Customer segmentation using K-means clustering and the adaptive particle swarm optimization algorithm

The improvement of enterprise competitiveness depends on the ability to match segmented customers in a competitive market. In this study, we propose a customer segmentation method based on the improved K-means algorithm and the adaptive particle swarm optimization (PSO) algorithm. The current PSO al...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied soft computing Ročník 113; s. 107924
Hlavní autori: Li, Yue, Chu, Xiaoquan, Tian, Dong, Feng, Jianying, Mu, Weisong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.12.2021
Predmet:
ISSN:1568-4946, 1872-9681
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The improvement of enterprise competitiveness depends on the ability to match segmented customers in a competitive market. In this study, we propose a customer segmentation method based on the improved K-means algorithm and the adaptive particle swarm optimization (PSO) algorithm. The current PSO algorithm can easily fall into a local extremum; thus, adaptive learning PSO (ALPSO) is proposed to improve the optimization accuracy. On the basis of the analysis of population-based optimization, the inertia weight, learning factors, and the position update method are redesigned. To prevent the K-means clustering algorithm from depending on initial cluster centres, the ALPSO algorithm is used to optimize the K-means cluster centres (KM-ALPSO). Aimed at the issue of clustering the actual grape-customer consumption mixed dataset, factor analysis is used to extract numerical variables. We then propose a dissimilarity measurement method to cluster the mixed data. We compare ALPSO with several parameter update methods. We also conduct comparative experiments to compare KM-ALPSO on five UCI datasets. Finally, the improved KM-ALPSO (IKM-ALPSO) clustering algorithm is applied in customer segmentation. All results show that the three proposed methods outperform existing models. The experimental results also demonstrate the effectiveness and practicability of IKM-ALPSO for customer segmentation. •A new ALPSO algorithm is proposed to improve the optimization accuracy of PSO.•A new KM-ALPSO is proposed to avert the dependence of K-means on the initial centres.•A new IKM-ALPSO algorithm is proposed to address the issue of clustering mixed data.•All results show that the three proposed methods outperform existing models.•The results demonstrate the practicability of IKM-ALPSO for customer segmentation.
AbstractList The improvement of enterprise competitiveness depends on the ability to match segmented customers in a competitive market. In this study, we propose a customer segmentation method based on the improved K-means algorithm and the adaptive particle swarm optimization (PSO) algorithm. The current PSO algorithm can easily fall into a local extremum; thus, adaptive learning PSO (ALPSO) is proposed to improve the optimization accuracy. On the basis of the analysis of population-based optimization, the inertia weight, learning factors, and the position update method are redesigned. To prevent the K-means clustering algorithm from depending on initial cluster centres, the ALPSO algorithm is used to optimize the K-means cluster centres (KM-ALPSO). Aimed at the issue of clustering the actual grape-customer consumption mixed dataset, factor analysis is used to extract numerical variables. We then propose a dissimilarity measurement method to cluster the mixed data. We compare ALPSO with several parameter update methods. We also conduct comparative experiments to compare KM-ALPSO on five UCI datasets. Finally, the improved KM-ALPSO (IKM-ALPSO) clustering algorithm is applied in customer segmentation. All results show that the three proposed methods outperform existing models. The experimental results also demonstrate the effectiveness and practicability of IKM-ALPSO for customer segmentation. •A new ALPSO algorithm is proposed to improve the optimization accuracy of PSO.•A new KM-ALPSO is proposed to avert the dependence of K-means on the initial centres.•A new IKM-ALPSO algorithm is proposed to address the issue of clustering mixed data.•All results show that the three proposed methods outperform existing models.•The results demonstrate the practicability of IKM-ALPSO for customer segmentation.
ArticleNumber 107924
Author Tian, Dong
