A data-driven co-evolutionary exploration algorithm for computationally expensive constrained multi-objective problems

Surrogate-assisted multi-objective optimization algorithms have attracted widespread attention due to their outstanding performance in computationally expensive real-world problems. However, there is relatively little research about multi-objective optimization with complex and expensive constraints...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 163; s. 111857
Hlavní autoři: Long, Wenyi, Wang, Peng, Dong, Huachao, Li, Jinglu, Fu, Chongbo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.09.2024
Témata:
ISSN:1568-4946
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Surrogate-assisted multi-objective optimization algorithms have attracted widespread attention due to their outstanding performance in computationally expensive real-world problems. However, there is relatively little research about multi-objective optimization with complex and expensive constraints. Hence, a data-driven co-evolutionary exploration (DDCEE) algorithm is presented in this paper for the above-mentioned problems, where Radial Basis Functions are utilized to train dynamically updated surrogate models for each objective and constraint. Specifically, a data-driven co-evolutionary exploration framework is proposed to fully utilize and mine the potential available information of RBF models, and RBF models are constantly updated to guide co-evolutionary in discovering valuable feasible regions and achieving global optimization. In co-evolutionary exploration, one population focuses on exploring the entire space without considering constraints, while the other population focuses on exploring feasible regions and collaborating by sharing their respective offspring. Reference vectors are introduced in co-evolutionary exploration to divide the objective space into several sub-regions for further selection. Furthermore, an adaptive selection of promising samples strategy is presented to reasonably utilize the information of solutions with good convergence and enhance the convergence and diversity of the Pareto front. After comprehensive experiments on constrained multi/many-objective benchmark cases and an engineering application problem, DDCEE shows more stable and impressive performance when compared with five state-of-art algorithms. ●A notably effective data-driven co-evolutionary exploration algorithm is proposed to solve expensive CMOPs.●The data-driven co-evolutionary exploration framework effectively handles complex constrained multi-objective problems.●An adaptive selection strategy for promising samples is presented to enhance the convergence and diversity of the PF.
AbstractList Surrogate-assisted multi-objective optimization algorithms have attracted widespread attention due to their outstanding performance in computationally expensive real-world problems. However, there is relatively little research about multi-objective optimization with complex and expensive constraints. Hence, a data-driven co-evolutionary exploration (DDCEE) algorithm is presented in this paper for the above-mentioned problems, where Radial Basis Functions are utilized to train dynamically updated surrogate models for each objective and constraint. Specifically, a data-driven co-evolutionary exploration framework is proposed to fully utilize and mine the potential available information of RBF models, and RBF models are constantly updated to guide co-evolutionary in discovering valuable feasible regions and achieving global optimization. In co-evolutionary exploration, one population focuses on exploring the entire space without considering constraints, while the other population focuses on exploring feasible regions and collaborating by sharing their respective offspring. Reference vectors are introduced in co-evolutionary exploration to divide the objective space into several sub-regions for further selection. Furthermore, an adaptive selection of promising samples strategy is presented to reasonably utilize the information of solutions with good convergence and enhance the convergence and diversity of the Pareto front. After comprehensive experiments on constrained multi/many-objective benchmark cases and an engineering application problem, DDCEE shows more stable and impressive performance when compared with five state-of-art algorithms. ●A notably effective data-driven co-evolutionary exploration algorithm is proposed to solve expensive CMOPs.●The data-driven co-evolutionary exploration framework effectively handles complex constrained multi-objective problems.●An adaptive selection strategy for promising samples is presented to enhance the convergence and diversity of the PF.
