Smart predictive viscosity mixing of CO2–N2 using optimized dendritic neural networks to implicate for carbon capture utilization and storage
Crucial for carbon capture, utilization, and storage (CCUS) initiatives and diverse industries, heat transfer underscores the need for a precise assessment of carbon dioxide (CO2) and nitrogen (N2) viscosities in gaseous blends across various temperatures. This research pioneers an intelligent model...
Uloženo v:
| Vydáno v: | Journal of environmental chemical engineering Ročník 12; číslo 2; s. 112210 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.04.2024
|
| Témata: | |
| ISSN: | 2213-3437 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Crucial for carbon capture, utilization, and storage (CCUS) initiatives and diverse industries, heat transfer underscores the need for a precise assessment of carbon dioxide (CO2) and nitrogen (N2) viscosities in gaseous blends across various temperatures. This research pioneers an intelligent model by enhancing the dendritic neural regression (DNR) framework, employing the Seagull Optimization Algorithm with Marine Predator Algorithm (SOAMPA) for optimal predictions. Leveraging recent advancements in metaheuristic optimization techniques, the study reveals the superior performance of the novel SOAMPA approach in predictive accuracy, marking a significant breakthrough in predicting CO2-N2 mixture viscosities with implications for advancing CCUS projects and diverse industries. The optimized DNR model, empowered by the modified SOAMPA optimization technique, contributes to estimating the viscosity of N2-CO2 mixture gases. Utilizing inputs like pressure, temperature, mole fraction of N2, and model fraction of CO2, the models are trained and tested on a dataset comprising over 3030 data samples from public literature. Key contributions encompass proposing an optimized DNR approach, introducing the modified SOAMPA technique, and demonstrating its superiority over established optimization methods in conjunction with the traditional DNR model for predicting viscosity based on real experimental datasets.
[Display omitted]
•Emphasizes the importance of precise viscosity assessment for CCUS and diverse industries.•Aims to create a smart model for predicting CO2-N2 viscosity.•Focuses on improving the dendritic neural regression (DNR) framework.•Introduces a novel Seagull Optimization Algorithm with Marine Predator Algorithm (SOAMPA) for model enhancement.•Offers unprecedented insights into CO2-N2 viscosity prediction.•Promises a breakthrough with great potential for CCUS projects and various industries. |
|---|---|
| AbstractList | Crucial for carbon capture, utilization, and storage (CCUS) initiatives and diverse industries, heat transfer underscores the need for a precise assessment of carbon dioxide (CO2) and nitrogen (N2) viscosities in gaseous blends across various temperatures. This research pioneers an intelligent model by enhancing the dendritic neural regression (DNR) framework, employing the Seagull Optimization Algorithm with Marine Predator Algorithm (SOAMPA) for optimal predictions. Leveraging recent advancements in metaheuristic optimization techniques, the study reveals the superior performance of the novel SOAMPA approach in predictive accuracy, marking a significant breakthrough in predicting CO2-N2 mixture viscosities with implications for advancing CCUS projects and diverse industries. The optimized DNR model, empowered by the modified SOAMPA optimization technique, contributes to estimating the viscosity of N2-CO2 mixture gases. Utilizing inputs like pressure, temperature, mole fraction of N2, and model fraction of CO2, the models are trained and tested on a dataset comprising over 3030 data samples from public literature. Key contributions encompass proposing an optimized DNR approach, introducing the modified SOAMPA technique, and demonstrating its superiority over established optimization methods in conjunction with the traditional DNR model for predicting viscosity based on real experimental datasets.
[Display omitted]
•Emphasizes the importance of precise viscosity assessment for CCUS and diverse industries.•Aims to create a smart model for predicting CO2-N2 viscosity.•Focuses on improving the dendritic neural regression (DNR) framework.•Introduces a novel Seagull Optimization Algorithm with Marine Predator Algorithm (SOAMPA) for model enhancement.•Offers unprecedented insights into CO2-N2 viscosity prediction.•Promises a breakthrough with great potential for CCUS projects and various industries. |
| ArticleNumber | 112210 |
| Author | Ewees, Ahmed A. Vo Thanh, Hung Samak, Ahmed H. Abd Elaziz, Mohamed Al-qaness, Mohammed A.A. |
| Author_xml | – sequence: 1 givenname: Ahmed A. surname: Ewees fullname: Ewees, Ahmed A. email: a.ewees@hotmail.com organization: Department of Information System and Cybersecurity, College of Computing and Information Technology, University of Bisha, P.O Box 551, Bisha, Saudi Arabia – sequence: 2 givenname: Hung surname: Vo Thanh fullname: Vo Thanh, Hung email: hung.vothanh@vlu.edu.vn organization: Laboratory for Computational Mechanics, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Viet Nam – sequence: 3 givenname: Mohammed A.A. surname: Al-qaness fullname: Al-qaness, Mohammed A.A. email: alqaness@zjnu.edu.cn organization: College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China – sequence: 4 givenname: Mohamed surname: Abd Elaziz fullname: Abd Elaziz, Mohamed email: abd_el_aziz_m@yahoo.com organization: Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt – sequence: 5 givenname: Ahmed H. surname: Samak fullname: Samak, Ahmed H. email: eng_ahmed_samak@yahoo.co.uk organization: Faculty of Science, Menofia University, Shibeen El-Kom, Egypt |
| BookMark | eNp9kM9OAjEQh3vARERewFNfAGy7C7ubeDHEfwmRg3puyuwsGVy2m7agePINPPiGPokFPHlgLr_kN_kmme-MdRrbIGMXUgylkOPL5XCJgEMlVDqUUikpOqwbIxkkaZKdsr73SxGnKORoLLvs62llXOCtw5Ig0Ab5hjxYT2HLV_ROzYLbik9m6ufz-1Hxtd83baAVfWDJS2xKR4GAN7h2po4R3qx79TxYTqu2JjABeWUdB-PmtonRhrVDvg5U04cJFDvTlNwH68wCz9lJZWqP_b_ssZfbm-fJ_WA6u3uYXE8HkAgRBvO0yEpRiaxKzChNcFzkIimLHGSaq9wYCXEhs6wSRoGqUpgXUAiAPBUFqlQkPaYOd8FZ7x1WunUUVWy1FHpnUi_1zqTemdQHkxHK_0FAYf9CcIbq4-jVAcX41IbQaQ-EDUTtDiHo0tIx_BfUZpbQ |
| CitedBy_id | crossref_primary_10_1002_est2_70115 crossref_primary_10_1007_s40948_025_00945_3 crossref_primary_10_1186_s40517_024_00324_3 crossref_primary_10_1016_j_enconman_2024_118943 crossref_primary_10_1080_12269328_2025_2499267 crossref_primary_10_1016_j_jece_2025_116218 crossref_primary_10_1051_e3sconf_202458801003 crossref_primary_10_1021_acs_jced_4c00666 crossref_primary_10_28978_nesciences_1569280 crossref_primary_10_1038_s41598_024_80959_1 crossref_primary_10_1016_j_rineng_2025_104035 crossref_primary_10_1021_acs_energyfuels_5c02370 crossref_primary_10_1007_s10668_024_05275_0 crossref_primary_10_3389_feart_2024_1376344 crossref_primary_10_1007_s41939_024_00552_x |
| Cites_doi | 10.1016/j.fuel.2023.129623 10.1016/j.neucom.2021.08.153 10.1088/0022-3727/3/4/312 10.1021/je900131q 10.1063/1.1677125 10.1016/j.ijggc.2021.103405 10.1016/j.petsci.2021.12.009 10.1016/j.fuel.2018.05.087 10.1016/j.fuel.2022.125679 10.1016/S0031-8914(63)80162-7 10.1016/0031-8914(66)90143-1 10.1016/j.eswa.2020.113377 10.1002/ese3.1276 10.1016/j.scitotenv.2020.138786 10.1016/j.ins.2022.06.012 10.1016/S0378-4371(96)00466-9 10.1016/0031-8914(71)90059-0 10.1016/j.cma.2021.114194 10.1126/sciadv.aao6588 10.1016/j.fuel.2018.09.113 10.2118/1340-PA 10.1016/j.fuel.2022.123821 10.1016/j.cej.2022.135955 10.1016/j.apenergy.2019.114467 10.3390/en14040930 10.1016/j.jngse.2016.02.026 10.1023/A:1020784330515 10.1016/j.jngse.2021.104210 10.1038/nclimate3231 10.1063/1.1840632 10.1007/BF01003580 10.1007/BF00502110 10.1016/j.eswa.2022.117637 10.1021/acs.energyfuels.0c04026 10.1016/j.fluid.2022.113519 10.2118/97099-PA 10.1016/j.knosys.2018.11.024 10.1016/j.fuel.2020.119146 10.1002/cite.330531209 10.1063/1.1669960 10.1016/j.molliq.2017.03.066 10.1021/acs.energyfuels.2c02185 10.3390/en15197159 10.1016/j.petrol.2021.109787 10.1002/aic.690080116 10.1016/j.supflu.2007.10.004 10.1007/s00366-021-01319-5 10.1016/j.molliq.2023.123672 10.1016/S0031-8914(57)90708-5 10.1016/j.ijhydene.2023.12.131 10.3390/min12060779 10.2118/75721-PA 10.3390/en15249261 10.2118/915-PA 10.1016/0378-4371(77)90003-6 10.1016/j.jct.2015.04.015 10.1016/j.petrol.2020.107837 10.1007/s11053-021-09849-x 10.1021/je050399c 10.1016/j.arabjc.2023.105507 10.1016/j.marpetgeo.2022.105886 10.1016/j.knosys.2016.05.031 10.1038/s41598-020-73931-2 10.1016/j.energy.2022.123760 10.1016/j.petrol.2021.108602 10.1016/j.jct.2017.11.005 10.1038/s41893-020-0532-7 10.1021/acsomega.2c05759 10.1063/1.1733455 10.1016/j.cej.2019.122646 10.2118/297-G 10.1063/1.441286 10.3390/app10113864 10.1016/j.apenergy.2022.118851 10.1016/j.ijggc.2019.102826 10.1016/j.asoc.2021.107683 10.3390/en12030448 10.1016/j.jclepro.2024.141043 10.1016/j.fluid.2021.113343 10.3390/en15124501 10.1016/j.apenergy.2022.118985 10.1063/1.1727294 10.1016/j.energy.2021.122457 10.1021/ie50576a041 10.1016/j.jct.2018.01.015 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jece.2024.112210 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_jece_2024_112210 S2213343724003403 |
| GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 5VS 7-5 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFYP ABJNI ABLST ABMAC ABNUV ABXDB ACDAQ ACGFS ACLOT ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE AEBSH AEIPS AEKER AEUPX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLECG BLXMC EBS EFJIC EFKBS EFLBG EJD ENUVR FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ KCYFY KOM M41 MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 ROL SDF SPC SPCBC SSG SSJ SSZ T5K ~G- ~HD AAYXX CITATION |
| ID | FETCH-LOGICAL-c300t-b497d0f07f3a543e69803d98c14828aa1cf3a177f0a2c2f4cb9c90cc8409e2403 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001187980100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2213-3437 |
| IngestDate | Tue Nov 18 22:29:28 EST 2025 Thu Nov 13 04:32:48 EST 2025 Wed Dec 10 14:28:11 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Seagull optimization algorithm CCUS N2 Marine predators algorithm CO2 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-b497d0f07f3a543e69803d98c14828aa1cf3a177f0a2c2f4cb9c90cc8409e2403 |
| ParticipantIDs | crossref_primary_10_1016_j_jece_2024_112210 crossref_citationtrail_10_1016_j_jece_2024_112210 elsevier_sciencedirect_doi_10_1016_j_jece_2024_112210 |
| PublicationCentury | 2000 |
| PublicationDate | April 2024 2024-04-00 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of environmental chemical engineering |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Tang, Tamura, Kuratu, Ishizuka, Tanno (bib56) 2001; 84 Breetveld, DiPippo, Kestin (bib75) 1966; 45 Pensado, Pádua, Comuñas, Fernández (bib91) 2008; 44 Li, Huang, Shao, Cai (bib36) 2024; 356 Ali, Jiang, Huolin, Pan, Abbas, Ashraf (bib46) 2021; 203 Londono, Archer, Blasingame (bib66) 2005; 8 Rosa, Reimer, Went, D’Odorico (bib1) 2020; 3 Behesht Abad, Mousavi, Mohamadian, Wood, Ghorbani, Davoodi, Alvar, Shahbazi (bib50) 2021; 95 Thanh, Lee (bib2) 2022; 239 Dhiman, Kumar (bib61) 2019; 165 Zhao, Wang, Mirjalili (bib96) 2022; 388 Sun, Yu, Xu, Pu, Miao (bib20) 2019; 236 Seibt, Herrmann, Vogel, Bich, Hassel (bib89) 2009; 54 Hadavimoghaddam, Ostadhassan, Heidaryan, Sadri, Chapanova, Popov, Cheremisin, Rafieepour (bib49) 2021; 14 Kestin, Kobayashi, Wood (bib67) 1966; 32 Cantera, Sousa, Irene (bib25) 2022; 61 Al-Mudhafar, Rao, Srinivasan, Thanh, Al Lawe (bib43) 2022; 10 Sutton (bib33) 2007; 10 Faramarzi, Heidarinejad, Mirjalili, Gandomi (bib62) 2020; 152 Long, Jiao, Liang, Xu, Tang, Cai (bib63) 2022; 249 Khosravi, Betken, Jakobsen (bib21) 2022; 560 Stratiev, Shishkova, Dinkov, Nenov, Sotirov, Stratiev, Yordanov, Nedanovski (bib52) 2023; 331 Flynn, Hanks, Lemaire, Ross (bib78) 1963; 38 Vo Thanh, Zhang, Dai, Zhang, Tangparitkul, Min (bib40) 2024; 55 Vo Thanh, Sugai, Sasaki (bib4) 2020; 10 Al-Mudhafar (bib41) 2020; 195 Soleimani (bib24) 2022; 15 Dargahi-zarandi, Hemmati-sarapardeh, Hajirezaie (bib35) 2017; 236 Humberg, Richter, Trusler, Span (bib84) 2018; 120 Carr, Kobayashi, Burrows (bib30) 1954 Tang, Song, Zhu, Hou, Tang, Ji (bib59) 2022; 205 Jossi, Stiel, Thodos (bib31) 1962; 8 Magda, Joel, Alexei (bib13) 2021; 24 Wu, Wang, Wang, Su (bib37) 2024; 17 Bailey (bib72) 1970; 3 Michels, Botzen, Schuurman (bib80) 1957; 23 Izadmehr, Shams, Ghazanfari (bib27) 2016; 30 Ji, Tang, Zhao, Tang, Todo (bib54) 2022; 489 Al-qaness, Ewees, Elaziz, Samak (bib53) 2022; 15 Liu, Xiong, Ni, Ma, Tan, Li, Deng, Li, Yang, Zhang (bib23) 2023; 454 Zhang, Wang, Rahimi, Vo (bib39) 2024; 441 Núñez-López, Gil-Egui, Hosseini (bib15) 2019; 12 Al-mudhafar, Abbas, Wood (bib42) 2022; 145 Fan, Huang, Chen, Yao, Yang, Huang (bib64) 2022; 38 Evers, Lösch, Wagner (bib92) 2002; 23 Nazeri, Chapoy, Burgass, Tohidi (bib87) 2018; 118 Schäfer, Richter, Span (bib90) 2015; 89 Michels, Gibson (bib81) 1931 C.D. Schuman, T.E. Potok, R.M. Patton, J.D. Birdwell, M.E. Dean, G.S. Rose, J.S. Plank, A Survey of Neuromorphic Computing and Neural Networks in Hardware, ArXiv. (2017). http://arxiv.org/abs/1705.06963. Zhou, Gao, Wang, Chu, Todo, Tang (bib94) 2016; 105 Riera-ortíz, Macías-salinas (bib29) 2022; 554 Vo Thanh, Sugai, Nguele, Sasaki (bib7) 2019; 90 Heidaryan, Moghadasi, Salarabadi (bib34) 2010; 19 Seibt, Vogel, Bich, Buttig, Hassel (bib88) 2006; 51 Egrioglu, Baş, Chen (bib58) 2022; 607 Kestin, Paykoç, Sengers (bib68) 1971; 54 Iwasaki, Takahashi (bib93) 1980; 74 Akai, Kuriyama, Kato, Okabe (bib9) 2021; 110 Ashraf, Zhang, Anees, Mangi, Ali, Zhang, Imraz, Abbasi, Abbas, Ul-, Ullah, Tan (bib48) 2021 Al-qaness, Ewees, Fan, Abualigah, Elaziz (bib65) 2022; 314 Lee, Gonzalez, Eakin (bib32) 1966; 18 Goldman (bib76) 1963; 29 Liu, Ren, Li, Yang, Wang, Wang, Xu, Agarwal (bib16) 2022; 19 Bizhani, Ardakani, Hawthorne, Cesar, Kurz, Percival (bib18) 2022; 12 Alrassas, Thanh, Ren, Sun, Al-areeq (bib5) 2022 Dong, Tang, Ji, Lin, Wong (bib95) 2021; 111 Al, Czubinski, May (bib28) 2018; 231 Mouallem, Raza, Glatz, Mahmoud, Arif (bib38) 2024; 393 Ashraf, Zhang, Anees, Mangi, Ali, Ullah, Zhang (bib45) 2020; 10 Kestin, Ro, Wakeham (bib69) 1972; 56 Kestin, Khalifa, Ro, Wakeham (bib70) 1977; 88 Haepp (bib82) 1976; 9 Ross, Brown (bib79) 1957; 49 Hunter, Marsh, Matthews, Smith (bib86) 1993; 14 Song, Tang, Ji, Todo, Tang (bib57) 2021; 10 Mac Dowell, Fennell, Shah, Maitland (bib6) 2017; 7 Faraji, Ugwu, Chong (bib26) 2022; 208 Liang, Yan, Zhang, Hou (bib17) 2021; 35 Lucas (bib77) 1981; 53 Mehrzad, Sedaee, Pourafshary (bib19) 2022 Lohrenz, Bray, Clark (bib85) 1964; 16 Safaei-farouji, Vo, Sheini, Yasin, Radwan, Ashraf, Lee (bib3) 2022; 319 Kestin, Yata (bib73) 1968; 49 Van Der Gulik (bib83) 1997; 238 J. Ali, U. Ashraf, A. Anees, S. Peng, M.U. Umar, H.V. Thanh, U. Khan, M. Abioui, H.N. Mangi, M. Ali, J. Ullah, Hydrocarbon Potential Assessment of Carbonate-Bearing Sediments in a Meyal Oil Field, Pakistan: Insights from Logging Data Using Machine Learning and Quanti Elan Modeling, (2022). https://doi.org/10.1021/acsomega.2c05759. Teng, Zhang (bib12) 2018; 4 M.W. SAUNDERS, On the Measurement of the Absolute Viscosity of Nitrogen and Air over the Temperature Range of 100 to 400° K and at Pressures of 1 to 150 Atmospheres, 1972. Teng, Xuan, Da, Sun, Liu, Ding (bib22) 2022; 440 Rahmanifard, Maroufi, Alimohamadi, Plaksina, Gates (bib51) 2021; 285 Al-qaness, Ewees, Abualigah, AlRassas, Thanh (bib60) 2022 Gauteplass, Almenningen, Ersland, Barth, Chapoy, Yang (bib11) 2020; 381 Farajzadeh, Eftekhari, Dafnomilis, Lake, Bruining (bib14) 2020; 261 Vo Thanh, Yasin, Al-mudhafar, Lee (bib10) 2022; 314 Ko, Lee, Chung (bib8) 2020; 729 DiPippo, Kestin, Oguchi (bib74) 1967; 46 Hussain, Liu, Ashraf, Ali, Hussain, Ali (bib44) 2022; 15 Michels (10.1016/j.jece.2024.112210_bib81) 1931 Alrassas (10.1016/j.jece.2024.112210_bib5) 2022 Al-qaness (10.1016/j.jece.2024.112210_bib53) 2022; 15 Nazeri (10.1016/j.jece.2024.112210_bib87) 2018; 118 Rahmanifard (10.1016/j.jece.2024.112210_bib51) 2021; 285 Gauteplass (10.1016/j.jece.2024.112210_bib11) 2020; 381 Van Der Gulik (10.1016/j.jece.2024.112210_bib83) 1997; 238 10.1016/j.jece.2024.112210_bib71 Safaei-farouji (10.1016/j.jece.2024.112210_bib3) 2022; 319 Flynn (10.1016/j.jece.2024.112210_bib78) 1963; 38 Lohrenz (10.1016/j.jece.2024.112210_bib85) 1964; 16 Humberg (10.1016/j.jece.2024.112210_bib84) 2018; 120 Ji (10.1016/j.jece.2024.112210_bib54) 2022; 489 Zhang (10.1016/j.jece.2024.112210_bib39) 2024; 441 Ashraf (10.1016/j.jece.2024.112210_bib48) 2021 Vo Thanh (10.1016/j.jece.2024.112210_bib4) 2020; 10 Mouallem (10.1016/j.jece.2024.112210_bib38) 2024; 393 Ali (10.1016/j.jece.2024.112210_bib46) 2021; 203 Tang (10.1016/j.jece.2024.112210_bib59) 2022; 205 DiPippo (10.1016/j.jece.2024.112210_bib74) 1967; 46 Akai (10.1016/j.jece.2024.112210_bib9) 2021; 110 Farajzadeh (10.1016/j.jece.2024.112210_bib14) 2020; 261 Liang (10.1016/j.jece.2024.112210_bib17) 2021; 35 Zhou (10.1016/j.jece.2024.112210_bib94) 2016; 105 Tang (10.1016/j.jece.2024.112210_bib56) 2001; 84 Dong (10.1016/j.jece.2024.112210_bib95) 2021; 111 Khosravi (10.1016/j.jece.2024.112210_bib21) 2022; 560 10.1016/j.jece.2024.112210_bib47 Soleimani (10.1016/j.jece.2024.112210_bib24) 2022; 15 Iwasaki (10.1016/j.jece.2024.112210_bib93) 1980; 74 Carr (10.1016/j.jece.2024.112210_bib30) 1954 Thanh (10.1016/j.jece.2024.112210_bib2) 2022; 239 Jossi (10.1016/j.jece.2024.112210_bib31) 1962; 8 Cantera (10.1016/j.jece.2024.112210_bib25) 2022; 61 Stratiev (10.1016/j.jece.2024.112210_bib52) 2023; 331 Al-mudhafar (10.1016/j.jece.2024.112210_bib42) 2022; 145 Behesht Abad (10.1016/j.jece.2024.112210_bib50) 2021; 95 Rosa (10.1016/j.jece.2024.112210_bib1) 2020; 3 Riera-ortíz (10.1016/j.jece.2024.112210_bib29) 2022; 554 Kestin (10.1016/j.jece.2024.112210_bib67) 1966; 32 Breetveld (10.1016/j.jece.2024.112210_bib75) 1966; 45 Kestin (10.1016/j.jece.2024.112210_bib70) 1977; 88 Ko (10.1016/j.jece.2024.112210_bib8) 2020; 729 Mehrzad (10.1016/j.jece.2024.112210_bib19) 2022 Hussain (10.1016/j.jece.2024.112210_bib44) 2022; 15 Goldman (10.1016/j.jece.2024.112210_bib76) 1963; 29 Sun (10.1016/j.jece.2024.112210_bib20) 2019; 236 Li (10.1016/j.jece.2024.112210_bib36) 2024; 356 Bizhani (10.1016/j.jece.2024.112210_bib18) 2022; 12 10.1016/j.jece.2024.112210_bib55 Magda (10.1016/j.jece.2024.112210_bib13) 2021; 24 Núñez-López (10.1016/j.jece.2024.112210_bib15) 2019; 12 Fan (10.1016/j.jece.2024.112210_bib64) 2022; 38 Haepp (10.1016/j.jece.2024.112210_bib82) 1976; 9 Hadavimoghaddam (10.1016/j.jece.2024.112210_bib49) 2021; 14 Al-Mudhafar (10.1016/j.jece.2024.112210_bib41) 2020; 195 Al (10.1016/j.jece.2024.112210_bib28) 2018; 231 Sutton (10.1016/j.jece.2024.112210_bib33) 2007; 10 Hunter (10.1016/j.jece.2024.112210_bib86) 1993; 14 Seibt (10.1016/j.jece.2024.112210_bib89) 2009; 54 Teng (10.1016/j.jece.2024.112210_bib12) 2018; 4 Zhao (10.1016/j.jece.2024.112210_bib96) 2022; 388 Heidaryan (10.1016/j.jece.2024.112210_bib34) 2010; 19 Egrioglu (10.1016/j.jece.2024.112210_bib58) 2022; 607 Kestin (10.1016/j.jece.2024.112210_bib68) 1971; 54 Dhiman (10.1016/j.jece.2024.112210_bib61) 2019; 165 Wu (10.1016/j.jece.2024.112210_bib37) 2024; 17 Schäfer (10.1016/j.jece.2024.112210_bib90) 2015; 89 Al-qaness (10.1016/j.jece.2024.112210_bib65) 2022; 314 Lee (10.1016/j.jece.2024.112210_bib32) 1966; 18 Evers (10.1016/j.jece.2024.112210_bib92) 2002; 23 Liu (10.1016/j.jece.2024.112210_bib16) 2022; 19 Song (10.1016/j.jece.2024.112210_bib57) 2021; 10 Kestin (10.1016/j.jece.2024.112210_bib69) 1972; 56 Izadmehr (10.1016/j.jece.2024.112210_bib27) 2016; 30 Al-Mudhafar (10.1016/j.jece.2024.112210_bib43) 2022; 10 Bailey (10.1016/j.jece.2024.112210_bib72) 1970; 3 Long (10.1016/j.jece.2024.112210_bib63) 2022; 249 Michels (10.1016/j.jece.2024.112210_bib80) 1957; 23 Liu (10.1016/j.jece.2024.112210_bib23) 2023; 454 Lucas (10.1016/j.jece.2024.112210_bib77) 1981; 53 Pensado (10.1016/j.jece.2024.112210_bib91) 2008; 44 Al-qaness (10.1016/j.jece.2024.112210_bib60) 2022 Mac Dowell (10.1016/j.jece.2024.112210_bib6) 2017; 7 Seibt (10.1016/j.jece.2024.112210_bib88) 2006; 51 Vo Thanh (10.1016/j.jece.2024.112210_bib40) 2024; 55 Kestin (10.1016/j.jece.2024.112210_bib73) 1968; 49 Vo Thanh (10.1016/j.jece.2024.112210_bib10) 2022; 314 Ross (10.1016/j.jece.2024.112210_bib79) 1957; 49 Teng (10.1016/j.jece.2024.112210_bib22) 2022; 440 Vo Thanh (10.1016/j.jece.2024.112210_bib7) 2019; 90 Faramarzi (10.1016/j.jece.2024.112210_bib62) 2020; 152 Faraji (10.1016/j.jece.2024.112210_bib26) 2022; 208 Dargahi-zarandi (10.1016/j.jece.2024.112210_bib35) 2017; 236 Londono (10.1016/j.jece.2024.112210_bib66) 2005; 8 Ashraf (10.1016/j.jece.2024.112210_bib45) 2020; 10 |
| References_xml | – start-page: 47 year: 1954 end-page: 55 ident: bib30 article-title: Viscosity of hydrocarbon gases under pressure publication-title: J. Pet. Technol. – volume: 236 start-page: 162 year: 2017 end-page: 171 ident: bib35 article-title: Modeling gas / vapor viscosity of hydrocarbon fl uids using a hybrid GMDH-type neural network system publication-title: J. Mol. Liq. – start-page: 288 year: 1931 end-page: 307 ident: bib81 article-title: The measurement of the viscosity of gases at high pressures. —The viscosity of nitrogen to 1000 atms publication-title: Proc. R. Soc. Lond. Ser. A, Contain. Pap. A Math. Phys. Character – volume: 560 year: 2022 ident: bib21 article-title: W.L. Sigurd, R. Span, Viscosity measurements of CO2 -rich; CO2 + N2 and CO2 + H2 mixtures in gas or supercritical phase at temperatures between 273 and 473 K and pressures up to 8.7 MPa publication-title: Fluid Phase Equilib. – volume: 49 start-page: 2026 year: 1957 end-page: 2033 ident: bib79 article-title: Viscosities of gases at high pressures publication-title: Ind. Eng. Chem. – volume: 10 year: 2020 ident: bib45 article-title: Application of unconventional seismic attributes and unsupervised machine learning for the identification of fault and fracture network publication-title: Appl. Sci. – volume: 29 start-page: 499 year: 1963 end-page: 516 ident: bib76 article-title: Viscosity of nitrogen at low temperatures and high pressures publication-title: Physica – volume: 35 start-page: 4633 year: 2021 end-page: 4643 ident: bib17 article-title: Review on coal bed methane recovery theory and technology: recent progress and perspectives publication-title: Energy Fuels – volume: 23 start-page: 1411 year: 2002 end-page: 1439 ident: bib92 article-title: An absolute viscometer-densimeter and measurements of the viscosity of nitrogen, methane, helium, neon, argon, and krypton over a wide range of density and temperature publication-title: Int. J. Thermophys. – volume: 49 start-page: 4780 year: 1968 end-page: 4791 ident: bib73 article-title: Viscosity and diffusion coefficient of six binary mixtures publication-title: J. Chem. Phys. – volume: 84 start-page: 11 year: 2001 end-page: 24 ident: bib56 article-title: A model of the neuron based on dendrite mechanisms publication-title: Electron. Commun. Jpn., Part III Fundam. Electron. Sci. (Engl. Transl. Denshi Tsushin Gakkai Ronbunshi) – volume: 3 start-page: 658 year: 2020 end-page: 666 ident: bib1 article-title: Hydrological limits to carbon capture and storage publication-title: Nat. Sustain. – volume: 24 year: 2021 ident: bib13 article-title: Carbon neutral manufacturing via on-site CO2 recycling publication-title: ISCIENCE – volume: 38 year: 1963 ident: bib78 article-title: Viscosity of nitrogen, helium, neon, and argon from —78.5° to 100°C below 200 atmospheres publication-title: J. Chem. Phys. – volume: 239 year: 2022 ident: bib2 article-title: Application of machine learning to predict CO2 trapping performance in deep saline aquifers publication-title: Energy – volume: 74 start-page: 1930 year: 1980 end-page: 1943 ident: bib93 article-title: Viscosity of carbon dioxide and ethane publication-title: J. Chem. Phys. – volume: 10 start-page: 270 year: 2007 end-page: 284 ident: bib33 article-title: Fundamental PVT calculations for associated and gas / condensate natural-gas systems publication-title: SPE Reserv. Eval. Eng. – volume: 238 start-page: 81 year: 1997 end-page: 112 ident: bib83 article-title: Viscosity of carbon dioxide in the liquid phase publication-title: Phys. A Stat. Mech. Its Appl. – volume: 285 year: 2021 ident: bib51 article-title: The application of supervised machine learning techniques for multivariate modelling of gas component viscosity: a comparative study publication-title: Fuel – volume: 393 year: 2024 