Chu, Xiaoquan
Li, Yue
Mu, Weisong
Feng, Jianying
Author_xml – sequence: 1
  givenname: Yue
  orcidid: 0000-0003-1392-2074
  surname: Li
  fullname: Li, Yue
  email: 18800146617@163.com
  organization: College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, PR China
– sequence: 2
  givenname: Xiaoquan
  surname: Chu
  fullname: Chu, Xiaoquan
  email: chuxiaoquan1994@163.com
  organization: College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, PR China
– sequence: 3
  givenname: Dong
  orcidid: 0000-0002-4759-5334
  surname: Tian
  fullname: Tian, Dong
  email: td_tiandong@cau.edu.cn
  organization: College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, PR China
– sequence: 4
  givenname: Jianying
  orcidid: 0000-0002-1048-7524
  surname: Feng
  fullname: Feng, Jianying
  email: fjying@cau.edu.cn
  organization: College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, PR China
– sequence: 5
  givenname: Weisong
  surname: Mu
  fullname: Mu, Weisong
  email: wsmu@cau.edu.cn
  organization: College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, PR China
BookMark eNp9kM1KAzEUhYNUsK2-gKu8wNT8zHQm4EaKf1hwo-uQJjdtykymJGlFn94M48pFV_dyON-Bc2Zo4nsPCN1SsqCELu_2CxV7vWCE0SzUgpUXaEqbmhVi2dBJ_qtlU5SiXF6hWYx7kiHBmimC1TGmvoOAI2w78Ekl13t8jM5v8VvRgfIR6zabIAyS8ganHWBl1CG5E-CDCsnpFnD8UqHDfVY79zOmqHbbB5d23TW6tKqNcPN35-jz6fFj9VKs359fVw_rQnNCUrEphea23lDKOBEKVGOY5XWplICS2sbW3BJbUs6rihuia1ZzI0zFgQm9ydY5asZcHfoYA1ip3dgoBeVaSYkc5pJ7Ocwlh7nkOFdG2T_0EFynwvd56H6EIJc6OQgyagdeg3EBdJKmd-fwXzHmiKM
CitedBy_id crossref_primary_10_1007_s10586_024_04456_w
crossref_primary_10_32604_cmes_2023_026113
crossref_primary_10_7454_jessd_v7i2_1258
crossref_primary_10_1093_comjnl_bxab206
crossref_primary_10_1016_j_cie_2023_109524
crossref_primary_10_1016_j_jclepro_2023_137072
crossref_primary_10_1007_s11135_025_02259_8
crossref_primary_10_1016_j_engappai_2023_107378
crossref_primary_10_3389_fams_2025_1598165
crossref_primary_10_1007_s12065_022_00747_6
crossref_primary_10_4018_JOEUC_346230
crossref_primary_10_1016_j_cie_2022_108717
crossref_primary_10_2478_amns_2023_2_01368
crossref_primary_10_2298_CSIS240930019Z
crossref_primary_10_1016_j_apenergy_2025_125339
crossref_primary_10_1109_ACCESS_2025_3529515
crossref_primary_10_3389_fphy_2025_1623161
crossref_primary_10_1016_j_compag_2023_108320
crossref_primary_10_3390_app122413019
crossref_primary_10_1007_s40745_024_00525_4
crossref_primary_10_32604_cmes_2023_029258
crossref_primary_10_1016_j_asoc_2022_109838
crossref_primary_10_3389_fbioe_2022_908356
crossref_primary_10_1016_j_dajour_2025_100630
crossref_primary_10_1080_17445302_2022_2111924
crossref_primary_10_1007_s00521_024_10621_4
crossref_primary_10_1007_s13246_024_01475_0
crossref_primary_10_1016_j_cemconres_2022_107003
crossref_primary_10_1016_j_asoc_2023_110201
crossref_primary_10_1016_j_oceaneng_2025_121546
crossref_primary_10_3390_app15020718
crossref_primary_10_1016_j_eswa_2023_120278
crossref_primary_10_1016_j_ins_2025_122414
crossref_primary_10_32604_cmc_2025_060765
crossref_primary_10_1007_s13042_023_01893_8
crossref_primary_10_1016_j_procs_2024_06_430
crossref_primary_10_3390_app12168310
crossref_primary_10_1057_s41270_022_00158_7
crossref_primary_10_1109_OJCS_2025_3601668
crossref_primary_10_3233_JIFS_231922
crossref_primary_10_33889_IJMEMS_2024_10_3_037
crossref_primary_10_3389_fdata_2024_1184444
crossref_primary_10_1016_j_eswa_2022_116982
crossref_primary_10_3390_smartcities6050107
crossref_primary_10_1016_j_engappai_2023_106351
crossref_primary_10_1051_e3sconf_202346502005
crossref_primary_10_1016_j_jretconser_2024_104121
crossref_primary_10_1016_j_asoc_2022_109619
crossref_primary_10_1108_K_01_2022_0049
crossref_primary_10_1007_s40747_024_01420_4
crossref_primary_10_3390_math11244985
crossref_primary_10_3390_en16062651
crossref_primary_10_1007_s41870_024_02279_x
crossref_primary_10_3390_computers14030093
crossref_primary_10_1016_j_asoc_2024_111264
crossref_primary_10_1109_TPDS_2023_3243634
crossref_primary_10_1111_exsy_13486
crossref_primary_10_1111_jfpp_16343
crossref_primary_10_1016_j_asoc_2022_109780
crossref_primary_10_1016_j_asoc_2025_113699
crossref_primary_10_1007_s10489_024_05267_7
crossref_primary_10_1080_17457300_2023_2272242
crossref_primary_10_1108_DTA_08_2021_0222
crossref_primary_10_1007_s12008_024_01952_6
crossref_primary_10_1016_j_asoc_2024_111419
crossref_primary_10_3390_jtaer17020024
Cites_doi 10.1016/j.asoc.2019.105763
