolutional neural network. In: Proceedings of the 28th ACM International Conference on Multimedia. pp. 3054–3062.
– reference: Hu, Y., Wu, Y., Zhang, L., Wu, X., 2021. A generative adversarial framework for bounding confounded causal effects. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35, pp. 12104–12112.
– volume: 150
  start-page: 289
  year: 2021
  end-page: 296
  ident: b42
  article-title: Robust gait recognition using hybrid descriptors based on skeleton gait energy image
  publication-title: Pattern Recognit. Lett.
– volume: Vol. 4
  start-page: 441
  year: 2006
  end-page: 444
  ident: b44
  article-title: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition
  publication-title: 18th International Conference on Pattern Recognition
– reference: Zhang, Z., Tran, L., Yin, X., Atoum, Y., Liu, X., Wan, J., Wang, N., 2019b. Gait recognition via disentangled representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4710–4719.
– volume: 14
  start-page: 102
  year: 2018
  end-page: 113
  ident: b12
  article-title: Multi-task GANs for view-specific feature learning in gait recognition
  publication-title: IEEE Trans. Inf. Forensics Secur.
– reference: Chen, Z., Tian, Z., Zhu, J., Li, C., Du, S., 2022b. C-CAM: Causal CAM for Weakly Supervised Semantic Segmentation on Medical Image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11676–11685.
– volume: 9
  year: 2008
  ident: b26
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– reference: Staliūnaitė, I., Gorinski, P.J., Iacobacci, I., 2021. Improving commonsense causal reasoning by adversarial training and data augmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35, pp. 13834–13842.
– reference: Li, B., Han, Z., Li, H., Fu, H., Zhang, C., 2022a. Trustworthy long-tailed classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6970–6979.
– year: 2017
  ident: b13
  article-title: In defense of the triplet loss for person re-identification
– year: 2000
  ident: b28
  publication-title: Models, Reasoning and Inference
– volume: 33
  start-page: 3747
  year: 2023
  end-page: 3758
  ident: b7
  article-title: Counterfactual generation framework for few-shot learning
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 10
  start-page: 1
  year: 2018
  end-page: 14
  ident: b31
  article-title: Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition
  publication-title: IPSJ Trans. Comput. Vis. Appl.
– volume: 45
  start-page: 12996
  year: 2021
  end-page: 13010
  ident: b41
  article-title: Deconfounded image captioning: A causal retrospect
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Zhu, B., Niu, Y., Hua, X.-S., Zhang, H., 2022. Cross-domain empirical risk minimization for unbiased long-tailed classification. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36, pp. 3589–3597.
– volume: 124
  year: 2022
  ident: b21
  article-title: GaitSlice: A gait recognition model based on spatio-temporal slice features
  publication-title: Pattern Recognit.
– volume: 14
  start-page: 149
  year: 2004
  end-page: 158
  ident: b35
  article-title: Fusion of static and dynamic body biometrics for gait recognition
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 39
  start-page: 209
  year: 2016
  end-page: 226
  ident: b37
  article-title: A comprehensive study on cross-view gait based human identification with deep cnns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Liu, B., Wang, D., Yang, X., Zhou, Y., Yao, R., Shao, Z., Zhao, J., 2022. Show, deconfound and tell: Image captioning with causal inference. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 18041–18050.
– volume: 31
  start-page: 260
  year: 2020
  end-page: 274
  ident: b39
  article-title: Cross-view gait recognition using pairwise spatial transformer networks
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– ident: 10.1016/j.cviu.2024.103995_b8
  doi: 10.1109/CVPR52729.2023.00936
– ident: 10.1016/j.cviu.2024.103995_b24
  doi: 10.1109/ICCV48922.2021.01438
– volume: 124
  year: 2022
  ident: 10.1016/j.cviu.2024.103995_b21
  article-title: GaitSlice: A gait recognition model based on spatio-temporal slice features
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108453
– ident: 10.1016/j.cviu.2024.103995_b4
  doi: 10.1109/CVPR52688.2022.01138
– ident: 10.1016/j.cviu.2024.103995_b16
  doi: 10.1609/aaai.v36i1.19983
– volume: 34
  start-page: 21164
  year: 2021
  ident: 10.1016/j.cviu.2024.103995_b36
  article-title: Provably efficient causal reinforcement learning with confounded observational data
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.cviu.2024.103995_b49
  doi: 10.1109/CVPR46437.2021.00898
– volume: 9
  issue: 11
  year: 2008
  ident: 10.1016/j.cviu.2024.103995_b26
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.cviu.2024.103995_b18
  doi: 10.1109/CVPR52688.2022.00684
– volume: 34
  start-page: 22905
  year: 2021
  ident: 10.1016/j.cviu.2024.103995_b29
  article-title: Causal influence detection for improving efficiency in reinforcement learning
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.cviu.2024.103995_b6
  doi: 10.1145/3503161.3547936
– volume: 636
  year: 2023
  ident: 10.1016/j.cviu.2024.103995_b5
  article-title: GaitAMR: Cross-view gait recognition via aggregated multi-feature representation
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2023.03.145
– volume: 45
  start-page: 7639
  issue: 6
  year: 2022
  ident: 10.1016/j.cviu.2024.103995_b38
  article-title: PatchMix augmentation to identify causal features in few-shot learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3223784
– volume: 14
  start-page: 149
  issue: 2
  year: 2004
  ident: 10.1016/j.cviu.2024.103995_b35
  article-title: Fusion of static and dynamic body biometrics for gait recognition
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2003.821972
– volume: 150
  start-page: 289
  year: 2021
  ident: 10.1016/j.cviu.2024.103995_b42
  article-title: Robust gait recognition using hybrid descriptors based on skeleton gait energy image
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.05.012
– start-page: 709
  year: 2022
  ident: 10.1016/j.cviu.2024.103995_b32
  article-title: Invariant feature learning for generalized long-tailed classification
– volume: 10
  start-page: 1
  year: 2018
  ident: 10.1016/j.cviu.2024.103995_b31
  article-title: Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition
  publication-title: IPSJ Trans. Comput. Vis. Appl.