ident: bib38 article-title: Estimation of CO2-brine interfacial tension using machine learning: implications for CO2 geo-storage publication-title: J. Mol. Liq. – volume: 55 start-page: 1422 year: 2024 end-page: 1433 ident: bib40 article-title: Data-driven machine learning models for the prediction of hydrogen solubility in aqueous systems of varying salinity: Implications for underground hydrogen storage publication-title: Int. J. Hydrog. Energy – volume: 32 start-page: 1065 year: 1966 end-page: 1089 ident: bib67 article-title: The viscosity of four binary, gaseous mixtures at 20° and 30°C publication-title: Physica – volume: 10 start-page: 4112 year: 2022 end-page: 4135 ident: bib43 article-title: Rapid evaluation and optimization of carbon dioxide-enhanced oil recoveryusing reduced-physics proxy models publication-title: Energy Sci. Eng. – volume: 38 start-page: 3269 year: 2022 end-page: 3294 ident: bib64 article-title: A modified self-adaptive marine predators algorithm: framework and engineering applications publication-title: Eng. Comput. – volume: 56 start-page: 5837 year: 1972 end-page: 5842 ident: bib69 article-title: Viscosity of the binary gaseous mixtures He-Ne and Ne-N2 in the temperature range 25-700°C publication-title: J. Chem. Phys. – volume: 3 start-page: 550 year: 1970 end-page: 562 ident: bib72 article-title: The viscosity of carbon dioxide and acetylene at atmospheric pressure publication-title: J. Phys. D. Appl. Phys. – volume: 12 start-page: 779 year: 2022 ident: bib18 article-title: CO2 -Enhanced oil recovery mechanism in canadian bakken shale publication-title: Minerals – volume: 388 year: 2022 ident: bib96 article-title: Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications publication-title: Comput. Methods Appl. Mech. Eng. – year: 2021 ident: bib48 article-title: A Core logging, machine learning and geostatistical modeling interactive approach for subsurface imaging of lenticular geobodies in a clastic depositional system, SE Pakistan publication-title: Nat. Resour. Res. – volume: 205 year: 2022 ident: bib59 article-title: Adopting a dendritic neural model for predicting stock price index movement publication-title: Expert Syst. Appl. – volume: 249 year: 2022 ident: bib63 article-title: Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm publication-title: Energy – volume: 51 start-page: 526 year: 2006 end-page: 533 ident: bib88 article-title: Viscosity measurements on nitrogen publication-title: J. Chem. Eng. Data. – volume: 110 year: 2021 ident: bib9 article-title: Numerical modelling of long-term CO2 storage mechanisms in saline aquifers using the Sleipner benchmark dataset publication-title: Int. J. Greenh. Gas. Control. – reference: C.D. Schuman, T.E. Potok, R.M. Patton, J.D. Birdwell, M.E. Dean, G.S. Rose, J.S. Plank, A Survey of Neuromorphic Computing and Neural Networks in Hardware, ArXiv. (2017). http://arxiv.org/abs/1705.06963. – volume: 9 start-page: 281 year: 1976 end-page: 290 ident: bib82 article-title: Messung der Viskosität von Kohlendioxid und Propylen publication-title: Wärme- Und Stoffübertragung – volume: 356 year: 2024 ident: bib36 article-title: Machine learning prediction of physical properties and nitrogen content of porous carbon from agricultural wastes: Effects of activation and doping process publication-title: Fuel – volume: 18 start-page: 997 year: 1966 end-page: 1000 ident: bib32 article-title: The viscosity of natural gases publication-title: J. Pet. Technol. – volume: 607 start-page: 572 year: 2022 end-page: 584 ident: bib58 article-title: Recurrent dendritic neuron model artificial neural network for time series forecasting publication-title: Inf. Sci. – volume: 314 year: 2022 ident: bib65 article-title: Boosted ANFIS model using augmented marine predator algorithm with mutation operators for wind power forecasting publication-title: Appl. Energy – volume: 8 start-page: 59 year: 1962 end-page: 63 ident: bib31 article-title: The viscosity of pure substances in the dense gaseous and liquid phases publication-title: AIChE J. – year: 2022 ident: bib5 article-title: CO2 Sequestration and enhanced oil recovery via the water alternating gas scheme in a mixed transgressive sandstone-carbonate reservoir: case study of a large middle east oilfield publication-title: Energy Fuels – volume: 331 year: 2023 ident: bib52 article-title: Prediction of petroleum viscosity from molecular weight and density publication-title: Fuel – volume: 152 year: 2020 ident: bib62 article-title: Marine predators algorithm: a nature-inspired metaheuristic publication-title: Expert Syst. Appl. – volume: 12 year: 2019 ident: bib15 article-title: Environmental and operational performance of CO 2 -EOR as a CCUS technology: a cranfield example with dynamic LCA considerations publication-title: Energies – volume: 19 start-page: 552 year: 2010 end-page: 556 ident: bib34 article-title: A new and reliable model for predicting methane viscosity at high pressures and high temperatures publication-title: J. Nat. Gas Chem. – volume: 17 year: 2024 ident: bib37 article-title: Based on machine learning model for prediction of CO2 adsorption of synthetic zeolite in two-step solid waste treatment publication-title: Arab. J. Chem. – volume: 7 start-page: 243 year: 2017 end-page: 249 ident: bib6 article-title: The role of CO2 capture and utilization in mitigating climate change publication-title: Nat. Clim. Chang. – volume: 90 year: 2019 ident: bib7 article-title: Integrated work flow in 3D geological model construction for evaluation of CO 2 storage capacity of a fractured basement reservoir in Cuu Long Basin, Vietnam publication-title: Int. J. Greenh. Gas. Control. – volume: 30 start-page: 364 year: 2016 end-page: 378 ident: bib27 article-title: New correlations for predicting pure and impure natural gas viscosity publication-title: J. Nat. Gas Sci. Eng. – volume: 15 year: 2022 ident: bib24 article-title: Tri-Reforming of methane: thermodynamics, operating conditions, reactor technology and efficiency evaluation—a review publication-title: Energies – volume: 95 year: 2021 ident: bib50 article-title: Hybrid machine learning algorithms to predict condensate viscosity in the near wellbore regions of gas condensate reservoirs publication-title: J. Nat. Gas. Sci. Eng. – volume: 15 year: 2022 ident: bib53 article-title: Wind power forecasting using optimized dendritic neural model based on seagull optimization algorithm and aquila optimizer publication-title: Energies – start-page: 1 year: 2022 end-page: 14 ident: bib60 article-title: 13 Mohamed Abd Elaziz 10, 11, 12, Evaluating the applications of dendritic neuron model with metaheuristic optimization algorithms for crude-oil-production forecasting publication-title: Entropy – volume: 236 start-page: 1446 year: 2019 end-page: 1457 ident: bib20 article-title: Compositional simulation of CO2 Huff-n-Puff process in middle bakken tight oil reservoirs with hydraulic fractures publication-title: Fuel – volume: 15 year: 2022 ident: bib44 article-title: Application of machine learning for lithofacies prediction and cluster analysis approach to identify rock type publication-title: Energies – volume: 203 year: 2021 ident: bib46 article-title: Machine learning - A novel approach of well logs similarity based on synchronization measures to predict shear sonic logs publication-title: J. Pet. Sci. Eng. – reference: J. Ali, U. Ashraf, A. Anees, S. Peng, M.U. Umar, H.V. Thanh, U. Khan, M. Abioui, H.N. Mangi, M. Ali, J. Ullah, Hydrocarbon Potential Assessment of Carbonate-Bearing Sediments in a Meyal Oil Field, Pakistan: Insights from Logging Data Using Machine Learning and Quanti Elan Modeling, (2022). https://doi.org/10.1021/acsomega.2c05759. – volume: 165 start-page: 169 year: 2019 end-page: 196 ident: bib61 article-title: Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems publication-title: Knowl. -Based Syst. – volume: 44 start-page: 172 year: 2008 end-page: 185 ident: bib91 article-title: Viscosity and density measurements for carbon dioxide + pentaerythritol ester lubricant mixtures at low lubricant concentration publication-title: J. Supercrit. Fluids – year: 2022 ident: bib19 article-title: Effect of produced carbon dioxide on multiphase fluid flow modeling of carbonate acidizing publication-title: J. Pet. Explor. Prod. Technol. – volume: 440 year: 2022 ident: bib22 article-title: Direct solar-driven reduction of greenhouse gases into hydrocarbon fuels incorporating thermochemical energy storage via modified calcium looping publication-title: Chem. Eng. J. – volume: 454 year: 2023 ident: bib23 article-title: Review on adsorbents in elemental mercury removal in coal combustion flue gas, smelting flue gas and natural gas publication-title: Chem. Eng. J. – volume: 45 start-page: 124 year: 1966 end-page: 126 ident: bib75 article-title: Viscosity and binary diffusion coefficient of neon-carbon dioxide mixtures at 20° and 30°C publication-title: J. Chem. Phys. – volume: 16 start-page: 1171 year: 1964 end-page: 1176 ident: bib85 article-title: Calculating viscosities of reservoir fluids from their compositions publication-title: J. Pet. Technol. – volume: 261 year: 2020 ident: bib14 article-title: On the sustainability of CO2 storage through CO2 – enhanced oil recovery publication-title: Appl. Energy – volume: 88 start-page: 242 year: 1977 end-page: 260 ident: bib70 article-title: The viscosity and diffusion coefficients of eighteen binary gaseous systems publication-title: Phys. A Stat. Mech. Its Appl. – volume: 53 start-page: 959 year: 1981 end-page: 960 ident: bib77 article-title: Die druckabh¨ angigkeit der viskositat ¨ von flüssigkeiten–eine einfache abschatzung publication-title: Chem. Ing. Tech. – volume: 118 start-page: 100 year: 2018 end-page: 114 ident: bib87 article-title: Viscosity of CO2-rich mixtures from 243 K to 423 K at pressures up to 155 MPa: New experimental viscosity data and modelling publication-title: J. Chem. Thermodyn. – volume: 14 year: 2021 ident: bib49 article-title: Prediction of dead oil viscosity: machine learning vs. classical correlations publication-title: Energies – volume: 54 start-page: 2626 year: 2009 end-page: 2637 ident: bib89 article-title: Simultaneous measurements on helium and nitrogen with a newly designed viscometer-densimeter over a wide range of temperature and pressure publication-title: J. Chem. Eng. Data. – volume: 314 year: 2022 ident: bib10 article-title: Knowledge-based machine learning techniques for accurate prediction of CO 2 storage performance in underground saline aquifers publication-title: Appl. Energy – volume: 145 year: 2022 ident: bib42 article-title: Performance evaluation of boosting machine learning algorithms for lithofacies classification in heterogeneous carbonate reservoirs publication-title: Mar. Pet. Geol. – volume: 231 start-page: 187 year: 2018 end-page: 196 ident: bib28 article-title: Viscosity measurements of (CH4 + C3H8 + CO2) mixtures at temperatures between (203 and 420) K and pressures between ( 3 and 31) MPa publication-title: Fuel – volume: 10 year: 2020 ident: bib4 article-title: Application of artificial neural network for predicting the performance of CO2 enhanced oil recovery and storage in residual oil zones publication-title: Sci. Rep. – volume: 441 year: 2024 ident: bib39 article-title: Enhancing CO 2 flux prediction from underground coal fires using optimized machine learning models publication-title: J. Clean. Prod. – volume: 111 year: 2021 ident: bib95 article-title: Transmission trend of the COVID-19 pandemic predicted by dendritic neural regression publication-title: Appl. Soft Comput. – volume: 10 start-page: 1 year: 2021 end-page: 21 ident: bib57 article-title: A simple dendritic neural network model-based approach for daily pm2.5 concentration prediction publication-title: Electron – volume: 554 year: 2022 ident: bib29 article-title: A van der Waals-EoS-based model for the dynamic viscosity of ionic publication-title: Fluid Phase Equilib. – volume: 489 start-page: 390 year: 2022 end-page: 406 ident: bib54 article-title: A survey on dendritic neuron model: Mechanisms, algorithms and practical applications publication-title: Neurocomputing – volume: 319 year: 2022 ident: bib3 article-title: Application of robust intelligent schemes for accurate modelling interfacial tension of CO2 brine systems: Implications for structural CO2 trapping publication-title: Fuel – volume: 19 start-page: 594 year: 2022 end-page: 607 ident: bib16 article-title: CO2 storage with enhanced gas recovery (CSEGR): a review of experimental and numerical studies publication-title: Pet. Sci. – volume: 46 start-page: 4758 year: 1967 end-page: 4764 ident: bib74 article-title: Viscosity of three binary gaseous mixtures publication-title: J. Chem. Phys. – reference: M.W. SAUNDERS, On the Measurement of the Absolute Viscosity of Nitrogen and Air over the Temperature Range of 100 to 400° K and at Pressures of 1 to 150 Atmospheres, 1972. – volume: 729 year: 2020 ident: bib8 article-title: Highly efficient colorimetric CO2 sensors for monitoring CO2 leakage from carbon capture and storage sites publication-title: Sci. Total Environ. – volume: 381 year: 2020 ident: bib11 article-title: Multiscale investigation of CO2 hydrate self-sealing potential for carbon geo-sequestration publication-title: Chem. Eng. J. – volume: 120 start-page: 191 year: 2018 end-page: 204 ident: bib84 article-title: Measurement and modeling of the viscosity of (nitrogen + carbon dioxide) mixtures at temperatures from (253.15 to 473.15) K with pressures up to 2 MPa publication-title: J. Chem. Thermodyn. – volume: 61 year: 2022 ident: bib25 article-title: Enhanced ectoines production by carbon dioxide capture: A step further towards circular economy – volume: 208 year: 2022 ident: bib26 article-title: Modelling two-phase Z factor of gas condensate reservoirs: application of artificial intelligence (AI) publication-title: J. Pet. Sci. Eng. – volume: 105 start-page: 214 year: 2016 end-page: 224 ident: bib94 article-title: Financial time series prediction using a dendritic neuron model publication-title: Knowl. -Based Syst. – volume: 14 start-page: 819 year: 1993 end-page: 833 ident: bib86 article-title: Argon+carbon dioxide gaseous mixture viscosities and anisotropic pair potential energy functions publication-title: Int. J. Thermophys. – volume: 54 start-page: 1 year: 1971 end-page: 19 ident: bib68 article-title: On the density expansion for viscosity in gases publication-title: Physica – volume: 23 start-page: 95 year: 1957 end-page: 102 ident: bib80 article-title: The viscosity of carbon dioxide between 0°C and 75°C and at pressures up to 2000 atmospheres publication-title: Physica – volume: 89 start-page: 7 year: 2015 end-page: 15 ident: bib90 article-title: Measurements of the viscosity of carbon dioxide at temperatures from (253.15 to 473.15) K with pressures up to 1.2 MPa publication-title: J. Chem. Thermodyn. – volume: 195 year: 2020 ident: bib41 article-title: Integrating machine learning and data analytics for geostatistical characterization of clastic reservoirs publication-title: J. Pet. Sci. Eng. – volume: 8 start-page: 561 year: 2005 end-page: 572 ident: bib66 article-title: Correlations for hydrocarbon-gas viscosity and gas density-validation and correlation of behavior using a large-scale database publication-title: SPE Reserv. Eval. Eng. – volume: 4 start-page: 1 year: 2018 end-page: 9 ident: bib12 article-title: Long-term viability of carbon sequestration in deep-sea sediments publication-title: Sci. Adv. – volume: 356 year: 2024 ident: 10.1016/j.jece.2024.112210_bib36 article-title: Machine learning prediction of physical properties and nitrogen content of porous carbon from agricultural wastes: Effects of activation and doping process publication-title: Fuel doi: 10.1016/j.fuel.2023.129623 – volume: 489 start-page: 390 year: 2022 ident: 10.1016/j.jece.2024.112210_bib54 article-title: A survey on dendritic neuron model: Mechanisms, algorithms and practical applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.08.153 – volume: 3 start-page: 550 year: 1970 ident: 10.1016/j.jece.2024.112210_bib72 article-title: The viscosity of carbon dioxide and acetylene at atmospheric pressure publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/3/4/312 – volume: 