10.1016/j.patrec.2011.02.017
10.1016/j.neucom.2015.01.062
10.1016/j.jretconser.2018.04.010
10.1108/BFJ-06-2019-0465
10.1007/s10115-018-1162-5
10.1007/s10489-017-0984-2
10.1016/j.asoc.2014.06.034
10.1016/j.eswa.2008.01.039
10.1016/j.patrec.2009.09.011
10.1007/s12046-018-0823-0
10.1016/j.asoc.2017.02.004
10.1007/s00500-016-2102-5
10.1016/j.asoc.2015.07.005
10.1007/s00500-019-04507-0
10.1016/j.knosys.2018.08.037
10.1016/j.asoc.2016.07.041
10.1109/ACCESS.2019.2903568
10.2307/2528823
10.1016/j.asoc.2018.05.045
10.1016/j.asoc.2019.105653
10.1016/j.patrec.2008.01.021
10.1016/j.patcog.2007.09.009
10.1016/j.ins.2014.09.030
10.1016/j.chaos.2020.110170
10.1007/s10257-018-0381-3
10.1016/j.compeleceng.2015.05.019
10.1016/j.dss.2009.05.016
10.1016/j.asoc.2018.03.011
10.1016/j.neucom.2018.12.093
10.1016/j.ins.2018.04.061
10.1007/s10994-015-5522-z
10.1016/j.neucom.2011.12.009
10.1007/s10044-018-00772-1
10.1007/s00500-009-0539-5
10.1016/j.eswa.2009.02.003
10.1016/j.eswa.2010.06.038
10.1504/IJBIR.2014.059532
10.1016/j.patcog.2017.06.023
10.1016/j.asoc.2009.07.001
10.1016/j.asoc.2014.11.018
10.1016/j.ins.2020.08.121
10.1007/s00521-019-04417-0
10.1016/j.patcog.2012.07.021
10.1007/s10044-005-0015-5
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2021.107924
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2021_107924
S1568494621008462
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-b49c3f7b112309aea8d2f374aa9e41f8f73f0f4133553d0c7273d9d53e29cb2f3
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000724862700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:03:32 EST 2025
Tue Nov 18 21:45:30 EST 2025
Fri Feb 23 02:41:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Customer segmentation
K-means clustering algorithm
Mixed data
Particle swarm optimization algorithm
Adaptive parameter learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-b49c3f7b112309aea8d2f374aa9e41f8f73f0f4133553d0c7273d9d53e29cb2f3
ORCID 0000-0002-4759-5334
0000-0003-1392-2074
0000-0002-1048-7524
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2021_107924
crossref_primary_10_1016_j_asoc_2021_107924
elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107924
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lin, Li, Kuo, Wang (b35) 2016; 56
Zhang, Zhang, Wang (b46) 2018; 454-455
Dorosti, Ghoushchi, Sobhrakhshankhah, Ahmadi, Sharifi (b6) 2020; 24
Mccane, Albert (b49) 2008; 29
Dong, Kang, Zhang (b32) 2017; 21
Park, Jun (b22) 2009; 36
Wang, Yang, Orchard (b27) 2016; 48
Ren, Liu, Wang, Pan (b17) 2016
Cao, Lu, Ye, Liang (b26) 2015; 35
Holý, Sokol, Černý (b44) 2017; 60
Kennedy (b24) 1995
Li, Zhou, Kou, Xiao (b30) 2012; 83
Aghdaie, Tafreshi, Behzadian (b2) 2014; 8
Jiang, Shi, Zhang, Han (b37) 2015; 158
Wang, Zhou, Xu (b41) 2018; 48
Zhou, Liu, Yang, Chen, Wu (b11) 2019; 163
Sun, Wu, Palade, Fang, Shi (b38) 2015; 101
Das, Das, Dey (b8) 2018; 70
Deng, Gao (b12) 2020; 18
Cortez, Cerdeira, Almeida, Matos, Reis (b42) 2009; 47
Yang, Sun, Zhang (b48) 2009; 36
Li, Chu, Mou, Tian, Feng, Mu (b51) 2020; vol. 1274
Xie, Zhang, Lim, Yu, Liu, Liu, Walters (b9) 2019; 84
Ai, Dong (b33) 2016; 36
Bai, Cheng, Liang, Shen, Guo (b20) 2017; 71
Jain (b14) 2010; 31
Omran, Salman, Engelbrecht (b29) 2006; 8
Chu, Li, Xie, Tian (b45) 2019; 122
Ahmad, Khan (b16) 2019; 7
Hakli, Uğuz (b40) 2014; 23
Calvo-Porral, Levy-Mangin (b3) 2018; 43
Zhang, Tang, Hua, Guan (b34) 2015; 28
Hassantabar, Stefano, Ghanakota, Ferrari, Nicola, Bruno, Marino, Jha (b7) 2020
Ahmad, Dey (b18) 2011; 32
Ahmadi, Jafarzadeh-Ghoushchi, Taghizadeh, Sharifi (b47) 2019; 31
Kuo, Wang, Huang (b39) 2011; 15
Kuo, Zulvia (b10) 2018; 57
Bouyer, Hatamlou (b28) 2018; 67
Arbelaitz, Gurrutxaga, Muguerza, Pérez, Perona (b43) 2013; 46
Tao, Gu, Wang, Jiang (b23) 2020; 393
Sangam, Om (b19) 2018; 43
Li, Zhan, Lin, Zhang, Luo (b36) 2015; 293
Isiet, Gadala (b25) 2019; 83
Ozertem, Erdogmus, Jenssen (b15) 2008; 41
Hassantabar, Ahmadi, Sharifi (b5) 2020; 140
Yoseph, Malim, Heikkilä, Brezulianu, Geman, Rostam (b4) 2020; 38
Niknam, Amiri (b13) 2010; 10
Gower (b50) 1971; 27
Wu (b31) 2011; 38
Ushakov, Vasilyev (b21) 2021; 545
Lee, Song, Cho, Choi (b1) 2019; 22
Lin (10.1016/j.asoc.2021.107924_b35) 2016; 56
Kennedy (10.1016/j.asoc.2021.107924_b24) 1995
Wang (10.1016/j.asoc.2021.107924_b27) 2016; 48
Hakli (10.1016/j.asoc.2021.107924_b40) 2014; 23
Omran (10.1016/j.asoc.2021.107924_b29) 2006; 8
Cao (10.1016/j.asoc.2021.107924_b26) 2015; 35