ArticleNumber 111857
Author Wang, Peng
Long, Wenyi
Dong, Huachao
Fu, Chongbo
Li, Jinglu
Author_xml – sequence: 1
  givenname: Wenyi
  surname: Long
  fullname: Long, Wenyi
– sequence: 2
  givenname: Peng
  orcidid: 0000-0002-8745-320X
  surname: Wang
  fullname: Wang, Peng
  email: wangpeng305@nwpu.edu.cn
– sequence: 3
  givenname: Huachao
  surname: Dong
  fullname: Dong, Huachao
– sequence: 4
  givenname: Jinglu
  surname: Li
  fullname: Li, Jinglu
– sequence: 5
  givenname: Chongbo
  surname: Fu
  fullname: Fu, Chongbo
BookMark eNp9kL1qwzAUhTWk0CTtC3TyC9iV5J9Y0CWE_kGgSzuLa_m6lZEtIzmmffvKcacOmYQ451z4vg1Z9bZHQu4YTRhlxX2bgLcq4ZRnCWOszHcrsmZ5UcaZyIprsvG-paEoeLkm0z6qYYS4dnrCPlI2xsma06htD-4nwu_BWAfzNwLzaZ0ev7qosS40u-E0nhMw5tzE3ocjIen96ED3WEfdyYw6tlWLapyzwdnKYOdvyFUDxuPt37slH0-P74eX-Pj2_HrYH2OVUjrGVZpilouiyFIBkJYN5KKBtBKcZrWiUDQURIqM18irnaKqqYAqAaoM2BUX6Zbw5a5y1nuHjRyc7gKZZFTOtmQrZ1tytiUXW2FU_hspvZDOWOby9GGZYoCaNDrplcZeYa1dUCBrqy_NfwG8no6R
CitedBy_id crossref_primary_10_3390_aerospace11100793
crossref_primary_10_1080_00207543_2025_2532134
crossref_primary_10_1080_0305215X_2025_2464852
crossref_primary_10_1016_j_swevo_2025_102137
crossref_primary_10_1007_s00158_025_04033_8
crossref_primary_10_1016_j_swevo_2025_101871
Cites_doi 10.1049/iet-ipr.2008.0128
10.1115/1.4050749
10.1016/j.asoc.2018.10.027
10.1109/MCI.2009.933094
10.1016/j.ijnaoe.2016.12.003
10.1016/j.swevo.2020.100713
10.1137/0907043
10.1016/j.swevo.2022.101107
10.1007/s10845-015-1187-5
10.1016/j.knosys.2021.106919
10.1109/TEVC.2021.3066606
10.1016/j.ress.2017.06.024
10.1016/j.applthermaleng.2024.122477
10.1109/TEVC.2005.851274
10.1016/j.ins.2023.119016
10.1109/TEVC.2016.2622301
10.1109/TEVC.2017.2697503
10.1016/j.asoc.2021.107276
10.1109/2.485891
10.1115/1.4034035
10.1007/s00158-016-1450-1
10.1016/j.ins.2021.01.029
10.1029/JB076i008p01905
10.1016/j.knosys.2022.108416
10.2514/6.2009-1461
10.1007/s00158-016-1432-3
10.1016/j.asoc.2022.108798
10.1109/TEVC.2016.2555315
10.1007/s00158-017-1739-8
10.1016/j.swevo.2018.08.017
10.1007/s11042-020-10139-6
10.1109/TEVC.2019.2896967
10.1109/TEVC.2021.3073648
10.1080/0305215X.2023.2256228
10.1016/j.asoc.2023.110874
10.1109/TEVC.2013.2281535
10.1109/TEVC.2003.810761
10.1016/0378-3758(94)90115-5
10.1016/j.asoc.2017.12.046
10.1109/MCI.2017.2742868
10.1109/TEVC.2018.2869001
10.1109/TEVC.2020.3004012
10.1016/j.jocs.2016.05.013
10.1109/TCYB.2021.3061420
10.1007/s40747-022-00851-1
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2024.111857
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_asoc_2024_111857
S1568494624006318
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-b33e45966439aa38fa59fa3b9204dc0a6f0a93e12de2b7c0cfba0c9ac8185b293
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001259742200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 03:06:04 EST 2025
Tue Nov 18 22:22:14 EST 2025
Sat Aug 17 15:43:23 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Global optimization
Constrained multi-objective
Surrogate model
Co-evolutionary exploration
Reference vector
Computationally expensive
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-b33e45966439aa38fa59fa3b9204dc0a6f0a93e12de2b7c0cfba0c9ac8185b293
ORCID 0000-0002-8745-320X
ParticipantIDs crossref_primary_10_1016_j_asoc_2024_111857
crossref_citationtrail_10_1016_j_asoc_2024_111857
elsevier_sciencedirect_doi_10_1016_j_asoc_2024_111857
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Dong, Wang, Shen, Qin (bib29) 2023; 148
Deb, Jain (bib40) 2014; 18
Fan, Fang, Li, Cai, Wei, Goodman (bib44) 2019; 74
Chen, Dong, Wang, Wang (bib52) 2023
Ma, Wei, Tian, Cheng, Zhang (bib27) 2021; 560
Cheng, Gary Wang, Hwang (bib34) 2021; 143
Tian, Zhang, Xiao, Zhang, Jin (bib26) 2021; 25
Ma, Wang (bib43) 2019; 23
Yang, Qiu, Gao, Chen, Liu (bib33) 2023; 639
Li, Wang, Dong, Shen, Chen (bib9) 2022; 242
Fan, Li, Cai, Li, Wei, Zhang, Deb, Goodman (bib41) 2019; 44
Zhou, Rong, Shao, Jiang, Gao, Cao (bib2) 2018; 29
Zhan, Cheng, Liu (bib23) 2017; 21
K. Lane, D. Marshall, A Surface Parameterization Method for Airfoil Optimization and High Lift 2D Geometries Utilizing the CST Methodology, in: 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics, Orlando, Florida, 2009.
Li, Mao, Song, Wang, Tian, Sun, Wang, Jin (bib49) 2024; 242
Li, Wang, Dong, Shen (bib15) 2022; 122
Dong, Dong (bib7) 2020; 57
Liu, Ong, Cai (bib13) 2018; 57
Fu, Dong, Wang, Li (bib10) 2022
Chugh, Jin, Miettinen, Hakanen, Sindhya (bib47) 2018; 22
Bosman, Thierens (bib39) 2003; 7
Cheng, Jiang, Zhou, Hu, Shu (bib3) 2021; 106
Chugh, Jin, Miettinen, Hakanen, Sindhya (bib21) 2018; 22
Shankar Bhattacharjee, Kumar Singh, Ray (bib30) 2016; 138
Katoch, Chauhan, Kumar (bib6) 2021; 80
Jain, Mao, Mohiuddin (bib18) 1996; 29
Ma, Wei, Tian, Cheng, Zhang (bib28) 2021; 560
Li, Zhang, Lin, Gao (bib14) 2022; 52
Long, Dong, Wang, Huang, Li, Yang, Fu (bib25) 2023; 9
Hardy (bib36) 1971; 76
Regis (bib32) 2016; 16
Dong, Song, Dong, Wang (bib16) 2016; 54
Deb, Thiele, Laumanns, Zitzler (bib48) 2005
Jin, Sendhoff (bib8) 2009; 4
Han, Liu, Xu, Zhang, Zhang (bib35) 2019; 2019
Knowles (bib22) 2006; 10
Park (bib38) 1994; 39
Huang, Feng, Ma, Yang, Zhang, Ge (bib31) 2022
Haftka, Villanueva, Chaudhuri (bib1) 2016; 54
Li, Wang, Dong, Shen (bib20) 2022; 73
Dyn, Levin, Rippa (bib37) 1986; 7
Song, Wang, He, Jin (bib45) 2021; 25
Dong, Li, Wang, Song, Yu (bib19) 2021; 220
Sohel, Karmakar, Dooley, Bennamoun (bib51) 2010; 4
Jin, Wang, Chugh, Guo, Miettinen (bib11) 2019; 23
Dong, Song, Wang, Dong (bib4) 2018; 64
Wang, Jin, Jansen (bib12) 2016; 20
Hawchar, El Soueidy, Schoefs (bib17) 2017; 167
Q. Zhang, A. Zhou, S. Zhao, P.N. Suganthan, W. Liu, S. Tiwari, Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition, (2009).
Li, Zhang (bib5) 2021; 25
Tian, Cheng, Zhang, Jin (bib46) 2017; 12
Sun, Song, Wang, Wang (bib24) 2017; 9
Knowles (10.1016/j.asoc.2024.111857_bib22) 2006; 10
Park (10.1016/j.asoc.2024.111857_bib38) 1994; 39
Song (10.1016/j.asoc.2024.111857_bib45) 2021; 25
Haftka (10.1016/j.asoc.2024.111857_bib1) 2016; 54
Fu (10.1016/j.asoc.2024.111857_bib10) 2022
Zhan (10.1016/j.asoc.2024.111857_bib23) 2017; 21
Tian (10.1016/j.asoc.2024.111857_bib26) 2021; 25
Li (10.1016/j.asoc.2024.111857_bib15) 2022; 122
Dyn (10.1016/j.asoc.2024.111857_bib37) 1986; 7
Hawchar (10.1016/j.asoc.2024.111857_bib17) 2017; 167
Tian (10.1016/j.asoc.2024.111857_bib46) 2017; 12
Dong (10.1016/j.asoc.2024.111857_bib19) 2021; 220
Shankar Bhattacharjee (10.1016/j.asoc.2024.111857_bib30) 2016; 138
Hardy (10.1016/j.asoc.2024.111857_bib36) 1971; 76
Deb (10.1016/j.asoc.2024.111857_bib48) 2005
Fan (10.1016/j.asoc.2024.111857_bib44) 2019; 74
Li (10.1016/j.asoc.2024.111857_bib20) 2022; 73
Li (10.1016/j.asoc.2024.111857_bib9) 2022; 242
Regis (10.1016/j.asoc.2024.111857_bib32) 2016; 16
Ma (10.1016/j.asoc.2024.111857_bib43) 2019; 23
Zhou (10.1016/j.asoc.2024.111857_bib2) 2018; 29
Chugh (10.1016/j.asoc.2024.111857_bib21) 2018; 22
Dong (10.1016/j.asoc.2024.111857_bib4) 2018; 64
Huang (10.1016/j.asoc.2024.111857_bib31) 2022
Chugh (10.1016/j.asoc.2024.111857_bib47) 2018; 22
Dong (10.1016/j.asoc.2024.111857_bib7) 2020; 57
Bosman (10.1016/j.asoc.2024.111857_bib39) 2003; 7
10.1016/j.asoc.2024.111857_bib50
Jin (10.1016/j.asoc.2024.111857_bib11) 2019; 23
Cheng (10.1016/j.asoc.2024.111857_bib3) 2021; 106
Yang (10.1016/j.asoc.2024.111857_bib33) 2023; 639
Dong (10.1016/j.asoc.2024.111857_bib16) 2016; 54
Han (10.1016/j.asoc.2024.111857_bib35) 2019; 2019
Deb (10.1016/j.asoc.2024.111857_bib40) 2014; 18
Sohel (10.1016/j.asoc.2024.111857_bib51) 2010; 4
Jin (10.1016/j.asoc.2024.111857_bib8) 2009; 4
Fan (10.1016/j.asoc.2024.111857_bib41) 2019; 44
Ma (10.1016/j.asoc.2024.111857_bib27) 2021; 560
Li (10.1016/j.asoc.2024.111857_bib14) 2022; 52
Cheng (10.1016/j.asoc.2024.111857_bib34) 2021; 143
Li (10.1016/j.asoc.2024.111857_bib49) 2024; 242
10.1016/j.asoc.2024.111857_bib42
Liu (10.1016/j.asoc.2024.111857_bib13) 2018; 57
Li (10.1016/j.asoc.2024.111857_bib5) 2021; 25
Ma (10.1016/j.asoc.2024.111857_bib28) 2021; 560
Jain (10.1016/j.asoc.2024.111857_bib18) 1996; 29
Sun (10.1016/j.asoc.2024.111857_bib24) 2017; 9
Katoch (10.1016/j.asoc.2024.111857_bib6) 2021; 80
Li (10.1016/j.asoc.2024.111857_bib29) 2023; 148
Long (10.1016/j.asoc.2024.111857_bib25) 2023; 9