54 start-page: 2626 year: 2009 ident: 10.1016/j.jece.2024.112210_bib89 article-title: Simultaneous measurements on helium and nitrogen with a newly designed viscometer-densimeter over a wide range of temperature and pressure publication-title: J. Chem. Eng. Data. doi: 10.1021/je900131q – volume: 56 start-page: 5837 year: 1972 ident: 10.1016/j.jece.2024.112210_bib69 article-title: Viscosity of the binary gaseous mixtures He-Ne and Ne-N2 in the temperature range 25-700°C publication-title: J. Chem. Phys. doi: 10.1063/1.1677125 – volume: 110 year: 2021 ident: 10.1016/j.jece.2024.112210_bib9 article-title: Numerical modelling of long-term CO2 storage mechanisms in saline aquifers using the Sleipner benchmark dataset publication-title: Int. J. Greenh. Gas. Control. doi: 10.1016/j.ijggc.2021.103405 – volume: 19 start-page: 594 year: 2022 ident: 10.1016/j.jece.2024.112210_bib16 article-title: CO2 storage with enhanced gas recovery (CSEGR): a review of experimental and numerical studies publication-title: Pet. Sci. doi: 10.1016/j.petsci.2021.12.009 – volume: 454 year: 2023 ident: 10.1016/j.jece.2024.112210_bib23 article-title: Review on adsorbents in elemental mercury removal in coal combustion flue gas, smelting flue gas and natural gas publication-title: Chem. Eng. J. – start-page: 1 year: 2022 ident: 10.1016/j.jece.2024.112210_bib60 article-title: 13 Mohamed Abd Elaziz 10, 11, 12, Evaluating the applications of dendritic neuron model with metaheuristic optimization algorithms for crude-oil-production forecasting publication-title: Entropy – volume: 231 start-page: 187 year: 2018 ident: 10.1016/j.jece.2024.112210_bib28 article-title: Viscosity measurements of (CH4 + C3H8 + CO2) mixtures at temperatures between (203 and 420) K and pressures between ( 3 and 31) MPa publication-title: Fuel doi: 10.1016/j.fuel.2018.05.087 – volume: 331 year: 2023 ident: 10.1016/j.jece.2024.112210_bib52 article-title: Prediction of petroleum viscosity from molecular weight and density publication-title: Fuel doi: 10.1016/j.fuel.2022.125679 – volume: 29 start-page: 499 year: 1963 ident: 10.1016/j.jece.2024.112210_bib76 article-title: Viscosity of nitrogen at low temperatures and high pressures publication-title: Physica doi: 10.1016/S0031-8914(63)80162-7 – volume: 32 start-page: 1065 year: 1966 ident: 10.1016/j.jece.2024.112210_bib67 article-title: The viscosity of four binary, gaseous mixtures at 20° and 30°C publication-title: Physica doi: 10.1016/0031-8914(66)90143-1 – volume: 152 year: 2020 ident: 10.1016/j.jece.2024.112210_bib62 article-title: Marine predators algorithm: a nature-inspired metaheuristic publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – volume: 10 start-page: 4112 year: 2022 ident: 10.1016/j.jece.2024.112210_bib43 article-title: Rapid evaluation and optimization of carbon dioxide-enhanced oil recoveryusing reduced-physics proxy models publication-title: Energy Sci. Eng. doi: 10.1002/ese3.1276 – volume: 729 year: 2020 ident: 10.1016/j.jece.2024.112210_bib8 article-title: Highly efficient colorimetric CO2 sensors for monitoring CO2 leakage from carbon capture and storage sites publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138786 – volume: 607 start-page: 572 year: 2022 ident: 10.1016/j.jece.2024.112210_bib58 article-title: Recurrent dendritic neuron model artificial neural network for time series forecasting publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.06.012 – volume: 238 start-page: 81 year: 1997 ident: 10.1016/j.jece.2024.112210_bib83 article-title: Viscosity of carbon dioxide in the liquid phase publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/S0378-4371(96)00466-9 – volume: 54 start-page: 1 year: 1971 ident: 10.1016/j.jece.2024.112210_bib68 article-title: On the density expansion for viscosity in gases publication-title: Physica doi: 10.1016/0031-8914(71)90059-0 – volume: 388 year: 2022 ident: 10.1016/j.jece.2024.112210_bib96 article-title: Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114194 – volume: 4 start-page: 1 year: 2018 ident: 10.1016/j.jece.2024.112210_bib12 article-title: Long-term viability of carbon sequestration in deep-sea sediments publication-title: Sci. Adv. doi: 10.1126/sciadv.aao6588 – volume: 236 start-page: 1446 year: 2019 ident: 10.1016/j.jece.2024.112210_bib20 article-title: Compositional simulation of CO2 Huff-n-Puff process in middle bakken tight oil reservoirs with hydraulic fractures publication-title: Fuel doi: 10.1016/j.fuel.2018.09.113 – volume: 18 start-page: 997 year: 1966 ident: 10.1016/j.jece.2024.112210_bib32 article-title: The viscosity of natural gases publication-title: J. Pet. Technol. doi: 10.2118/1340-PA – volume: 319 year: 2022 ident: 10.1016/j.jece.2024.112210_bib3 article-title: Application of robust intelligent schemes for accurate modelling interfacial tension of CO2 brine systems: Implications for structural CO2 trapping publication-title: Fuel doi: 10.1016/j.fuel.2022.123821 – volume: 440 year: 2022 ident: 10.1016/j.jece.2024.112210_bib22 article-title: Direct solar-driven reduction of greenhouse gases into hydrocarbon fuels incorporating thermochemical energy storage via modified calcium looping publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135955 – volume: 261 year: 2020 ident: 10.1016/j.jece.2024.112210_bib14 article-title: On the sustainability of CO2 storage through CO2 – enhanced oil recovery publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114467 – volume: 14 year: 2021 ident: 10.1016/j.jece.2024.112210_bib49 article-title: Prediction of dead oil viscosity: machine learning vs. classical correlations publication-title: Energies doi: 10.3390/en14040930 – volume: 30 start-page: 364 year: 2016 ident: 10.1016/j.jece.2024.112210_bib27 article-title: New correlations for predicting pure and impure natural gas viscosity publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.02.026 – volume: 23 start-page: 1411 year: 2002 ident: 10.1016/j.jece.2024.112210_bib92 article-title: An absolute viscometer-densimeter and measurements of the viscosity of nitrogen, methane, helium, neon, argon, and krypton over a wide range of density and temperature publication-title: Int. J. Thermophys. doi: 10.1023/A:1020784330515 – volume: 95 year: 2021 ident: 10.1016/j.jece.2024.112210_bib50 article-title: Hybrid machine learning algorithms to predict condensate viscosity in the near wellbore regions of gas condensate reservoirs publication-title: J. Nat. Gas. Sci. Eng. doi: 10.1016/j.jngse.2021.104210 – volume: 7 start-page: 243 year: 2017 ident: 10.1016/j.jece.2024.112210_bib6 article-title: The role of CO2 capture and utilization in mitigating climate change publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate3231 – volume: 46 start-page: 4758 year: 1967 ident: 10.1016/j.jece.2024.112210_bib74 article-title: Viscosity of three binary gaseous mixtures publication-title: J. Chem. Phys. doi: 10.1063/1.1840632 – volume: 9 start-page: 281 year: 1976 ident: 10.1016/j.jece.2024.112210_bib82 article-title: Messung der Viskosität von Kohlendioxid und Propylen publication-title: Wärme- Und Stoffübertragung doi: 10.1007/BF01003580 – volume: 14 start-page: 819 year: 1993 ident: 10.1016/j.jece.2024.112210_bib86 article-title: Argon+carbon dioxide gaseous mixture viscosities and anisotropic pair potential energy functions publication-title: Int. J. Thermophys. doi: 10.1007/BF00502110 – volume: 205 year: 2022 ident: 10.1016/j.jece.2024.112210_bib59 article-title: Adopting a dendritic neural model for predicting stock price index movement publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117637 – volume: 35 start-page: 4633 year: 2021 ident: 10.1016/j.jece.2024.112210_bib17 article-title: Review on coal bed methane recovery theory and technology: recent progress and perspectives publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c04026 – volume: 560 year: 2022 ident: 10.1016/j.jece.2024.112210_bib21 article-title: W.L. Sigurd, R. Span, Viscosity measurements of CO2 -rich; CO2 + N2 and CO2 + H2 mixtures in gas or supercritical phase at temperatures between 273 and 473 K and pressures up to 8.7 MPa publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2022.113519 – volume: 10 start-page: 270 year: 2007 ident: 10.1016/j.jece.2024.112210_bib33 article-title: Fundamental PVT calculations for associated and gas / condensate natural-gas systems publication-title: SPE Reserv. Eval. Eng. doi: 10.2118/97099-PA – volume: 165 start-page: 169 year: 2019 ident: 10.1016/j.jece.2024.112210_bib61 article-title: Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2018.11.024 – volume: 285 year: 2021 ident: 10.1016/j.jece.2024.112210_bib51 article-title: The application of supervised machine learning techniques for multivariate modelling of gas component viscosity: a comparative study publication-title: Fuel doi: 10.1016/j.fuel.2020.119146 – volume: 53 start-page: 959 year: 1981 ident: 10.1016/j.jece.2024.112210_bib77 article-title: Die druckabh¨ angigkeit der viskositat ¨ von flüssigkeiten–eine einfache abschatzung publication-title: Chem. Ing. Tech. doi: 10.1002/cite.330531209 – volume: 24 year: 2021 ident: 10.1016/j.jece.2024.112210_bib13 article-title: Carbon neutral manufacturing via on-site CO2 recycling publication-title: ISCIENCE – volume: 49 start-page: 4780 year: 1968 ident: 10.1016/j.jece.2024.112210_bib73 article-title: Viscosity and diffusion coefficient of six binary mixtures publication-title: J. Chem. Phys. doi: 10.1063/1.1669960 – year: 2022 ident: 10.1016/j.jece.2024.112210_bib19 article-title: Effect of produced carbon dioxide on multiphase fluid flow modeling of carbonate acidizing publication-title: J. Pet. Explor. Prod. Technol. – volume: 236 start-page: 162 year: 2017 ident: 10.1016/j.jece.2024.112210_bib35 article-title: Modeling gas / vapor viscosity of hydrocarbon fl uids using a hybrid GMDH-type neural network system publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.03.066 – year: 2022 ident: 10.1016/j.jece.2024.112210_bib5 article-title: CO2 Sequestration and enhanced oil recovery via the water alternating gas scheme in a mixed transgressive sandstone-carbonate reservoir: case study of a large middle east oilfield publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.2c02185 – volume: 15 year: 2022 ident: 10.1016/j.jece.2024.112210_bib24 article-title: Tri-Reforming of methane: thermodynamics, operating conditions, reactor technology and efficiency evaluation—a review publication-title: Energies doi: 10.3390/en15197159 – volume: 208 year: 2022 ident: 10.1016/j.jece.2024.112210_bib26 article-title: Modelling two-phase Z factor of gas condensate reservoirs: application of artificial intelligence (AI) publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.109787 – volume: 8 start-page: 59 year: 1962 ident: 10.1016/j.jece.2024.112210_bib31 article-title: The viscosity of pure substances in the dense gaseous and liquid phases publication-title: AIChE J. doi: 10.1002/aic.690080116 – volume: 44 start-page: 172 year: 2008 ident: 10.1016/j.jece.2024.112210_bib91 article-title: Viscosity and density measurements for carbon dioxide + pentaerythritol ester lubricant mixtures at low lubricant concentration publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2007.10.004 – volume: 38 start-page: 3269 year: 2022 ident: 10.1016/j.jece.2024.112210_bib64 article-title: A modified self-adaptive marine predators algorithm: framework and engineering applications publication-title: Eng. Comput. doi: 10.1007/s00366-021-01319-5 – volume: 19 start-page: 552 year: 2010 ident: 10.1016/j.jece.2024.112210_bib34 article-title: A new and reliable model for predicting methane viscosity at high pressures and high temperatures publication-title: J. Nat. Gas Chem. – volume: 393 year: 2024 ident: 10.1016/j.jece.2024.112210_bib38 article-title: Estimation of CO2-brine interfacial tension using machine learning: implications for CO2 geo-storage publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2023.123672 – volume: 23 start-page: 95 year: 1957 ident: 10.1016/j.jece.2024.112210_bib80 article-title: The viscosity of carbon dioxide between 0°C and 75°C and at pressures up to 2000 atmospheres publication-title: Physica doi: 10.1016/S0031-8914(57)90708-5 – volume: 55 start-page: 1422 year: 2024 ident: 10.1016/j.jece.2024.112210_bib40 article-title: Data-driven machine learning models for the prediction of hydrogen solubility in aqueous systems of varying salinity: Implications for underground hydrogen storage publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2023.12.131 – ident: 10.1016/j.jece.2024.112210_bib55 – volume: 12 start-page: 779 year: 2022 ident: 10.1016/j.jece.2024.112210_bib18 article-title: CO2 -Enhanced oil recovery mechanism in canadian bakken shale publication-title: Minerals doi: 10.3390/min12060779 – volume: 8 start-page: 561 year: 2005 ident: 10.1016/j.jece.2024.112210_bib66 article-title: Correlations for hydrocarbon-gas viscosity and gas density-validation and correlation of behavior using a large-scale database publication-title: SPE Reserv. Eval. Eng. doi: 10.2118/75721-PA – volume: 15 year: 2022 ident: 10.1016/j.jece.2024.112210_bib53 article-title: Wind power forecasting using optimized dendritic neural model based on seagull optimization algorithm and aquila optimizer publication-title: Energies doi: 10.3390/en15249261 – volume: 16 start-page: 1171 year: 1964 ident: 10.1016/j.jece.2024.112210_bib85 article-title: Calculating viscosities of reservoir fluids from their compositions publication-title: J. Pet. Technol. doi: 10.2118/915-PA – volume: 88 start-page: 242 year: 1977 ident: 10.1016/j.jece.2024.112210_bib70 article-title: The viscosity and diffusion coefficients of eighteen binary gaseous systems publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/0378-4371(77)90003-6 – volume: 89 start-page: 7 year: 2015 ident: 10.1016/j.jece.2024.112210_bib90 article-title: Measurements of the viscosity of carbon dioxide at temperatures from (253.15 to 473.15) K with pressures up to 1.2 MPa publication-title: J. Chem. Thermodyn. doi: 10.1016/j.jct.2015.04.015 – volume: 195 year: 2020 ident: 10.1016/j.jece.2024.112210_bib41 article-title: Integrating machine learning and data analytics for geostatistical characterization of clastic reservoirs publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.107837 – year: 2021 ident: 10.1016/j.jece.2024.112210_bib48 article-title: A Core logging, machine learning and geostatistical modeling interactive approach for subsurface imaging of lenticular geobodies in a clastic depositional system, SE Pakistan publication-title: Nat. Resour. Res. doi: 10.1007/s11053-021-09849-x – volume: 84 start-page: 11 year: 2001 ident: 10.1016/j.jece.2024.112210_bib56 article-title: A model of the neuron based on dendrite mechanisms publication-title: Electron. Commun. Jpn., Part III Fundam. Electron. Sci. (Engl. Transl. Denshi Tsushin Gakkai Ronbunshi) – volume: 10 start-page: 1 year: 2021 ident: 10.1016/j.jece.2024.112210_bib57 article-title: A simple dendritic neural network model-based approach for daily pm2.5 concentration prediction publication-title: Electron – volume: 51 start-page: 526 year: 2006 ident: 10.1016/j.jece.2024.112210_bib88 article-title: Viscosity measurements on nitrogen publication-title: J. Chem. Eng. Data. doi: 10.1021/je050399c – volume: 17 year: 2024 ident: 10.1016/j.jece.2024.112210_bib37 article-title: Based on machine learning model for prediction of CO2 adsorption of synthetic zeolite in two-step solid waste treatment publication-title: Arab. J. Chem. doi: 10.1016/j.arabjc.2023.105507 – volume: 145 year: 2022 ident: 10.1016/j.jece.2024.112210_bib42 article-title: Performance evaluation of boosting machine learning algorithms for lithofacies classification in heterogeneous carbonate reservoirs publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2022.105886 – volume: 105 start-page: 214 year: 2016 ident: 10.1016/j.jece.2024.112210_bib94 article-title: Financial time series prediction using a dendritic neuron model publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2016.05.031 – volume: 10 year: 2020 ident: 10.1016/j.jece.2024.112210_bib4 article-title: Application of artificial neural network for predicting the performance of CO2 enhanced oil recovery and storage in residual oil zones publication-title: Sci. Rep. doi: 10.1038/s41598-020-73931-2 – volume: 249 year: 2022 ident: 10.1016/j.jece.2024.112210_bib63 article-title: Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm publication-title: Energy doi: 10.1016/j.energy.2022.123760 – volume: 203 year: 2021 ident: 10.1016/j.jece.2024.112210_bib46 article-title: Machine learning - A novel approach of well logs similarity based on synchronization measures to predict shear sonic logs publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.108602 – volume: 118 start-page: 100 year: 2018 ident: 10.1016/j.jece.2024.112210_bib87 article-title: Viscosity of CO2-rich mixtures from 243 K to 423 K at pressures up to 155 MPa: New experimental viscosity data and modelling publication-title: J. Chem. Thermodyn. doi: 10.1016/j.jct.2017.11.005 – volume: 61 year: 2022 ident: 10.1016/j.jece.2024.112210_bib25 article-title: Enhanced ectoines production by carbon dioxide capture: A step further towards circular economy – volume: 3 start-page: 658 year: 2020 ident: 10.1016/j.jece.2024.112210_bib1 article-title: Hydrological limits to carbon capture and storage publication-title: Nat. Sustain. doi: 10.1038/s41893-020-0532-7 – ident: 10.1016/j.jece.2024.112210_bib47 doi: 10.1021/acsomega.2c05759 – volume: 38 year: 1963 ident: 10.1016/j.jece.2024.112210_bib78 article-title: Viscosity of nitrogen, helium, neon, and argon from —78.5° to 100°C below 200 atmospheres publication-title: J. Chem. Phys. doi: 10.1063/1.1733455 – volume: 381 year: 2020 ident: 10.1016/j.jece.2024.112210_bib11 article-title: Multiscale investigation of CO2 hydrate self-sealing potential for carbon geo-sequestration publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122646 – start-page: 47 issue: 10 year: 1954 ident: 10.1016/j.jece.2024.112210_bib30 article-title: Viscosity of hydrocarbon gases under pressure publication-title: J. Pet. Technol. doi: 10.2118/297-G – volume: 74 start-page: 1930 year: 1980 ident: 10.1016/j.jece.2024.112210_bib93 article-title: Viscosity of carbon dioxide and ethane publication-title: J. Chem. Phys. doi: 10.1063/1.441286 – volume: 10 year: 2020 ident: 10.1016/j.jece.2024.112210_bib45 article-title: Application of unconventional seismic attributes and unsupervised machine learning for the identification of fault and fracture network publication-title: Appl. Sci. doi: 10.3390/app10113864 – volume: 314 year: 2022 ident: 10.1016/j.jece.2024.112210_bib65 article-title: Boosted ANFIS model using augmented marine predator algorithm with mutation operators for wind power forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118851 – volume: 90 year: 2019 ident: 10.1016/j.jece.2024.112210_bib7 article-title: Integrated work flow in 3D geological model construction for evaluation of CO 2 storage capacity of a fractured basement reservoir in Cuu Long Basin, Vietnam publication-title: Int. J. Greenh. Gas. Control. doi: 10.1016/j.ijggc.2019.102826 – ident: 10.1016/j.jece.2024.112210_bib71 – volume: 111 year: 2021 ident: 10.1016/j.jece.2024.112210_bib95 article-title: Transmission trend of the COVID-19 pandemic predicted by dendritic neural regression publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107683 – volume: 12 year: 2019 ident: 10.1016/j.jece.2024.112210_bib15 article-title: Environmental and operational performance of CO 2 -EOR as a CCUS technology: a cranfield example with dynamic LCA considerations publication-title: Energies doi: 10.3390/en12030448 – volume: 441 year: 2024 ident: 10.1016/j.jece.2024.112210_bib39 article-title: Enhancing CO 2 flux prediction from underground coal fires using optimized machine learning models publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2024.141043 – volume: 554 year: 2022 ident: 10.1016/j.jece.2024.112210_bib29 article-title: A van der Waals-EoS-based model for the dynamic viscosity of ionic publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2021.113343 – volume: 15 year: 2022 ident: 10.1016/j.jece.2024.112210_bib44 article-title: Application of machine learning for lithofacies prediction and cluster analysis approach to identify rock type publication-title: Energies doi: 10.3390/en15124501 – volume: 314 year: 2022 ident: 10.1016/j.jece.2024.112210_bib10 article-title: Knowledge-based machine learning techniques for accurate prediction of CO 2 storage performance in underground saline aquifers publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118985 – volume: 45 start-page: 124 year: 1966 ident: 10.1016/j.jece.2024.112210_bib75 article-title: Viscosity and binary diffusion coefficient of neon-carbon dioxide mixtures at 20° and 30°C publication-title: J. Chem. Phys. doi: 10.1063/1.1727294 – start-page: 288 year: 1931 ident: 10.1016/j.jece.2024.112210_bib81 article-title: The measurement of the viscosity of gases at high pressures. —The viscosity of nitrogen to 1000 atms publication-title: Proc. R. Soc. Lond. Ser. A, Contain. Pap. A Math. Phys. Character – volume: 239 year: 2022 ident: 10.1016/j.jece.2024.112210_bib2 article-title: Application of machine learning to predict CO2 trapping performance in deep saline aquifers publication-title: Energy doi: 10.1016/j.energy.2021.122457 – volume: 49 start-page: 2026 year: 1957 ident: 10.1016/j.jece.2024.112210_bib79 article-title: Viscosities of gases at high pressures publication-title: Ind. Eng. Chem. doi: 10.1021/ie50576a041 – volume: 120 start-page: 191 year: 2018 ident: 10.1016/j.jece.2024.112210_bib84 article-title: Measurement and modeling of the viscosity of (nitrogen + carbon dioxide) mixtures at temperatures from (253.15 to 473.15) K with pressures up to 2 MPa publication-title: J. Chem. Thermodyn. doi: 10.1016/j.jct.2018.01.015 |
| SSID | ssj0000991561 |
| Score | 2.4073591 |
| Snippet | Crucial for carbon capture, utilization, and storage (CCUS) initiatives and diverse industries, heat transfer underscores the need for a precise assessment of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 112210 |
| SubjectTerms | CCUS CO2 Marine predators algorithm Seagull optimization algorithm |
| Title | Smart predictive viscosity mixing of CO2–N2 using optimized dendritic neural networks to implicate for carbon capture utilization and storage |
| URI | https://dx.doi.org/10.1016/j.jece.2024.112210 |
| Volume | 12 |
| WOSCitedRecordID | wos001187980100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 2213-3437 databaseCode: AIEXJ dateStart: 20130601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000991561 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVKhwUsEE8xvOQFuyhVYqd1soxGRQOLgkRB3UWOk6gZtUnptKXqij9gwR8i8R9cP-KEAiNmwSaqEttpek-vr2_OPUboJZMa6qxIIXKjwg1GYebyIqPuaJRLNSwR-ISrzSbYZBLOZtG7Xu9HUwuzW7CqCvf7aPVfTQ3nwNiydPYa5raDwgn4DEaHI5gdjv9k-PdLOClr_7NS-TJnV16KWlEvluXekJzP3pKG5kAnxNmqjEEN7mNZHiAEBWeUqT0QHKl3CVasNFtcyUGUhoSu5cIFX6eAIMFX6l0EPNjClHaq9xKSfMmP-EZtDNwps5M6JY14Qd6KJNqI_3OuHVo8h_nbiQfNhY-1M53zSmWHzrdth3jhfuLSj6uUbz2XGXrZr-0Zp5kzXvBDebBNTKWXyYKQLnlGOUtCfOrSQAvIWM9OOggmHTcNQSbRbNrfZhCdzLgYXORCqqiSYNA2_lWu-2gateTGhjd3kcgxEjlGose4gU4IG0ZhH53Er8ezNzYZCGE6rKNlcsA-hynw0lzE4y_z5yCqExhN76I7xpo41ki8h3p5dR_d7uhcPkBfFSZxi0lsMYk1JnFdYMDk9y_fJgQrNGKLRmzRiDUacYNGvKmxRSMGNGKNRmzQiDtoxIBGbND4EH14NZ6enbtmJxBXUM_buGkQscwrPFZQPgxoPopCj2ZRKKSKbci5L-CCz1jhcSJIEYg0EpEnhMxe5FJx8hHqV3WVP0aYhkORRwzWASwNipSmmSc8AUH8ENYiBfVPkd_8tIkwMvlyt5ZF8ne7niLH9llpkZgrWw8biyUmzNXhawIYvKLfk2vd5Sm61f5PnqH-Zr3Nn6ObYrcpL9cvDAB_AgJqzeQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+predictive+viscosity+mixing+of+CO2%E2%80%93N2+using+optimized+dendritic+neural+networks+to+implicate+for+carbon+capture+utilization+and+storage&rft.jtitle=Journal+of+environmental+chemical+engineering&rft.au=Ewees%2C+Ahmed+A.&rft.au=Vo+Thanh%2C+Hung&rft.au=Al-qaness%2C+Mohammed+A.A.&rft.au=Abd+Elaziz%2C+Mohamed&rft.date=2024-04-01&rft.issn=2213-3437&rft.volume=12&rft.issue=2&rft.spage=112210&rft_id=info:doi/10.1016%2Fj.jece.2024.112210&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jece_2024_112210 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-3437&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-3437&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-3437&client=summon |