Hassantabar (10.1016/j.asoc.2021.107924_b7) 2020
Bouyer (10.1016/j.asoc.2021.107924_b28) 2018; 67
Ren (10.1016/j.asoc.2021.107924_b17) 2016
Das (10.1016/j.asoc.2021.107924_b8) 2018; 70
Zhang (10.1016/j.asoc.2021.107924_b34) 2015; 28
Wang (10.1016/j.asoc.2021.107924_b41) 2018; 48
Jiang (10.1016/j.asoc.2021.107924_b37) 2015; 158
Hassantabar (10.1016/j.asoc.2021.107924_b5) 2020; 140
Jain (10.1016/j.asoc.2021.107924_b14) 2010; 31
Li (10.1016/j.asoc.2021.107924_b36) 2015; 293
Ahmad (10.1016/j.asoc.2021.107924_b18) 2011; 32
Xie (10.1016/j.asoc.2021.107924_b9) 2019; 84
Dorosti (10.1016/j.asoc.2021.107924_b6) 2020; 24
Lee (10.1016/j.asoc.2021.107924_b1) 2019; 22
Mccane (10.1016/j.asoc.2021.107924_b49) 2008; 29
Tao (10.1016/j.asoc.2021.107924_b23) 2020; 393
Zhou (10.1016/j.asoc.2021.107924_b11) 2019; 163
Sun (10.1016/j.asoc.2021.107924_b38) 2015; 101
Cortez (10.1016/j.asoc.2021.107924_b42) 2009; 47
Chu (10.1016/j.asoc.2021.107924_b45) 2019; 122
Kuo (10.1016/j.asoc.2021.107924_b39) 2011; 15
Aghdaie (10.1016/j.asoc.2021.107924_b2) 2014; 8
Park (10.1016/j.asoc.2021.107924_b22) 2009; 36
Arbelaitz (10.1016/j.asoc.2021.107924_b43) 2013; 46
Ozertem (10.1016/j.asoc.2021.107924_b15) 2008; 41
Zhang (10.1016/j.asoc.2021.107924_b46) 2018; 454-455
Li (10.1016/j.asoc.2021.107924_b30) 2012; 83
Holý (10.1016/j.asoc.2021.107924_b44) 2017; 60
Gower (10.1016/j.asoc.2021.107924_b50) 1971; 27
Dong (10.1016/j.asoc.2021.107924_b32) 2017; 21
Bai (10.1016/j.asoc.2021.107924_b20) 2017; 71
Yoseph (10.1016/j.asoc.2021.107924_b4) 2020; 38
Calvo-Porral (10.1016/j.asoc.2021.107924_b3) 2018; 43
Sangam (10.1016/j.asoc.2021.107924_b19) 2018; 43
Ai (10.1016/j.asoc.2021.107924_b33) 2016; 36
Ahmadi (10.1016/j.asoc.2021.107924_b47) 2019; 31
Li (10.1016/j.asoc.2021.107924_b51) 2020; vol. 1274
Wu (10.1016/j.asoc.2021.107924_b31) 2011; 38
Ushakov (10.1016/j.asoc.2021.107924_b21) 2021; 545
Deng (10.1016/j.asoc.2021.107924_b12) 2020; 18
Niknam (10.1016/j.asoc.2021.107924_b13) 2010; 10
Yang (10.1016/j.asoc.2021.107924_b48) 2009; 36
Isiet (10.1016/j.asoc.2021.107924_b25) 2019; 83
Ahmad (10.1016/j.asoc.2021.107924_b16) 2019; 7
Kuo (10.1016/j.asoc.2021.107924_b10) 2018; 57
References_xml – volume: 67
  start-page: 172
  year: 2018
  end-page: 182
  ident: b28
  article-title: An efficient hybrid clustering method based on improved cuckoo optimization and modified particle swarm optimization algorithms
  publication-title: Appl. Soft. Comput.
– volume: 36
  start-page: 687
  year: 2016
  end-page: 691
  ident: b33
  article-title: Improved particle swarm optimization algorithm based on Gaussian disturbance and natural selection
  publication-title: J. Comput. Appl.
– volume: 29
  start-page: 986
  year: 2008
  end-page: 993
  ident: b49
  article-title: Distance functions for categorical and mixed variables
  publication-title: Pattern Recognit. Lett.
– volume: 8
  start-page: 168
  year: 2014
  end-page: 189
  ident: b2
  article-title: Customer-oriented benefit segmentation: an integrated approach
  publication-title: Int. J. Bus. Innov. Res.
– volume: 83
  year: 2019
  ident: b25
  article-title: Self-adapting control parameters in particle swarm optimization
  publication-title: Appl. Soft. Comput.
– volume: 8
  start-page: 332
  year: 2006
  end-page: 344
  ident: b29
  article-title: Dynamic clustering using particle swarm optimization with application in image segmentation
  publication-title: Pattern Anal. Appl.
– volume: 15
  start-page: 533
  year: 2011
  end-page: 542
  ident: b39
  article-title: An application of particle swarm optimization algorithm to clustering analysis
  publication-title: Soft Comput.
– volume: 7
  start-page: 31883
  year: 2019
  end-page: 31902
  ident: b16
  article-title: Survey of state-of-the-art mixed data clustering algorithms
  publication-title: IEEE Access
– volume: 46
  start-page: 243
  year: 2013
  end-page: 256
  ident: b43
  article-title: An extensive comparative study of cluster validity indices
  publication-title: Pattern Recognit.
– volume: 84
  year: 2019
  ident: b9
  article-title: Improving K-means clustering with enhanced firefly algorithms
  publication-title: Appl. Soft. Comput.
– volume: 38
  start-page: 184
  year: 2011
  end-page: 192
  ident: b31
  article-title: A self-adaptive embedded chaotic particle swarm optimization for parameters selection of Wv-SVM
  publication-title: Expert Syst. Appl.