– ident: 10.1016/j.cviu.2024.103995_b20
  doi: 10.1109/CVPR42600.2020.01332
– ident: 10.1016/j.cviu.2024.103995_b33
  doi: 10.1109/CVPRW56347.2022.00163
– ident: 10.1016/j.cviu.2024.103995_b2
  doi: 10.1609/aaai.v33i01.33018126
– volume: 30
  start-page: 3041
  issue: 01
  year: 2021
  ident: 10.1016/j.cviu.2024.103995_b3
  article-title: Multi-view gait image generation for cross-view gait recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3055936
– year: 2016
  ident: 10.1016/j.cviu.2024.103995_b10
– volume: 45
  start-page: 3933
  issue: 3
  year: 2022
  ident: 10.1016/j.cviu.2024.103995_b34
  article-title: Weakly-supervised video object grounding via causal intervention
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 28
  start-page: 316
  issue: 2
  year: 2005
  ident: 10.1016/j.cviu.2024.103995_b11
  article-title: Individual recognition using gait energy image
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.38
– ident: 10.1016/j.cviu.2024.103995_b43
  doi: 10.1109/CVPRW.2017.80
– ident: 10.1016/j.cviu.2024.103995_b25
  doi: 10.1109/CVPR52688.2022.01751
– volume: 44
  start-page: 345
  issue: 1
  year: 2020
  ident: 10.1016/j.cviu.2024.103995_b47
  article-title: On learning disentangled representations for gait recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2998790
– ident: 10.1016/j.cviu.2024.103995_b30
  doi: 10.1609/aaai.v35i15.17630
– volume: 98
  year: 2020
  ident: 10.1016/j.cviu.2024.103995_b22
  article-title: A model-based gait recognition method with body pose and human prior knowledge
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107069
– volume: Vol. 4
  start-page: 441
  year: 2006
  ident: 10.1016/j.cviu.2024.103995_b44
  article-title: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition
– volume: 14
  start-page: 102
  issue: 1
  year: 2018
  ident: 10.1016/j.cviu.2024.103995_b12
  article-title: Multi-task GANs for view-specific feature learning in gait recognition
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2018.2844819
– ident: 10.1016/j.cviu.2024.103995_b1
  doi: 10.1109/CVPR52688.2022.01961
– ident: 10.1016/j.cviu.2024.103995_b14
  doi: 10.1609/aaai.v35i13.17437
– ident: 10.1016/j.cviu.2024.103995_b23
  doi: 10.1145/3394171.3413861
– volume: 33
  start-page: 2734
  year: 2020
  ident: 10.1016/j.cviu.2024.103995_b45
  article-title: Interventional few-shot learning
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.cviu.2024.103995_b46
  doi: 10.1109/CVPR.2019.00483
– volume: 33
  start-page: 655
  year: 2020
  ident: 10.1016/j.cviu.2024.103995_b51
  article-title: Causal intervention for weakly-supervised semantic segmentation
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 45
  start-page: 12996
  issue: 11
  year: 2021
  ident: 10.1016/j.cviu.2024.103995_b41
  article-title: Deconfounded image captioning: A causal retrospect
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 32
  start-page: 509
  year: 2022
  ident: 10.1016/j.cviu.2024.103995_b50
  article-title: Learning domain invariant representations for generalizable person re-identification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2022.3229621
– ident: 10.1016/j.cviu.2024.103995_b9
  doi: 10.1109/CVPR42600.2020.01423
– year: 2017
  ident: 10.1016/j.cviu.2024.103995_b13
– volume: 37
  start-page: 1057
  issue: 5
  year: 2004
  ident: 10.1016/j.cviu.2024.103995_b40
  article-title: Automated person recognition by walking and running via model-based approaches
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2003.09.012
– volume: 33
  start-page: 3747
  issue: 8
  year: 2023
  ident: 10.1016/j.cviu.2024.103995_b7
  article-title: Counterfactual generation framework for few-shot learning
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2023.3241651
– year: 2000
  ident: 10.1016/j.cviu.2024.103995_b28
– volume: 32
  start-page: 6967
  issue: 10
  year: 2022
  ident: 10.1016/j.cviu.2024.103995_b15
  article-title: Enhanced spatial-temporal salience for cross-view gait recognition
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2022.3175959
– ident: 10.1016/j.cviu.2024.103995_b17
  doi: 10.1109/ICCV48922.2021.01267
– volume: 31
  start-page: 260
  issue: 1
  year: 2020
  ident: 10.1016/j.cviu.2024.103995_b39
  article-title: Cross-view gait recognition using pairwise spatial transformer networks
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2020.2975671
– ident: 10.1016/j.cviu.2024.103995_b48
  doi: 10.1109/CVPR.2019.00484
– ident: 10.1016/j.cviu.2024.103995_b19
  doi: 10.1109/ICCVW54120.2021.00456
– volume: 39
  start-page: 209
  issue: 2
  year: 2016
  ident: 10.1016/j.cviu.2024.103995_b37
  article-title: A comprehensive study on cross-view gait based human identification with deep cnns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2545669
– volume: 19
  start-page: 675
  issue: 4
  year: 2003
  ident: 10.1016/j.cviu.2024.103995_b27
  article-title: Causality: models, reasoning, and inference, by judea pearl, cambridge university press, 2000
  publication-title: Econom. Theory
  doi: 10.1017/S0266466603004109
– ident: 10.1016/j.cviu.2024.103995_b52
  doi: 10.1609/aaai.v36i3.20271
SSID ssj0011491
Score 2.4432364
Snippet Gait recognition is a promising biometric technology that aims to identify the target subject via walking pattern. Most existing appearance-based methods focus...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103995
SubjectTerms Causal representation learning
Disentangled representation learning
Gait recognition
Global and local feature extractor
Title GaitSCM: Causal representation learning for gait recognition
URI https://dx.doi.org/10.1016/j.cviu.2024.103995
Volume 243
WOSCitedRecordID wos001223459200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGxoEdYAzQNj7kA7cqlZPYiT1xmarBmESFRBG9RbFjo06QVWsz7c_fc20naYFpO3CJKst5jfr75fW95_eB0HvGKyVMrCIuwdOhJcsiSWMTqbyiKqkEU0Sthk3k4zGfTsVXn9a8WI0TyOua39yI-X-FGtYAbFs6-wC4W6GwAJ8BdLgC7HC9F_Cfytny2-iLdfVHZbNYNe6fd0VGdRgU4RIof8LuQZtF5DEKnQv8xIeBK0B35wy_bZJP0y-J6ZixCrv-0LMuSu81ScueiV85b-rNTeNAVB-DSGiXK-XVJslttJOu6dWEpj3NaI-c3TjNP5S2ix9cDNX1rBla8cNu83qH7I1_rjafMKSqXRRWRmFlFE7GI7ST5EyAvts5-Xw6PW9PmMAzjF0-qntyX1Dlcv82n-TvRkvPEJnsoafeg8AnDvnnaEvX--iZ9yaw19ULWArwhbV9tNvrPvkCffBMOcaOJ3idJzjwBANPsOUJ7vHkJfr-8XQyOov8MI1IpYQs4Q00JY9thCsVTGeaGCNImWdVboQ1-3JDE0mJrDgjJuU8U5KpSpcJWFHCZCR9hbbry1ofIJwYVlYM3mYtKWWSc8ErqSXJEiXAmuaHKA6_VqF8p3k78ORX8W-cDtGgvWfu-qzcuZsFEApvKToLsABO3XHf0YO-5TV60pH9DdpeXjX6LXqsrpezxdU7T6hbHA2Iqw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GaitSCM%3A+Causal+representation+learning+for+gait+recognition&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Huo%2C+Wei&rft.au=Wang%2C+Ke&rft.au=Tang%2C+Jun&rft.au=Wang%2C+Nian&rft.date=2024-06-01&rft.issn=1077-3142&rft.volume=243&rft.spage=103995&rft_id=info:doi/10.1016%2Fj.cviu.2024.103995&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cviu_2024_103995
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon