A data-driven co-evolutionary exploration algorithm for computationally expensive constrained multi-objective problems

Surrogate-assisted multi-objective optimization algorithms have attracted widespread attention due to their outstanding performance in computationally expensive real-world problems. However, there is relatively little research about multi-objective optimization with complex and expensive constraints...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 163; S. 111857
Hauptverfasser: Long, Wenyi, Wang, Peng, Dong, Huachao, Li, Jinglu, Fu, Chongbo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.09.2024
Schlagworte:
ISSN:1568-4946
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!