Chen (10.1016/j.asoc.2024.111857_bib52) 2023
Wang (10.1016/j.asoc.2024.111857_bib12) 2016; 20
References_xml – volume: 4
  start-page: 62
  year: 2009
  end-page: 76
  ident: bib8
  article-title: A systems approach to evolutionary multiobjective structural optimization and beyond
  publication-title: IEEE Comput. Intell. Mag.
– volume: 220
  year: 2021
  ident: bib19
  article-title: Surrogate-guided multi-objective optimization (SGMOO) using an efficient online sampling strategy
  publication-title: Knowl. -Based Syst.
– volume: 560
  start-page: 68
  year: 2021
  end-page: 91
  ident: bib27
  article-title: A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints
  publication-title: Inf. Sci.
– volume: 138
  year: 2016
  ident: bib30
  article-title: Multi-objective optimization with multiple spatially distributed surrogates
  publication-title: J. Mech. Des.
– volume: 639
  year: 2023
  ident: bib33
  article-title: Surrogate-assisted MOEA/D for expensive constrained multi-objective optimization
  publication-title: Inf. Sci.
– year: 2022
  ident: bib10
  article-title: Data-driven Harris Hawks constrained optimization for computationally expensive constrained problems
  publication-title: Complex Intell. Syst.
– volume: 52
  start-page: 5720
  year: 2022
  end-page: 5731
  ident: bib14
  article-title: A three-level radial basis function method for expensive optimization
  publication-title: IEEE Trans. Cybern.
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: bib40
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 21
  start-page: 956
  year: 2017
  end-page: 975
  ident: bib23
  article-title: Expected improvement matrix-based infill criteria for expensive multiobjective optimization
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 73
  year: 2022
  ident: bib20
  article-title: A two-stage surrogate-assisted evolutionary algorithm (TS-SAEA) for expensive multi/many-objective optimization
  publication-title: Swarm Evolut. Comput.
– volume: 64
  start-page: 641
  year: 2018
  end-page: 655
  ident: bib4
  article-title: Hybrid surrogate-based optimization using space reduction (HSOSR) for expensive black-box functions
  publication-title: Appl. Soft Comput.
– volume: 23
  start-page: 972
  year: 2019
  end-page: 986
  ident: bib43
  article-title: Evolutionary constrained multiobjective optimization: test suite construction and performance comparisons
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 4
  start-page: 92
  year: 2010
  end-page: 102
  ident: bib51
  article-title: Bezier curve-based generic shape encoder
  publication-title: IET Image Process.
– volume: 57
  start-page: 393
  year: 2018
  end-page: 416
  ident: bib13
  article-title: A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design
  publication-title: Struct. Multidisc Optim.
– volume: 16
  start-page: 140
  year: 2016
  end-page: 155
  ident: bib32
  article-title: Multi-objective constrained black-box optimization using radial basis function surrogates
  publication-title: J. Comput. Sci.
– volume: 7
  start-page: 174
  year: 2003
  end-page: 188
  ident: bib39
  article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 105
  year: 2005
  end-page: 145
  ident: bib48
  article-title: Scalable Test Problems for Evolutionary Multiobjective Optimization
  publication-title: Evolutionary Multiobjective Optimization
– volume: 167
  start-page: 406
  year: 2017
  end-page: 416
  ident: bib17
  article-title: Principal component analysis and polynomial chaos expansion for time-variant reliability problems
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 39
  start-page: 95
  year: 1994
  end-page: 111
  ident: bib38
  article-title: Optimal Latin-hypercube designs for computer experiments
  publication-title: J. Stat. Plan. Inference
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: bib46
  article-title: PlatEMO: a matlab platform for evolutionary multi-objective optimization [Educational Forum]
  publication-title: IEEE Comput. Intell. Mag.
– start-page: 1
  year: 2022
  end-page: 18
  ident: bib31
  article-title: A kriging-assisted bi-objective constrained global optimization algorithm for expensive constrained optimization problems
  publication-title: Eng. Optim.
– volume: 9
  start-page: 693
  year: 2017
  end-page: 704
  ident: bib24
  article-title: Shape optimization of blended-wing-body underwater glider by using gliding range as the optimization target
  publication-title: Int. J. Nav. Archit. Ocean Eng.
– volume: 44
  start-page: 665
  year: 2019
  end-page: 679
  ident: bib41
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm Evolut. Comput.
– volume: 143
  year: 2021
  ident: bib34
  article-title: Multi-objective optimization for high-dimensional expensively constrained black-box problems
  publication-title: J. Mech. Des.
– volume: 54
  start-page: 3
  year: 2016
  end-page: 13
  ident: bib1
  article-title: Parallel surrogate-assisted global optimization with expensive functions – a survey
  publication-title: Struct. Multidisc Optim.
– volume: 29
  start-page: 1417
  year: 2018
  end-page: 1431
  ident: bib2
  article-title: Optimization of laser brazing onto galvanized steel based on ensemble of metamodels
  publication-title: J. Intell. Manuf.
– volume: 76
  start-page: 1905
  year: 1971
  end-page: 1915
  ident: bib36
  article-title: Multiquadric equations of topography and other irregular surfaces
  publication-title: J. Geophys. Res. (1896-1977)
– volume: 20
  start-page: 939
  year: 2016
  end-page: 952
  ident: bib12
  article-title: Data-driven surrogate-assisted multiobjective evolutionary optimization of a trauma system
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 22
  start-page: 129
  year: 2018
  end-page: 142
  ident: bib21
  article-title: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization
  publication-title: IEEE Trans. Evolut. Comput.
– reference: K. Lane, D. Marshall, A Surface Parameterization Method for Airfoil Optimization and High Lift 2D Geometries Utilizing the CST Methodology, in: 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics, Orlando, Florida, 2009.
– volume: 25
  start-page: 769
  year: 2021
  end-page: 778
  ident: bib5
  article-title: Multiple penalties and multiple local surrogates for expensive constrained optimization
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 7
  start-page: 639
  year: 1986
  end-page: 659
  ident: bib37
  article-title: Numerical procedures for surface fitting of scattered data by radial functions
  publication-title: SIAM J. Sci. Stat. Comput.
– start-page: 1
  year: 2023
  end-page: 33
  ident: bib52
  article-title: Causal-relationship-assisted shape design optimization for blended-wing-body underwater gliders
  publication-title: Eng. Optim.
– volume: 74
  start-page: 621
  year: 2019
  end-page: 633
  ident: bib44
  article-title: MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems
  publication-title: Appl. Soft Comput.
– volume: 23
  start-page: 442
  year: 2019
  end-page: 458
  ident: bib11
  article-title: Data-Driven Evolutionary Optimization: An Overview and Case Studies
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 242
  year: 2022
  ident: bib9
  article-title: A classification surrogate-assisted multi-objective evolutionary algorithm for expensive optimization
  publication-title: Knowl. -Based Syst.
– volume: 10
  start-page: 50
  year: 2006
  end-page: 66
  ident: bib22
  article-title: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 25
  start-page: 1013
  year: 2021
  end-page: 1027
  ident: bib45
  article-title: A kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 122
  year: 2022
  ident: bib15
  article-title: Multi/many-objective evolutionary algorithm assisted by radial basis function models for expensive optimization
  publication-title: Appl. Soft. Comput.
– reference: Q. Zhang, A. Zhou, S. Zhao, P.N. Suganthan, W. Liu, S. Tiwari, Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition, (2009).
– volume: 54
  start-page: 907
  year: 2016
  end-page: 926
  ident: bib16
  article-title: Multi-start Space Reduction (MSSR) surrogate-based global optimization method
  publication-title: Struct. Multidisc Optim.
– volume: 22
  start-page: 129
  year: 2018
  end-page: 142
  ident: bib47
  article-title: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 106
  year: 2021
  ident: bib3
  article-title: A parallel constrained lower confidence bounding approach for computationally expensive constrained optimization problems
  publication-title: Appl. Soft Comput.
– volume: 9
  start-page: 1455
  year: 2023
  end-page: 1478
  ident: bib25
  article-title: A constrained multi-objective optimization algorithm using an efficient global diversity strategy
  publication-title: Complex Intell. Syst.
– volume: 80
  start-page: 8091
  year: 2021
  end-page: 8126
  ident: bib6
  article-title: A review on genetic algorithm: past, present, and future
  publication-title: Multimed. Tools Appl.
– volume: 57
  year: 2020
  ident: bib7
  article-title: Surrogate-assisted grey wolf optimization for high-dimensional, computationally expensive black-box problems
  publication-title: Swarm Evolut. Comput.
– volume: 25
  start-page: 102
  year: 2021
  end-page: 116
  ident: bib26
  article-title: A coevolutionary framework for constrained multiobjective optimization problems
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 29
  start-page: 31
  year: 1996
  end-page: 44
  ident: bib18
  article-title: Artificial neural networks: a tutorial
  publication-title: Computer
– volume: 560
  start-page: 68
  year: 2021
  end-page: 91
  ident: bib28
  article-title: A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints
  publication-title: Inf. Sci.
– volume: 242
  year: 2024
  ident: bib49
  article-title: Experimental investigation on efficient thermal management of autonomous underwater vehicle battery packs using anisotropic expanded graphite/paraffin composite materials
  publication-title: Appl. Therm. Eng.
– volume: 148
  year: 2023
  ident: bib29
  article-title: Multi-objective constrained black-box optimization algorithm based on feasible region localization and performance-improvement exploration
  publication-title: Appl. Soft Comput.
– volume: 2019
  start-page: 2026
  year: 2019
  end-page: 2033
  ident: bib35
  article-title: Efficient multi-objective evolutionary algorithm for constrained global optimization of expensive functions
  publication-title: IEEE Congr. Evolut. Comput. (CEC)
– year: 2022
  ident: 10.1016/j.asoc.2024.111857_bib10
  article-title: Data-driven Harris Hawks constrained optimization for computationally expensive constrained problems
  publication-title: Complex Intell. Syst.
– volume: 4
  start-page: 92
  year: 2010
  ident: 10.1016/j.asoc.2024.111857_bib51
  article-title: Bezier curve-based generic shape encoder
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2008.0128
– volume: 143
  year: 2021
  ident: 10.1016/j.asoc.2024.111857_bib34
  article-title: Multi-objective optimization for high-dimensional expensively constrained black-box problems
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4050749
– volume: 74
  start-page: 621
  year: 2019
  ident: 10.1016/j.asoc.2024.111857_bib44
  article-title: MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.10.027
– volume: 4
  start-page: 62
  year: 2009
  ident: 10.1016/j.asoc.2024.111857_bib8
  article-title: A systems approach to evolutionary multiobjective structural optimization and beyond
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2009.933094
– volume: 9
  start-page: 693
  year: 2017
  ident: 10.1016/j.asoc.2024.111857_bib24
  article-title: Shape optimization of blended-wing-body underwater glider by using gliding range as the optimization target
  publication-title: Int. J. Nav. Archit. Ocean Eng.
  doi: 10.1016/j.ijnaoe.2016.12.003
– volume: 57
  year: 2020
  ident: 10.1016/j.asoc.2024.111857_bib7
  article-title: Surrogate-assisted grey wolf optimization for high-dimensional, computationally expensive black-box problems
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2020.100713
– volume: 7
  start-page: 639
  year: 1986
  ident: 10.1016/j.asoc.2024.111857_bib37
  article-title: Numerical procedures for surface fitting of scattered data by radial functions
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0907043
– volume: 73
  year: 2022
  ident: 10.1016/j.asoc.2024.111857_bib20
  article-title: A two-stage surrogate-assisted evolutionary algorithm (TS-SAEA) for expensive multi/many-objective optimization
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2022.101107
– volume: 29
  start-page: 1417
  year: 2018
  ident: 10.1016/j.asoc.2024.111857_bib2
  article-title: Optimization of laser brazing onto galvanized steel based on ensemble of metamodels
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-015-1187-5
– volume: 220
  year: 2021
  ident: 10.1016/j.asoc.2024.111857_bib19
  article-title: Surrogate-guided multi-objective optimization (SGMOO) using an efficient online sampling strategy
  publication-title: Knowl. -Based Syst.
  doi: 10.1016/j.knosys.2021.106919
– start-page: 1
  year: 2022
  ident: 10.1016/j.asoc.2024.111857_bib31
  article-title: A kriging-assisted bi-objective constrained global optimization algorithm for expensive constrained optimization problems
  publication-title: Eng. Optim.
– volume: 25
  start-page: 769
  year: 2021
  ident: 10.1016/j.asoc.2024.111857_bib5
  article-title: Multiple penalties and multiple local surrogates for expensive constrained optimization
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2021.3066606
– volume: 167
  start-page: 406
  year: 2017
  ident: 10.1016/j.asoc.2024.111857_bib17
  article-title: Principal component analysis and polynomial chaos expansion for time-variant reliability problems
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.06.024
– start-page: 105
  year: 2005
  ident: 10.1016/j.asoc.2024.111857_bib48
  article-title: Scalable Test Problems for Evolutionary Multiobjective Optimization
– volume: 242
  year: 2024
  ident: 10.1016/j.asoc.2024.111857_bib49
  article-title: Experimental investigation on efficient thermal management of autonomous underwater vehicle battery packs using anisotropic expanded graphite/paraffin composite materials
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2024.122477
– volume: 10
  start-page: 50
  year: 2006
  ident: 10.1016/j.asoc.2024.111857_bib22
  article-title: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2005.851274
– volume: 639
  year: 2023
  ident: 10.1016/j.asoc.2024.111857_bib33
  article-title: Surrogate-assisted MOEA/D for expensive constrained multi-objective optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.119016
– volume: 22
  start-page: 129
  year: 2018
  ident: 10.1016/j.asoc.2024.111857_bib47
  article-title: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2016.2622301
– volume: 21
  start-page: 956
  year: 2017
  ident: 10.1016/j.asoc.2024.111857_bib23
  article-title: Expected improvement matrix-based infill criteria for expensive multiobjective optimization
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2017.2697503
– volume: 106
  year: 2021
  ident: 10.1016/j.asoc.2024.111857_bib3
  article-title: A parallel constrained lower confidence bounding approach for computationally expensive constrained optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107276
– ident: 10.1016/j.asoc.2024.111857_bib42
– volume: 29
  start-page: 31
  year: 1996
  ident: 10.1016/j.asoc.2024.111857_bib18
  article-title: Artificial neural networks: a tutorial
  publication-title: Computer
  doi: 10.1109/2.485891
– volume: 138
  year: 2016
  ident: 10.1016/j.asoc.2024.111857_bib30
  article-title: Multi-objective optimization with multiple spatially distributed surrogates
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4034035
– volume: 54
  start-page: 907
  year: 2016
  ident: 10.1016/j.asoc.2024.111857_bib16
  article-title: Multi-start Space Reduction (MSSR) surrogate-based global optimization method
  publication-title: Struct. Multidisc Optim.
  doi: 10.1007/s00158-016-1450-1
– volume: 560
  start-page: 68
  year: 2021
  ident: 10.1016/j.asoc.2024.111857_bib27
  article-title: A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.01.029
– volume: 76
  start-page: 1905
  year: 1971
  ident: 10.1016/j.asoc.2024.111857_bib36
  article-title: Multiquadric equations of topography and other irregular surfaces
  publication-title: J. Geophys. Res. (1896-1977)
  doi: 10.1029/JB076i008p01905
– volume: 560
  start-page: 68
  year: 2021
  ident: 10.1016/j.asoc.2024.111857_bib28
  article-title: A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.01.029
– volume: 242
  year: 2022
  ident: 10.1016/j.asoc.2024.111857_bib9
  article-title: A classification surrogate-assisted multi-objective evolutionary algorithm for expensive optimization
  publication-title: Knowl. -Based Syst.
  doi: 10.1016/j.knosys.2022.108416
– ident: 10.1016/j.asoc.2024.111857_bib50
  doi: 10.2514/6.2009-1461
– volume: 54
  start-page: 3
  year: 2016
  ident: 10.1016/j.asoc.2024.111857_bib1
  article-title: Parallel surrogate-assisted global optimization with expensive functions – a survey
  publication-title: Struct. Multidisc Optim.
  doi: 10.1007/s00158-016-1432-3
– volume: 122
  year: 2022
  ident: 10.1016/j.asoc.2024.111857_bib15
  article-title: Multi/many-objective evolutionary algorithm assisted by radial basis function models for expensive optimization
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2022.108798
– volume: 20
  start-page: 939
  year: 2016
  ident: 10.1016/j.asoc.2024.111857_bib12
  article-title: Data-driven surrogate-assisted multiobjective evolutionary optimization of a trauma system
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2016.2555315
– volume: 57
  start-page: 393
  year: 2018
  ident: 10.1016/j.asoc.2024.111857_bib13
  article-title: A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design
  publication-title: Struct. Multidisc Optim.
  doi: 10.1007/s00158-017-1739-8
– volume: 44
  start-page: 665
  year: 2019
  ident: 10.1016/j.asoc.2024.111857_bib41
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2018.08.017
– volume: 80
  start-page: 8091
  year: 2021
  ident: 10.1016/j.asoc.2024.111857_bib6
  article-title: A review on genetic algorithm: past, present, and future
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-10139-6
– volume: 23
  start-page: 972
  year: 2019
  ident: 10.1016/j.asoc.2024.111857_bib43
  article-title: Evolutionary constrained multiobjective optimization: test suite construction and performance comparisons
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2019.2896967
– volume: 25
  start-page: 1013
  year: 2021
  ident: 10.1016/j.asoc.2024.111857_bib45
  article-title: A kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2021.3073648
– volume: 2019
  start-page: 2026
  year: 2019
  ident: 10.1016/j.asoc.2024.111857_bib35
  article-title: Efficient multi-objective evolutionary algorithm for constrained global optimization of expensive functions
  publication-title: IEEE Congr. Evolut. Comput. (CEC)
– start-page: 1
  year: 2023
  ident: 10.1016/j.asoc.2024.111857_bib52
  article-title: Causal-relationship-assisted shape design optimization for blended-wing-body underwater gliders
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2023.2256228
– volume: 22
  start-page: 129
  year: 2018
  ident: 10.1016/j.asoc.2024.111857_bib21
  article-title: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2016.2622301
– volume: 148
  year: 2023
  ident: 10.1016/j.asoc.2024.111857_bib29
  article-title: Multi-objective constrained black-box optimization algorithm based on feasible region localization and performance-improvement exploration
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110874
– volume: 18
  start-page: 577
  year: 2014
  ident: 10.1016/j.asoc.2024.111857_bib40
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2013.2281535
– volume: 7
  start-page: 174
  year: 2003
  ident: 10.1016/j.asoc.2024.111857_bib39
  article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810761
– volume: 39
  start-page: 95
  year: 1994
  ident: 10.1016/j.asoc.2024.111857_bib38
  article-title: Optimal Latin-hypercube designs for computer experiments
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/0378-3758(94)90115-5
– volume: 64
  start-page: 641
  year: 2018
  ident: 10.1016/j.asoc.2024.111857_bib4
  article-title: Hybrid surrogate-based optimization using space reduction (HSOSR) for expensive black-box functions
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.12.046
– volume: 12
  start-page: 73
  year: 2017
  ident: 10.1016/j.asoc.2024.111857_bib46
  article-title: PlatEMO: a matlab platform for evolutionary multi-objective optimization [Educational Forum]
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2017.2742868
– volume: 23
  start-page: 442
  year: 2019
  ident: 10.1016/j.asoc.2024.111857_bib11
  article-title: Data-Driven Evolutionary Optimization: An Overview and Case Studies
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2018.2869001
– volume: 25
  start-page: 102
  year: 2021
  ident: 10.1016/j.asoc.2024.111857_bib26
  article-title: A coevolutionary framework for constrained multiobjective optimization problems
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2020.3004012
– volume: 16
  start-page: 140
  year: 2016
  ident: 10.1016/j.asoc.2024.111857_bib32
  article-title: Multi-objective constrained black-box optimization using radial basis function surrogates
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2016.05.013
– volume: 52
  start-page: 5720
  year: 2022
  ident: 10.1016/j.asoc.2024.111857_bib14
  article-title: A three-level radial basis function method for expensive optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3061420
– volume: 9
  start-page: 1455
  year: 2023
  ident: 10.1016/j.asoc.2024.111857_bib25
  article-title: A constrained multi-objective optimization algorithm using an efficient global diversity strategy
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-022-00851-1
SSID ssj0016928
Score 2.4660876
Snippet Surrogate-assisted multi-objective optimization algorithms have attracted widespread attention due to their outstanding performance in computationally...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111857
SubjectTerms Co-evolutionary exploration
Computationally expensive
Constrained multi-objective
Global optimization
Reference vector
Surrogate model
Title A data-driven co-evolutionary exploration algorithm for computationally expensive constrained multi-objective problems
URI https://dx.doi.org/10.1016/j.asoc.2024.111857
Volume 163
WOSCitedRecordID wos001259742200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016928
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZt0kMvfZemL3TobXGwLa9tHZc2JQ0lBJrSvZmRLDe7bO2wL5J_n5E09hqnhLbQi1mMNDKaz-NPs580jH3QSBHwwyOCSGe4QBEpvlKVCgPIASNhlVdQOU9_zU5P8-lUnpGsaOXKCWR1nV9dycv_6mq8h862W2f_wt2dUbyBv9HpeEW34_WPHD8ZWdVnUC5tHBvpJjBbGs9tvHWaO-91WPxslrP1xS-nNdSuvgPlBheuJYnbteWQtpQEklMnQAwaNfeBckQFaVZ9ktsy2xWGeDLbfiCt9IdEwD9MfT3b5fP9zTOza_iJGh5vQF9A0_V3-oMTtLjY9HMWcdKJsiiRdmszjY-9CJREUkayDc4-_N0K9D7nMD8ExPChHcLG_tyfdT04QPubNWztWrlsijHsPtuPs7HEML4_-XI0Pen-dUqlq8XbPQhtsvJ6wOFIvycyPXJy_oQ9olUFn3g0PGX3TP2MPW4rdnAK4M_ZdsJ74OADcPAeOHgHDo7g4ANw8A4cvAcOPgAHb8Hxgn3_fHT-8TigyhuBFmG4DpQQJhnjShjpKoDAN3YsKxBKxmFS6hDSKgQpTBSXJlaZDnWlINQStKV_ChnkS7ZXN7V5xXiJCwyRQYZEKU5KAQqMkGgjTSJlTB4dsKidxkLTsfT2qRdFqz-cF3bqCzv1hZ_6Azbq-lz6Q1nubD1uvVMQrfR0sUAw3dHv9T_2e8Me7jD_lu2tlxvzjj3Q2_VstXxPmLsBeUekDg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+co-evolutionary+exploration+algorithm+for+computationally+expensive+constrained+multi-objective+problems&rft.jtitle=Applied+soft+computing&rft.au=Long%2C+Wenyi&rft.au=Wang%2C+Peng&rft.au=Dong%2C+Huachao&rft.au=Li%2C+Jinglu&rft.date=2024-09-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.volume=163&rft_id=info:doi/10.1016%2Fj.asoc.2024.111857&rft.externalDocID=S1568494624006318
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon