A data-driven co-evolutionary exploration algorithm for computationally expensive constrained multi-objective problems
Surrogate-assisted multi-objective optimization algorithms have attracted widespread attention due to their outstanding performance in computationally expensive real-world problems. However, there is relatively little research about multi-objective optimization with complex and expensive constraints...
Gespeichert in:
| Veröffentlicht in: | Applied soft computing Jg. 163; S. 111857 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.09.2024
|
| Schlagworte: | |
| ISSN: | 1568-4946 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!