– volume: 57
  start-page: 331
  year: 2018
  end-page: 357
  ident: b10
  article-title: Automatic clustering using an improved artificial bee colony optimization for customer segmentation
  publication-title: Knowl. Inf. Syst.
– volume: 393
  start-page: 234
  year: 2020
  end-page: 244
  ident: b23
  article-title: An intelligent clustering algorithm for high-dimensional multiview data in big data applications
  publication-title: Neurocomputing
– volume: 24
  start-page: 9943
  year: 2020
  end-page: 9964
  ident: b6
  article-title: Application of gene expression programming and sensitivity analyses in analyzing effective parameters in gastric cancer tumor size and location
  publication-title: Soft Comput.
– volume: 83
  start-page: 98
  year: 2012
  end-page: 109
  ident: b30
  article-title: A novel chaotic particle swarm optimization based fuzzy clustering algorithm
  publication-title: Neurocomputing
– volume: 140
  year: 2020
  ident: b5
  article-title: Diagnosis and detection of infected tissue of COVID-19 patients based on lung X-ray image using convolutional neural network approaches
  publication-title: Chaos Solitons Fractals
– volume: 122
  start-page: 2587
  year: 2019
  end-page: 2602
  ident: b45
  article-title: Regional difference analyzing and prediction model building for Chinese wine consumers’ sensory preference
  publication-title: Br. Food J.
– volume: 18
  start-page: 497
  year: 2020
  end-page: 510
  ident: b12
  article-title: A study on e-commerce customer segmentation management based on improved K-means algorithm
  publication-title: Inf. Syst. E-Bus. Manag.
– volume: 48
  start-page: 584
  year: 2016
  end-page: 596
  ident: b27
  article-title: Particle swarm optimization using dynamic tournament topology
  publication-title: Appl. Soft. Comput.
– volume: 31
  start-page: 8661
  year: 2019
  end-page: 8680
  ident: b47
  article-title: Presentation of a new hybrid approach for forecasting economic growth using artificial intelligence approaches
  publication-title: Neural Comput. Appl.
– volume: 70
  start-page: 590
  year: 2018
  end-page: 603
  ident: b8
  article-title: A modified bee colony optimization (MBCO) and its hybridization with k-means for an application to data clustering
  publication-title: Appl. Soft. Comput.
– volume: 71
  start-page: 375
  year: 2017
  end-page: 386
  ident: b20
  article-title: Fast density clustering strategies based on the K-means algorithm
  publication-title: Pattern Recognit.
– volume: 43
  year: 2018
  ident: b19
  article-title: An equi-biased k-prototypes algorithm for clustering mixed-type data
  publication-title: Sādhanā
– volume: 43
  start-page: 278
  year: 2018
  end-page: 284
  ident: b3
  article-title: From foodies to cherry-pickers: A clustered-based segmentation of specialty food retail customers
  publication-title: J. Retail. Consum. Serv.
– volume: 21
  start-page: 5081
  year: 2017
  end-page: 5090
  ident: b32
  article-title: Opposition-based particle swarm optimization with adaptive mutation strategy
  publication-title: Soft Comput.
– volume: 36
  start-page: 3336
  year: 2009
  end-page: 3341
  ident: b22
  article-title: A simple and fast algorithm for K-medoids clustering
  publication-title: Expert Syst. Appl.
– volume: 35
  start-page: 629
  year: 2015
  end-page: 636
  ident: b26
  article-title: Improved particle swarm optimization algorithm and its application in text feature selection
  publication-title: Appl. Soft. Comput.
– volume: 454-455
  start-page: 128
  year: 2018
  end-page: 143
  ident: b46
  article-title: Personalized restaurant recommendation method combining group correlations and customer preferences
  publication-title: Inf. Sci.
– volume: 41
  start-page: 1924
  year: 2008
  end-page: 1938
  ident: b15
  article-title: Mean shift spectral clustering
  publication-title: Pattern Recognit.
– volume: 36
  start-page: 9847
  year: 2009
  end-page: 9852
  ident: b48
  article-title: An efficient hybrid data clustering method based on K-harmonic means and particle swarm optimization
  publication-title: Expert Syst. Appl.
– volume: 23
  start-page: 333
  year: 2014
  end-page: 345
  ident: b40
  article-title: A novel particle swarm optimization algorithm with levy flight
  publication-title: Appl. Soft. Comput.
– volume: 27
  start-page: 857
  year: 1971
  end-page: 874
  ident: b50
  article-title: A general coefficient of similarity and some of its properties
  publication-title: Biometrics
– volume: 38
  start-page: 6159
  year: 2020
  end-page: 6173
  ident: b4
  article-title: The impact of big data market segmentation using data mining and clustering techniques
  publication-title: J. Intell. Fuzzy Syst.
– year: 2016
  ident: b17
  article-title: An improved mixed-type data based kernel clustering algorithm
  publication-title: 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, ICNC-FSKD, 2016
– volume: 48
  start-page: 1041
  year: 2018
  end-page: 1053
  ident: b41
  article-title: An improved
  publication-title: Appl. Intell.
– volume: vol. 1274
  start-page: 20
  year: 2020
  end-page: 32
  ident: b51
  article-title: An optimized hybrid clustering algorithm for mixed data: application to customer segmentation of table grapes in China
  publication-title: 2020 10th International Conference on Computer Engineering and Networks, CENet, 2020. Xi’an, China, 16-18 October
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: b14
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognit. Lett.
– volume: 28
  start-page: 138
  year: 2015
  end-page: 149
  ident: b34
  article-title: A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques
  publication-title: Appl. Soft. Comput.
– volume: 163
  start-page: 358
  year: 2019
  end-page: 375
  ident: b11
  article-title: Evidential reasoning approach with multiple kinds of attributes and entropy-based weight assignment
  publication-title: Knowl.-Based Syst.
– volume: 545
  start-page: 344
  year: 2021
  end-page: 362
  ident: b21
  article-title: Near-optimal large-scale k-medoids clustering
  publication-title: Inform. Sci.
– volume: 101
  start-page: 345
  year: 2015
  end-page: 376
  ident: b38
  article-title: Random drift particle swarm optimization algorithm: convergence analysis and parameter selection
  publication-title: Mach. Learn.
– volume: 158
  start-page: 109
  year: 2015
  end-page: 116
  ident: b37
  article-title: Automatic test data generation based on reduced adaptive particle swarm optimization algorithm
  publication-title: Neurocomputing
– volume: 32
  start-page: 1062
  year: 2011
  end-page: 1069
  ident: b18
  article-title: A k-means type clustering algorithm for subspace clustering of mixed numeric and categorical datasets
  publication-title: Pattern Recognit. Lett.
– volume: 293
  start-page: 370
  year: 2015
  end-page: 382
  ident: b36
  article-title: Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems
  publication-title: Inform. Sci.
– volume: 47
  start-page: 547
  year: 2009
  end-page: 553
  ident: b42
  article-title: Modeling wine preferences by data mining from physicochemical properties
  publication-title: Decis. Support Syst.
– volume: 60
  start-page: 752
  year: 2017
  end-page: 762
  ident: b44
  article-title: Clustering retail products based on customer behaviour
  publication-title: Appl. Soft. Comput.
– volume: 10
  start-page: 183
  year: 2010
  end-page: 197
  ident: b13
  article-title: An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis
  publication-title: Appl. Soft. Comput.
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: b24
  article-title: Particle swarm optimization
  publication-title: 1995 IEEE International Conference on Neural Networks, 2011. Perth, Australia, November 27- December. 4
– year: 2020
  ident: b7
  article-title: Coviddeep: SARS-CoV-2/COVID-19 test based on wearable medical sensors and efficient neural networks
  publication-title: arXiv
– volume: 56
  start-page: 748
  year: 2016
  end-page: 762
  ident: b35
  article-title: Integrated particle swarm optimization algorithm based obstacle avoidance control design for home service robot
  publication-title: Comput. Electr. Eng.
– volume: 22
  start-page: 221
  year: 2019
  end-page: 232
  ident: b1
  article-title: Document representation based on probabilistic word clustering in customer-voice classification
  publication-title: Pattern Anal. Appl.
– volume: 84
  year: 2019
  ident: 10.1016/j.asoc.2021.107924_b9
  article-title: Improving K-means clustering with enhanced firefly algorithms
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2019.105763
– volume: 32
  start-page: 1062
  issue: 7
  year: 2011
  ident: 10.1016/j.asoc.2021.107924_b18
  article-title: A k-means type clustering algorithm for subspace clustering of mixed numeric and categorical datasets
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2011.02.017
– volume: 158
  start-page: 109
  year: 2015
  ident: 10.1016/j.asoc.2021.107924_b37
  article-title: Automatic test data generation based on reduced adaptive particle swarm optimization algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.01.062
– volume: 43
  start-page: 278
  year: 2018
  ident: 10.1016/j.asoc.2021.107924_b3
  article-title: From foodies to cherry-pickers: A clustered-based segmentation of specialty food retail customers
  publication-title: J. Retail. Consum. Serv.
  doi: 10.1016/j.jretconser.2018.04.010
– volume: 122
  start-page: 2587
  issue: 8
  year: 2019
  ident: 10.1016/j.asoc.2021.107924_b45
  article-title: Regional difference analyzing and prediction model building for Chinese wine consumers’ sensory preference
  publication-title: Br. Food J.
  doi: 10.1108/BFJ-06-2019-0465
– volume: 57
  start-page: 331
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2021.107924_b10
  article-title: Automatic clustering using an improved artificial bee colony optimization for customer segmentation
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-018-1162-5
– volume: 48
  start-page: 1041
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2021.107924_b41
  article-title: An improved ν-twin bounded support vector machine
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-0984-2
– year: 2016
  ident: 10.1016/j.asoc.2021.107924_b17
  article-title: An improved mixed-type data based kernel clustering algorithm
– volume: 23
  start-page: 333
  year: 2014
  ident: 10.1016/j.asoc.2021.107924_b40
  article-title: A novel particle swarm optimization algorithm with levy flight
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2014.06.034
– volume: 36
  start-page: 3336
  issue: 2
  year: 2009
  ident: 10.1016/j.asoc.2021.107924_b22
  article-title: A simple and fast algorithm for K-medoids clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.01.039
– volume: 31
  start-page: 651
  issue: 8
  year: 2010
  ident: 10.1016/j.asoc.2021.107924_b14
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.09.011
– volume: 43
  issue: 3
  year: 2018
  ident: 10.1016/j.asoc.2021.107924_b19
  article-title: An equi-biased k-prototypes algorithm for clustering mixed-type data
  publication-title: Sādhanā
  doi: 10.1007/s12046-018-0823-0
– volume: 60
  start-page: 752
  year: 2017
  ident: 10.1016/j.asoc.2021.107924_b44
  article-title: Clustering retail products based on customer behaviour
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2017.02.004
– volume: 36
  start-page: 687
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2021.107924_b33
  article-title: Improved particle swarm optimization algorithm based on Gaussian disturbance and natural selection
  publication-title: J. Comput. Appl.
– year: 2020
  ident: 10.1016/j.asoc.2021.107924_b7
  article-title: Coviddeep: SARS-CoV-2/COVID-19 test based on wearable medical sensors and efficient neural networks
  publication-title: arXiv
– volume: 21
  start-page: 5081
  issue: 17
  year: 2017
  ident: 10.1016/j.asoc.2021.107924_b32
  article-title: Opposition-based particle swarm optimization with adaptive mutation strategy
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2102-5
– volume: 35
  start-page: 629
  year: 2015
  ident: 10.1016/j.asoc.2021.107924_b26
  article-title: Improved particle swarm optimization algorithm and its application in text feature selection
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2015.07.005
– volume: vol. 1274
  start-page: 20
  year: 2020
  ident: 10.1016/j.asoc.2021.107924_b51
  article-title: An optimized hybrid clustering algorithm for mixed data: application to customer segmentation of table grapes in China
– volume: 24
  start-page: 9943
  issue: 13
  year: 2020
  ident: 10.1016/j.asoc.2021.107924_b6
  article-title: Application of gene expression programming and sensitivity analyses in analyzing effective parameters in gastric cancer tumor size and location
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-04507-0
– volume: 163
  start-page: 358
  year: 2019
  ident: 10.1016/j.asoc.2021.107924_b11
  article-title: Evidential reasoning approach with multiple kinds of attributes and entropy-based weight assignment
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.08.037
– volume: 48
  start-page: 584
  year: 2016
  ident: 10.1016/j.asoc.2021.107924_b27
  article-title: Particle swarm optimization using dynamic tournament topology
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2016.07.041
– volume: 7
  start-page: 31883
  year: 2019
  ident: 10.1016/j.asoc.2021.107924_b16
  article-title: Survey of state-of-the-art mixed data clustering algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2903568
– volume: 27
  start-page: 857
  year: 1971
  ident: 10.1016/j.asoc.2021.107924_b50
  article-title: A general coefficient of similarity and some of its properties
  publication-title: Biometrics
  doi: 10.2307/2528823
– volume: 70
  start-page: 590
  year: 2018
  ident: 10.1016/j.asoc.2021.107924_b8
  article-title: A modified bee colony optimization (MBCO) and its hybridization with k-means for an application to data clustering
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2018.05.045
– volume: 83
  year: 2019
  ident: 10.1016/j.asoc.2021.107924_b25
  article-title: Self-adapting control parameters in particle swarm optimization
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2019.105653
– volume: 29
  start-page: 986
  issue: 7
  year: 2008
  ident: 10.1016/j.asoc.2021.107924_b49
  article-title: Distance functions for categorical and mixed variables
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2008.01.021
– volume: 41
  start-page: 1924
  issue: 6
  year: 2008
  ident: 10.1016/j.asoc.2021.107924_b15
  article-title: Mean shift spectral clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2007.09.009
– volume: 293
  start-page: 370
  year: 2015
  ident: 10.1016/j.asoc.2021.107924_b36
  article-title: Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.09.030
– volume: 140
  year: 2020
  ident: 10.1016/j.asoc.2021.107924_b5
  article-title: Diagnosis and detection of infected tissue of COVID-19 patients based on lung X-ray image using convolutional neural network approaches
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110170
– volume: 18
  start-page: 497
  issue: 4
  year: 2020
  ident: 10.1016/j.asoc.2021.107924_b12
  article-title: A study on e-commerce customer segmentation management based on improved K-means algorithm
  publication-title: Inf. Syst. E-Bus. Manag.
  doi: 10.1007/s10257-018-0381-3
– volume: 56
  start-page: 748
  year: 2016
  ident: 10.1016/j.asoc.2021.107924_b35
  article-title: Integrated particle swarm optimization algorithm based obstacle avoidance control design for home service robot
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2015.05.019
– volume: 47
  start-page: 547
  issue: 4
  year: 2009
  ident: 10.1016/j.asoc.2021.107924_b42
  article-title: Modeling wine preferences by data mining from physicochemical properties
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2009.05.016
– volume: 67
  start-page: 172
  year: 2018
  ident: 10.1016/j.asoc.2021.107924_b28
  article-title: An efficient hybrid clustering method based on improved cuckoo optimization and modified particle swarm optimization algorithms
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2018.03.011
– volume: 393
  start-page: 234
  year: 2020
  ident: 10.1016/j.asoc.2021.107924_b23
  article-title: An intelligent clustering algorithm for high-dimensional multiview data in big data applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.12.093
– volume: 454-455
  start-page: 128
  year: 2018
  ident: 10.1016/j.asoc.2021.107924_b46
  article-title: Personalized restaurant recommendation method combining group correlations and customer preferences
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.04.061
– volume: 101
  start-page: 345
  issue: 1–3
  year: 2015
  ident: 10.1016/j.asoc.2021.107924_b38
  article-title: Random drift particle swarm optimization algorithm: convergence analysis and parameter selection
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-015-5522-z
– volume: 83
  start-page: 98
  year: 2012
  ident: 10.1016/j.asoc.2021.107924_b30
  article-title: A novel chaotic particle swarm optimization based fuzzy clustering algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.009
– volume: 22
  start-page: 221
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2021.107924_b1
  article-title: Document representation based on probabilistic word clustering in customer-voice classification
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-018-00772-1
– volume: 15
  start-page: 533
  issue: 3
  year: 2011
  ident: 10.1016/j.asoc.2021.107924_b39
  article-title: An application of particle swarm optimization algorithm to clustering analysis
  publication-title: Soft Comput.
  doi: 10.1007/s00500-009-0539-5
– volume: 38
  start-page: 6159
  issue: 5
  year: 2020
  ident: 10.1016/j.asoc.2021.107924_b4
  article-title: The impact of big data market segmentation using data mining and clustering techniques
  publication-title: J. Intell. Fuzzy Syst.
– volume: 36
  start-page: 9847
  issue: 6
  year: 2009
  ident: 10.1016/j.asoc.2021.107924_b48
  article-title: An efficient hybrid data clustering method based on K-harmonic means and particle swarm optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.02.003
– volume: 38
  start-page: 184
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2021.107924_b31
  article-title: A self-adaptive embedded chaotic particle swarm optimization for parameters selection of Wv-SVM
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.06.038
– volume: 8
  start-page: 168
  issue: 2
  year: 2014
  ident: 10.1016/j.asoc.2021.107924_b2
  article-title: Customer-oriented benefit segmentation: an integrated approach
  publication-title: Int. J. Bus. Innov. Res.
  doi: 10.1504/IJBIR.2014.059532
– volume: 71
  start-page: 375
  year: 2017
  ident: 10.1016/j.asoc.2021.107924_b20
  article-title: Fast density clustering strategies based on the K-means algorithm
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.06.023
– volume: 10
  start-page: 183
  issue: 1
  year: 2010
  ident: 10.1016/j.asoc.2021.107924_b13
  article-title: An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2009.07.001
– volume: 28
  start-page: 138
  year: 2015
  ident: 10.1016/j.asoc.2021.107924_b34
  article-title: A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2014.11.018
– volume: 545
  start-page: 344
  year: 2021
  ident: 10.1016/j.asoc.2021.107924_b21
  article-title: Near-optimal large-scale k-medoids clustering
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.08.121
– volume: 31
  start-page: 8661
  issue: 12
  year: 2019
  ident: 10.1016/j.asoc.2021.107924_b47
  article-title: Presentation of a new hybrid approach for forecasting economic growth using artificial intelligence approaches
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04417-0
– volume: 46
  start-page: 243
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2021.107924_b43
  article-title: An extensive comparative study of cluster validity indices
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.07.021
– volume: 8
  start-page: 332
  issue: 4
  year: 2006
  ident: 10.1016/j.asoc.2021.107924_b29
  article-title: Dynamic clustering using particle swarm optimization with application in image segmentation
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-005-0015-5
– start-page: 1942
  year: 1995
  ident: 10.1016/j.asoc.2021.107924_b24
  article-title: Particle swarm optimization
SSID ssj0016928
Score 2.5705802
Snippet The improvement of enterprise competitiveness depends on the ability to match segmented customers in a competitive market. In this study, we propose a customer...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107924
SubjectTerms Adaptive parameter learning
Customer segmentation
K-means clustering algorithm
Mixed data
Particle swarm optimization algorithm
Title Customer segmentation using K-means clustering and the adaptive particle swarm optimization algorithm
URI https://dx.doi.org/10.1016/j.asoc.2021.107924
Volume 113
WOSCitedRecordID wos000724862700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbQxgMv3BFjgPzAW-QpTZw4fpzKEDdNSAypPEWO7WydmrRqE9j-Pce3NOrQBEi8RNFpbFfnfDn-6p4LQm84p0C7bZl9lRMqYkrEpC5IJdJCMkljpW2d2c_s9LSYzfgXHzq0se0EWNsWV1d89V9NDTIwtkmd_QtzD5OCAO7B6HAFs8P1jww_7YHPNaZIsz5vfGZRG_X2TOATaTTsTZFc9KZAQkhQNORTKLGyYUQrP2e0-SnWTbQEaeOTNSOxOF-u591FM-a0gchuwKPbEPW-C_uhifSx4QLf-wFA04veSGZzAXuSGMUBu6PYt8vtWNCrixeGz67DnP6IIpnshHvczJ1xrjYvCOX-AFI7WcESwnPXxGXwzy5Z9Yavd8cOl0cCYHxklgUR4y4je6eG9lezmFkrMbWMqNmz9xOWcXCD-8cfTmYfhz-ecm7b8Q5fzudZuZDA3ZV-z2VG_OTsIbrvf1jgY2e8R-iObh-jB6FpB_Y-_AnSAR94jA9s8YE9PvAWHxjwgQEfOOADB3xgiw88xgce8PEUfXt3cjZ9T3yvDSLTOO5IRblMa1YB_U5jLrQoVFKnjArBNYWXt2ZpHdfAeICfpiqWhvYqrrJUJ1xW8OgztNcuW_0cYSkmTDMuRMZz2IYZr5IKdF3XmcoyJesDNAlaK6UvRG_6oSzKEHF4WRpNl0bTpdP0AYqGMStXhuXWp7NgjNITSUcQS8DOLeNe_OO4Q3RvC_uXaK9b9_oVuit_dPPN-rWH2C9MaJsk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Customer+segmentation+using+K-means+clustering+and+the+adaptive+particle+swarm+optimization+algorithm&rft.jtitle=Applied+soft+computing&rft.au=Li%2C+Yue&rft.au=Chu%2C+Xiaoquan&rft.au=Tian%2C+Dong&rft.au=Feng%2C+Jianying&rft.date=2021-12-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=113&rft_id=info:doi/10.1016%2Fj.asoc.2021.107924&rft.externalDocID=S1568494621008462
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon