A data-driven co-evolutionary exploration algorithm for computationally expensive constrained multi-objective problems
Surrogate-assisted multi-objective optimization algorithms have attracted widespread attention due to their outstanding performance in computationally expensive real-world problems. However, there is relatively little research about multi-objective optimization with complex and expensive constraints...
Uloženo v:
| Vydáno v: | Applied soft computing Ročník 163; s. 111857 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.09.2024
|
| Témata: | |
| ISSN: | 1568-4946 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Surrogate-assisted multi-objective optimization algorithms have attracted widespread attention due to their outstanding performance in computationally expensive real-world problems. However, there is relatively little research about multi-objective optimization with complex and expensive constraints. Hence, a data-driven co-evolutionary exploration (DDCEE) algorithm is presented in this paper for the above-mentioned problems, where Radial Basis Functions are utilized to train dynamically updated surrogate models for each objective and constraint. Specifically, a data-driven co-evolutionary exploration framework is proposed to fully utilize and mine the potential available information of RBF models, and RBF models are constantly updated to guide co-evolutionary in discovering valuable feasible regions and achieving global optimization. In co-evolutionary exploration, one population focuses on exploring the entire space without considering constraints, while the other population focuses on exploring feasible regions and collaborating by sharing their respective offspring. Reference vectors are introduced in co-evolutionary exploration to divide the objective space into several sub-regions for further selection. Furthermore, an adaptive selection of promising samples strategy is presented to reasonably utilize the information of solutions with good convergence and enhance the convergence and diversity of the Pareto front. After comprehensive experiments on constrained multi/many-objective benchmark cases and an engineering application problem, DDCEE shows more stable and impressive performance when compared with five state-of-art algorithms.
●A notably effective data-driven co-evolutionary exploration algorithm is proposed to solve expensive CMOPs.●The data-driven co-evolutionary exploration framework effectively handles complex constrained multi-objective problems.●An adaptive selection strategy for promising samples is presented to enhance the convergence and diversity of the PF. |
|---|---|
| AbstractList | Surrogate-assisted multi-objective optimization algorithms have attracted widespread attention due to their outstanding performance in computationally expensive real-world problems. However, there is relatively little research about multi-objective optimization with complex and expensive constraints. Hence, a data-driven co-evolutionary exploration (DDCEE) algorithm is presented in this paper for the above-mentioned problems, where Radial Basis Functions are utilized to train dynamically updated surrogate models for each objective and constraint. Specifically, a data-driven co-evolutionary exploration framework is proposed to fully utilize and mine the potential available information of RBF models, and RBF models are constantly updated to guide co-evolutionary in discovering valuable feasible regions and achieving global optimization. In co-evolutionary exploration, one population focuses on exploring the entire space without considering constraints, while the other population focuses on exploring feasible regions and collaborating by sharing their respective offspring. Reference vectors are introduced in co-evolutionary exploration to divide the objective space into several sub-regions for further selection. Furthermore, an adaptive selection of promising samples strategy is presented to reasonably utilize the information of solutions with good convergence and enhance the convergence and diversity of the Pareto front. After comprehensive experiments on constrained multi/many-objective benchmark cases and an engineering application problem, DDCEE shows more stable and impressive performance when compared with five state-of-art algorithms.
●A notably effective data-driven co-evolutionary exploration algorithm is proposed to solve expensive CMOPs.●The data-driven co-evolutionary exploration framework effectively handles complex constrained multi-objective problems.●An adaptive selection strategy for promising samples is presented to enhance the convergence and diversity of the PF. |
| ArticleNumber | 111857 |
| Author | Wang, Peng Long, Wenyi Dong, Huachao Fu, Chongbo Li, Jinglu |
| Author_xml | – sequence: 1 givenname: Wenyi surname: Long fullname: Long, Wenyi – sequence: 2 givenname: Peng orcidid: 0000-0002-8745-320X surname: Wang fullname: Wang, Peng email: wangpeng305@nwpu.edu.cn – sequence: 3 givenname: Huachao surname: Dong fullname: Dong, Huachao – sequence: 4 givenname: Jinglu surname: Li fullname: Li, Jinglu – sequence: 5 givenname: Chongbo surname: Fu fullname: Fu, Chongbo |
| BookMark | eNp9kL1qwzAUhTWk0CTtC3TyC9iV5J9Y0CWE_kGgSzuLa_m6lZEtIzmmffvKcacOmYQ451z4vg1Z9bZHQu4YTRhlxX2bgLcq4ZRnCWOszHcrsmZ5UcaZyIprsvG-paEoeLkm0z6qYYS4dnrCPlI2xsma06htD-4nwu_BWAfzNwLzaZ0ev7qosS40u-E0nhMw5tzE3ocjIen96ED3WEfdyYw6tlWLapyzwdnKYOdvyFUDxuPt37slH0-P74eX-Pj2_HrYH2OVUjrGVZpilouiyFIBkJYN5KKBtBKcZrWiUDQURIqM18irnaKqqYAqAaoM2BUX6Zbw5a5y1nuHjRyc7gKZZFTOtmQrZ1tytiUXW2FU_hspvZDOWOby9GGZYoCaNDrplcZeYa1dUCBrqy_NfwG8no6R |
| CitedBy_id | crossref_primary_10_3390_aerospace11100793 crossref_primary_10_1080_00207543_2025_2532134 crossref_primary_10_1080_0305215X_2025_2464852 crossref_primary_10_1016_j_swevo_2025_102137 crossref_primary_10_1007_s00158_025_04033_8 crossref_primary_10_1016_j_swevo_2025_101871 |
| Cites_doi | 10.1049/iet-ipr.2008.0128 10.1115/1.4050749 10.1016/j.asoc.2018.10.027 10.1109/MCI.2009.933094 10.1016/j.ijnaoe.2016.12.003 10.1016/j.swevo.2020.100713 10.1137/0907043 10.1016/j.swevo.2022.101107 10.1007/s10845-015-1187-5 10.1016/j.knosys.2021.106919 10.1109/TEVC.2021.3066606 10.1016/j.ress.2017.06.024 10.1016/j.applthermaleng.2024.122477 10.1109/TEVC.2005.851274 10.1016/j.ins.2023.119016 10.1109/TEVC.2016.2622301 10.1109/TEVC.2017.2697503 10.1016/j.asoc.2021.107276 10.1109/2.485891 10.1115/1.4034035 10.1007/s00158-016-1450-1 10.1016/j.ins.2021.01.029 10.1029/JB076i008p01905 10.1016/j.knosys.2022.108416 10.2514/6.2009-1461 10.1007/s00158-016-1432-3 10.1016/j.asoc.2022.108798 10.1109/TEVC.2016.2555315 10.1007/s00158-017-1739-8 10.1016/j.swevo.2018.08.017 10.1007/s11042-020-10139-6 10.1109/TEVC.2019.2896967 10.1109/TEVC.2021.3073648 10.1080/0305215X.2023.2256228 10.1016/j.asoc.2023.110874 10.1109/TEVC.2013.2281535 10.1109/TEVC.2003.810761 10.1016/0378-3758(94)90115-5 10.1016/j.asoc.2017.12.046 10.1109/MCI.2017.2742868 10.1109/TEVC.2018.2869001 10.1109/TEVC.2020.3004012 10.1016/j.jocs.2016.05.013 10.1109/TCYB.2021.3061420 10.1007/s40747-022-00851-1 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2024.111857 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_asoc_2024_111857 S1568494624006318 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-b33e45966439aa38fa59fa3b9204dc0a6f0a93e12de2b7c0cfba0c9ac8185b293 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001259742200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Sat Nov 29 03:06:04 EST 2025 Tue Nov 18 22:22:14 EST 2025 Sat Aug 17 15:43:23 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Global optimization Constrained multi-objective Surrogate model Co-evolutionary exploration Reference vector Computationally expensive |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-b33e45966439aa38fa59fa3b9204dc0a6f0a93e12de2b7c0cfba0c9ac8185b293 |
| ORCID | 0000-0002-8745-320X |
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2024_111857 crossref_citationtrail_10_1016_j_asoc_2024_111857 elsevier_sciencedirect_doi_10_1016_j_asoc_2024_111857 |
| PublicationCentury | 2000 |
| PublicationDate | September 2024 2024-09-00 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Li, Dong, Wang, Shen, Qin (bib29) 2023; 148 Deb, Jain (bib40) 2014; 18 Fan, Fang, Li, Cai, Wei, Goodman (bib44) 2019; 74 Chen, Dong, Wang, Wang (bib52) 2023 Ma, Wei, Tian, Cheng, Zhang (bib27) 2021; 560 Cheng, Gary Wang, Hwang (bib34) 2021; 143 Tian, Zhang, Xiao, Zhang, Jin (bib26) 2021; 25 Ma, Wang (bib43) 2019; 23 Yang, Qiu, Gao, Chen, Liu (bib33) 2023; 639 Li, Wang, Dong, Shen, Chen (bib9) 2022; 242 Fan, Li, Cai, Li, Wei, Zhang, Deb, Goodman (bib41) 2019; 44 Zhou, Rong, Shao, Jiang, Gao, Cao (bib2) 2018; 29 Zhan, Cheng, Liu (bib23) 2017; 21 K. Lane, D. Marshall, A Surface Parameterization Method for Airfoil Optimization and High Lift 2D Geometries Utilizing the CST Methodology, in: 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics, Orlando, Florida, 2009. Li, Mao, Song, Wang, Tian, Sun, Wang, Jin (bib49) 2024; 242 Li, Wang, Dong, Shen (bib15) 2022; 122 Dong, Dong (bib7) 2020; 57 Liu, Ong, Cai (bib13) 2018; 57 Fu, Dong, Wang, Li (bib10) 2022 Chugh, Jin, Miettinen, Hakanen, Sindhya (bib47) 2018; 22 Bosman, Thierens (bib39) 2003; 7 Cheng, Jiang, Zhou, Hu, Shu (bib3) 2021; 106 Chugh, Jin, Miettinen, Hakanen, Sindhya (bib21) 2018; 22 Shankar Bhattacharjee, Kumar Singh, Ray (bib30) 2016; 138 Katoch, Chauhan, Kumar (bib6) 2021; 80 Jain, Mao, Mohiuddin (bib18) 1996; 29 Ma, Wei, Tian, Cheng, Zhang (bib28) 2021; 560 Li, Zhang, Lin, Gao (bib14) 2022; 52 Long, Dong, Wang, Huang, Li, Yang, Fu (bib25) 2023; 9 Hardy (bib36) 1971; 76 Regis (bib32) 2016; 16 Dong, Song, Dong, Wang (bib16) 2016; 54 Deb, Thiele, Laumanns, Zitzler (bib48) 2005 Jin, Sendhoff (bib8) 2009; 4 Han, Liu, Xu, Zhang, Zhang (bib35) 2019; 2019 Knowles (bib22) 2006; 10 Park (bib38) 1994; 39 Huang, Feng, Ma, Yang, Zhang, Ge (bib31) 2022 Haftka, Villanueva, Chaudhuri (bib1) 2016; 54 Li, Wang, Dong, Shen (bib20) 2022; 73 Dyn, Levin, Rippa (bib37) 1986; 7 Song, Wang, He, Jin (bib45) 2021; 25 Dong, Li, Wang, Song, Yu (bib19) 2021; 220 Sohel, Karmakar, Dooley, Bennamoun (bib51) 2010; 4 Jin, Wang, Chugh, Guo, Miettinen (bib11) 2019; 23 Dong, Song, Wang, Dong (bib4) 2018; 64 Wang, Jin, Jansen (bib12) 2016; 20 Hawchar, El Soueidy, Schoefs (bib17) 2017; 167 Q. Zhang, A. Zhou, S. Zhao, P.N. Suganthan, W. Liu, S. Tiwari, Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition, (2009). Li, Zhang (bib5) 2021; 25 Tian, Cheng, Zhang, Jin (bib46) 2017; 12 Sun, Song, Wang, Wang (bib24) 2017; 9 Knowles (10.1016/j.asoc.2024.111857_bib22) 2006; 10 Park (10.1016/j.asoc.2024.111857_bib38) 1994; 39 Song (10.1016/j.asoc.2024.111857_bib45) 2021; 25 Haftka (10.1016/j.asoc.2024.111857_bib1) 2016; 54 Fu (10.1016/j.asoc.2024.111857_bib10) 2022 Zhan (10.1016/j.asoc.2024.111857_bib23) 2017; 21 Tian (10.1016/j.asoc.2024.111857_bib26) 2021; 25 Li (10.1016/j.asoc.2024.111857_bib15) 2022; 122 Dyn (10.1016/j.asoc.2024.111857_bib37) 1986; 7 Hawchar (10.1016/j.asoc.2024.111857_bib17) 2017; 167 Tian (10.1016/j.asoc.2024.111857_bib46) 2017; 12 Dong (10.1016/j.asoc.2024.111857_bib19) 2021; 220 Shankar Bhattacharjee (10.1016/j.asoc.2024.111857_bib30) 2016; 138 Hardy (10.1016/j.asoc.2024.111857_bib36) 1971; 76 Deb (10.1016/j.asoc.2024.111857_bib48) 2005 Fan (10.1016/j.asoc.2024.111857_bib44) 2019; 74 Li (10.1016/j.asoc.2024.111857_bib20) 2022; 73 Li (10.1016/j.asoc.2024.111857_bib9) 2022; 242 Regis (10.1016/j.asoc.2024.111857_bib32) 2016; 16 Ma (10.1016/j.asoc.2024.111857_bib43) 2019; 23 Zhou (10.1016/j.asoc.2024.111857_bib2) 2018; 29 Chugh (10.1016/j.asoc.2024.111857_bib21) 2018; 22 Dong (10.1016/j.asoc.2024.111857_bib4) 2018; 64 Huang (10.1016/j.asoc.2024.111857_bib31) 2022 Chugh (10.1016/j.asoc.2024.111857_bib47) 2018; 22 Dong (10.1016/j.asoc.2024.111857_bib7) 2020; 57 Bosman (10.1016/j.asoc.2024.111857_bib39) 2003; 7 10.1016/j.asoc.2024.111857_bib50 Jin (10.1016/j.asoc.2024.111857_bib11) 2019; 23 Cheng (10.1016/j.asoc.2024.111857_bib3) 2021; 106 Yang (10.1016/j.asoc.2024.111857_bib33) 2023; 639 Dong (10.1016/j.asoc.2024.111857_bib16) 2016; 54 Han (10.1016/j.asoc.2024.111857_bib35) 2019; 2019 Deb (10.1016/j.asoc.2024.111857_bib40) 2014; 18 Sohel (10.1016/j.asoc.2024.111857_bib51) 2010; 4 Jin (10.1016/j.asoc.2024.111857_bib8) 2009; 4 Fan (10.1016/j.asoc.2024.111857_bib41) 2019; 44 Ma (10.1016/j.asoc.2024.111857_bib27) 2021; 560 Li (10.1016/j.asoc.2024.111857_bib14) 2022; 52 Cheng (10.1016/j.asoc.2024.111857_bib34) 2021; 143 Li (10.1016/j.asoc.2024.111857_bib49) 2024; 242 10.1016/j.asoc.2024.111857_bib42 Liu (10.1016/j.asoc.2024.111857_bib13) 2018; 57 Li (10.1016/j.asoc.2024.111857_bib5) 2021; 25 Ma (10.1016/j.asoc.2024.111857_bib28) 2021; 560 Jain (10.1016/j.asoc.2024.111857_bib18) 1996; 29 Sun (10.1016/j.asoc.2024.111857_bib24) 2017; 9 Katoch (10.1016/j.asoc.2024.111857_bib6) 2021; 80 Li (10.1016/j.asoc.2024.111857_bib29) 2023; 148 Long (10.1016/j.asoc.2024.111857_bib25) 2023; 9 Chen (10.1016/j.asoc.2024.111857_bib52) 2023 Wang (10.1016/j.asoc.2024.111857_bib12) 2016; 20 |
| References_xml | – volume: 4 start-page: 62 year: 2009 end-page: 76 ident: bib8 article-title: A systems approach to evolutionary multiobjective structural optimization and beyond publication-title: IEEE Comput. Intell. Mag. – volume: 220 year: 2021 ident: bib19 article-title: Surrogate-guided multi-objective optimization (SGMOO) using an efficient online sampling strategy publication-title: Knowl. -Based Syst. – volume: 560 start-page: 68 year: 2021 end-page: 91 ident: bib27 article-title: A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints publication-title: Inf. Sci. – volume: 138 year: 2016 ident: bib30 article-title: Multi-objective optimization with multiple spatially distributed surrogates publication-title: J. Mech. Des. – volume: 639 year: 2023 ident: bib33 article-title: Surrogate-assisted MOEA/D for expensive constrained multi-objective optimization publication-title: Inf. Sci. – year: 2022 ident: bib10 article-title: Data-driven Harris Hawks constrained optimization for computationally expensive constrained problems publication-title: Complex Intell. Syst. – volume: 52 start-page: 5720 year: 2022 end-page: 5731 ident: bib14 article-title: A three-level radial basis function method for expensive optimization publication-title: IEEE Trans. Cybern. – volume: 18 start-page: 577 year: 2014 end-page: 601 ident: bib40 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints publication-title: IEEE Trans. Evolut. Comput. – volume: 21 start-page: 956 year: 2017 end-page: 975 ident: bib23 article-title: Expected improvement matrix-based infill criteria for expensive multiobjective optimization publication-title: IEEE Trans. Evolut. Comput. – volume: 73 year: 2022 ident: bib20 article-title: A two-stage surrogate-assisted evolutionary algorithm (TS-SAEA) for expensive multi/many-objective optimization publication-title: Swarm Evolut. Comput. – volume: 64 start-page: 641 year: 2018 end-page: 655 ident: bib4 article-title: Hybrid surrogate-based optimization using space reduction (HSOSR) for expensive black-box functions publication-title: Appl. Soft Comput. – volume: 23 start-page: 972 year: 2019 end-page: 986 ident: bib43 article-title: Evolutionary constrained multiobjective optimization: test suite construction and performance comparisons publication-title: IEEE Trans. Evolut. Comput. – volume: 4 start-page: 92 year: 2010 end-page: 102 ident: bib51 article-title: Bezier curve-based generic shape encoder publication-title: IET Image Process. – volume: 57 start-page: 393 year: 2018 end-page: 416 ident: bib13 article-title: A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design publication-title: Struct. Multidisc Optim. – volume: 16 start-page: 140 year: 2016 end-page: 155 ident: bib32 article-title: Multi-objective constrained black-box optimization using radial basis function surrogates publication-title: J. Comput. Sci. – volume: 7 start-page: 174 year: 2003 end-page: 188 ident: bib39 article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. – start-page: 105 year: 2005 end-page: 145 ident: bib48 article-title: Scalable Test Problems for Evolutionary Multiobjective Optimization publication-title: Evolutionary Multiobjective Optimization – volume: 167 start-page: 406 year: 2017 end-page: 416 ident: bib17 article-title: Principal component analysis and polynomial chaos expansion for time-variant reliability problems publication-title: Reliab. Eng. Syst. Saf. – volume: 39 start-page: 95 year: 1994 end-page: 111 ident: bib38 article-title: Optimal Latin-hypercube designs for computer experiments publication-title: J. Stat. Plan. Inference – volume: 12 start-page: 73 year: 2017 end-page: 87 ident: bib46 article-title: PlatEMO: a matlab platform for evolutionary multi-objective optimization [Educational Forum] publication-title: IEEE Comput. Intell. Mag. – start-page: 1 year: 2022 end-page: 18 ident: bib31 article-title: A kriging-assisted bi-objective constrained global optimization algorithm for expensive constrained optimization problems publication-title: Eng. Optim. – volume: 9 start-page: 693 year: 2017 end-page: 704 ident: bib24 article-title: Shape optimization of blended-wing-body underwater glider by using gliding range as the optimization target publication-title: Int. J. Nav. Archit. Ocean Eng. – volume: 44 start-page: 665 year: 2019 end-page: 679 ident: bib41 article-title: Push and pull search for solving constrained multi-objective optimization problems publication-title: Swarm Evolut. Comput. – volume: 143 year: 2021 ident: bib34 article-title: Multi-objective optimization for high-dimensional expensively constrained black-box problems publication-title: J. Mech. Des. – volume: 54 start-page: 3 year: 2016 end-page: 13 ident: bib1 article-title: Parallel surrogate-assisted global optimization with expensive functions – a survey publication-title: Struct. Multidisc Optim. – volume: 29 start-page: 1417 year: 2018 end-page: 1431 ident: bib2 article-title: Optimization of laser brazing onto galvanized steel based on ensemble of metamodels publication-title: J. Intell. Manuf. – volume: 76 start-page: 1905 year: 1971 end-page: 1915 ident: bib36 article-title: Multiquadric equations of topography and other irregular surfaces publication-title: J. Geophys. Res. (1896-1977) – volume: 20 start-page: 939 year: 2016 end-page: 952 ident: bib12 article-title: Data-driven surrogate-assisted multiobjective evolutionary optimization of a trauma system publication-title: IEEE Trans. Evolut. Comput. – volume: 22 start-page: 129 year: 2018 end-page: 142 ident: bib21 article-title: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization publication-title: IEEE Trans. Evolut. Comput. – reference: K. Lane, D. Marshall, A Surface Parameterization Method for Airfoil Optimization and High Lift 2D Geometries Utilizing the CST Methodology, in: 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics, Orlando, Florida, 2009. – volume: 25 start-page: 769 year: 2021 end-page: 778 ident: bib5 article-title: Multiple penalties and multiple local surrogates for expensive constrained optimization publication-title: IEEE Trans. Evolut. Comput. – volume: 7 start-page: 639 year: 1986 end-page: 659 ident: bib37 article-title: Numerical procedures for surface fitting of scattered data by radial functions publication-title: SIAM J. Sci. Stat. Comput. – start-page: 1 year: 2023 end-page: 33 ident: bib52 article-title: Causal-relationship-assisted shape design optimization for blended-wing-body underwater gliders publication-title: Eng. Optim. – volume: 74 start-page: 621 year: 2019 end-page: 633 ident: bib44 article-title: MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems publication-title: Appl. Soft Comput. – volume: 23 start-page: 442 year: 2019 end-page: 458 ident: bib11 article-title: Data-Driven Evolutionary Optimization: An Overview and Case Studies publication-title: IEEE Trans. Evolut. Comput. – volume: 242 year: 2022 ident: bib9 article-title: A classification surrogate-assisted multi-objective evolutionary algorithm for expensive optimization publication-title: Knowl. -Based Syst. – volume: 10 start-page: 50 year: 2006 end-page: 66 ident: bib22 article-title: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems publication-title: IEEE Trans. Evolut. Comput. – volume: 25 start-page: 1013 year: 2021 end-page: 1027 ident: bib45 article-title: A kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization publication-title: IEEE Trans. Evolut. Comput. – volume: 122 year: 2022 ident: bib15 article-title: Multi/many-objective evolutionary algorithm assisted by radial basis function models for expensive optimization publication-title: Appl. Soft. Comput. – reference: Q. Zhang, A. Zhou, S. Zhao, P.N. Suganthan, W. Liu, S. Tiwari, Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition, (2009). – volume: 54 start-page: 907 year: 2016 end-page: 926 ident: bib16 article-title: Multi-start Space Reduction (MSSR) surrogate-based global optimization method publication-title: Struct. Multidisc Optim. – volume: 22 start-page: 129 year: 2018 end-page: 142 ident: bib47 article-title: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization publication-title: IEEE Trans. Evolut. Comput. – volume: 106 year: 2021 ident: bib3 article-title: A parallel constrained lower confidence bounding approach for computationally expensive constrained optimization problems publication-title: Appl. Soft Comput. – volume: 9 start-page: 1455 year: 2023 end-page: 1478 ident: bib25 article-title: A constrained multi-objective optimization algorithm using an efficient global diversity strategy publication-title: Complex Intell. Syst. – volume: 80 start-page: 8091 year: 2021 end-page: 8126 ident: bib6 article-title: A review on genetic algorithm: past, present, and future publication-title: Multimed. Tools Appl. – volume: 57 year: 2020 ident: bib7 article-title: Surrogate-assisted grey wolf optimization for high-dimensional, computationally expensive black-box problems publication-title: Swarm Evolut. Comput. – volume: 25 start-page: 102 year: 2021 end-page: 116 ident: bib26 article-title: A coevolutionary framework for constrained multiobjective optimization problems publication-title: IEEE Trans. Evolut. Comput. – volume: 29 start-page: 31 year: 1996 end-page: 44 ident: bib18 article-title: Artificial neural networks: a tutorial publication-title: Computer – volume: 560 start-page: 68 year: 2021 end-page: 91 ident: bib28 article-title: A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints publication-title: Inf. Sci. – volume: 242 year: 2024 ident: bib49 article-title: Experimental investigation on efficient thermal management of autonomous underwater vehicle battery packs using anisotropic expanded graphite/paraffin composite materials publication-title: Appl. Therm. Eng. – volume: 148 year: 2023 ident: bib29 article-title: Multi-objective constrained black-box optimization algorithm based on feasible region localization and performance-improvement exploration publication-title: Appl. Soft Comput. – volume: 2019 start-page: 2026 year: 2019 end-page: 2033 ident: bib35 article-title: Efficient multi-objective evolutionary algorithm for constrained global optimization of expensive functions publication-title: IEEE Congr. Evolut. Comput. (CEC) – year: 2022 ident: 10.1016/j.asoc.2024.111857_bib10 article-title: Data-driven Harris Hawks constrained optimization for computationally expensive constrained problems publication-title: Complex Intell. Syst. – volume: 4 start-page: 92 year: 2010 ident: 10.1016/j.asoc.2024.111857_bib51 article-title: Bezier curve-based generic shape encoder publication-title: IET Image Process. doi: 10.1049/iet-ipr.2008.0128 – volume: 143 year: 2021 ident: 10.1016/j.asoc.2024.111857_bib34 article-title: Multi-objective optimization for high-dimensional expensively constrained black-box problems publication-title: J. Mech. Des. doi: 10.1115/1.4050749 – volume: 74 start-page: 621 year: 2019 ident: 10.1016/j.asoc.2024.111857_bib44 article-title: MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.10.027 – volume: 4 start-page: 62 year: 2009 ident: 10.1016/j.asoc.2024.111857_bib8 article-title: A systems approach to evolutionary multiobjective structural optimization and beyond publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2009.933094 – volume: 9 start-page: 693 year: 2017 ident: 10.1016/j.asoc.2024.111857_bib24 article-title: Shape optimization of blended-wing-body underwater glider by using gliding range as the optimization target publication-title: Int. J. Nav. Archit. Ocean Eng. doi: 10.1016/j.ijnaoe.2016.12.003 – volume: 57 year: 2020 ident: 10.1016/j.asoc.2024.111857_bib7 article-title: Surrogate-assisted grey wolf optimization for high-dimensional, computationally expensive black-box problems publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2020.100713 – volume: 7 start-page: 639 year: 1986 ident: 10.1016/j.asoc.2024.111857_bib37 article-title: Numerical procedures for surface fitting of scattered data by radial functions publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0907043 – volume: 73 year: 2022 ident: 10.1016/j.asoc.2024.111857_bib20 article-title: A two-stage surrogate-assisted evolutionary algorithm (TS-SAEA) for expensive multi/many-objective optimization publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2022.101107 – volume: 29 start-page: 1417 year: 2018 ident: 10.1016/j.asoc.2024.111857_bib2 article-title: Optimization of laser brazing onto galvanized steel based on ensemble of metamodels publication-title: J. Intell. Manuf. doi: 10.1007/s10845-015-1187-5 – volume: 220 year: 2021 ident: 10.1016/j.asoc.2024.111857_bib19 article-title: Surrogate-guided multi-objective optimization (SGMOO) using an efficient online sampling strategy publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2021.106919 – start-page: 1 year: 2022 ident: 10.1016/j.asoc.2024.111857_bib31 article-title: A kriging-assisted bi-objective constrained global optimization algorithm for expensive constrained optimization problems publication-title: Eng. Optim. – volume: 25 start-page: 769 year: 2021 ident: 10.1016/j.asoc.2024.111857_bib5 article-title: Multiple penalties and multiple local surrogates for expensive constrained optimization publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2021.3066606 – volume: 167 start-page: 406 year: 2017 ident: 10.1016/j.asoc.2024.111857_bib17 article-title: Principal component analysis and polynomial chaos expansion for time-variant reliability problems publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.06.024 – start-page: 105 year: 2005 ident: 10.1016/j.asoc.2024.111857_bib48 article-title: Scalable Test Problems for Evolutionary Multiobjective Optimization – volume: 242 year: 2024 ident: 10.1016/j.asoc.2024.111857_bib49 article-title: Experimental investigation on efficient thermal management of autonomous underwater vehicle battery packs using anisotropic expanded graphite/paraffin composite materials publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2024.122477 – volume: 10 start-page: 50 year: 2006 ident: 10.1016/j.asoc.2024.111857_bib22 article-title: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2005.851274 – volume: 639 year: 2023 ident: 10.1016/j.asoc.2024.111857_bib33 article-title: Surrogate-assisted MOEA/D for expensive constrained multi-objective optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.119016 – volume: 22 start-page: 129 year: 2018 ident: 10.1016/j.asoc.2024.111857_bib47 article-title: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2016.2622301 – volume: 21 start-page: 956 year: 2017 ident: 10.1016/j.asoc.2024.111857_bib23 article-title: Expected improvement matrix-based infill criteria for expensive multiobjective optimization publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2017.2697503 – volume: 106 year: 2021 ident: 10.1016/j.asoc.2024.111857_bib3 article-title: A parallel constrained lower confidence bounding approach for computationally expensive constrained optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107276 – ident: 10.1016/j.asoc.2024.111857_bib42 – volume: 29 start-page: 31 year: 1996 ident: 10.1016/j.asoc.2024.111857_bib18 article-title: Artificial neural networks: a tutorial publication-title: Computer doi: 10.1109/2.485891 – volume: 138 year: 2016 ident: 10.1016/j.asoc.2024.111857_bib30 article-title: Multi-objective optimization with multiple spatially distributed surrogates publication-title: J. Mech. Des. doi: 10.1115/1.4034035 – volume: 54 start-page: 907 year: 2016 ident: 10.1016/j.asoc.2024.111857_bib16 article-title: Multi-start Space Reduction (MSSR) surrogate-based global optimization method publication-title: Struct. Multidisc Optim. doi: 10.1007/s00158-016-1450-1 – volume: 560 start-page: 68 year: 2021 ident: 10.1016/j.asoc.2024.111857_bib27 article-title: A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.01.029 – volume: 76 start-page: 1905 year: 1971 ident: 10.1016/j.asoc.2024.111857_bib36 article-title: Multiquadric equations of topography and other irregular surfaces publication-title: J. Geophys. Res. (1896-1977) doi: 10.1029/JB076i008p01905 – volume: 560 start-page: 68 year: 2021 ident: 10.1016/j.asoc.2024.111857_bib28 article-title: A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.01.029 – volume: 242 year: 2022 ident: 10.1016/j.asoc.2024.111857_bib9 article-title: A classification surrogate-assisted multi-objective evolutionary algorithm for expensive optimization publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2022.108416 – ident: 10.1016/j.asoc.2024.111857_bib50 doi: 10.2514/6.2009-1461 – volume: 54 start-page: 3 year: 2016 ident: 10.1016/j.asoc.2024.111857_bib1 article-title: Parallel surrogate-assisted global optimization with expensive functions – a survey publication-title: Struct. Multidisc Optim. doi: 10.1007/s00158-016-1432-3 – volume: 122 year: 2022 ident: 10.1016/j.asoc.2024.111857_bib15 article-title: Multi/many-objective evolutionary algorithm assisted by radial basis function models for expensive optimization publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2022.108798 – volume: 20 start-page: 939 year: 2016 ident: 10.1016/j.asoc.2024.111857_bib12 article-title: Data-driven surrogate-assisted multiobjective evolutionary optimization of a trauma system publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2016.2555315 – volume: 57 start-page: 393 year: 2018 ident: 10.1016/j.asoc.2024.111857_bib13 article-title: A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design publication-title: Struct. Multidisc Optim. doi: 10.1007/s00158-017-1739-8 – volume: 44 start-page: 665 year: 2019 ident: 10.1016/j.asoc.2024.111857_bib41 article-title: Push and pull search for solving constrained multi-objective optimization problems publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2018.08.017 – volume: 80 start-page: 8091 year: 2021 ident: 10.1016/j.asoc.2024.111857_bib6 article-title: A review on genetic algorithm: past, present, and future publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-10139-6 – volume: 23 start-page: 972 year: 2019 ident: 10.1016/j.asoc.2024.111857_bib43 article-title: Evolutionary constrained multiobjective optimization: test suite construction and performance comparisons publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2019.2896967 – volume: 25 start-page: 1013 year: 2021 ident: 10.1016/j.asoc.2024.111857_bib45 article-title: A kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2021.3073648 – volume: 2019 start-page: 2026 year: 2019 ident: 10.1016/j.asoc.2024.111857_bib35 article-title: Efficient multi-objective evolutionary algorithm for constrained global optimization of expensive functions publication-title: IEEE Congr. Evolut. Comput. (CEC) – start-page: 1 year: 2023 ident: 10.1016/j.asoc.2024.111857_bib52 article-title: Causal-relationship-assisted shape design optimization for blended-wing-body underwater gliders publication-title: Eng. Optim. doi: 10.1080/0305215X.2023.2256228 – volume: 22 start-page: 129 year: 2018 ident: 10.1016/j.asoc.2024.111857_bib21 article-title: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2016.2622301 – volume: 148 year: 2023 ident: 10.1016/j.asoc.2024.111857_bib29 article-title: Multi-objective constrained black-box optimization algorithm based on feasible region localization and performance-improvement exploration publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110874 – volume: 18 start-page: 577 year: 2014 ident: 10.1016/j.asoc.2024.111857_bib40 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2013.2281535 – volume: 7 start-page: 174 year: 2003 ident: 10.1016/j.asoc.2024.111857_bib39 article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.810761 – volume: 39 start-page: 95 year: 1994 ident: 10.1016/j.asoc.2024.111857_bib38 article-title: Optimal Latin-hypercube designs for computer experiments publication-title: J. Stat. Plan. Inference doi: 10.1016/0378-3758(94)90115-5 – volume: 64 start-page: 641 year: 2018 ident: 10.1016/j.asoc.2024.111857_bib4 article-title: Hybrid surrogate-based optimization using space reduction (HSOSR) for expensive black-box functions publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.12.046 – volume: 12 start-page: 73 year: 2017 ident: 10.1016/j.asoc.2024.111857_bib46 article-title: PlatEMO: a matlab platform for evolutionary multi-objective optimization [Educational Forum] publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2017.2742868 – volume: 23 start-page: 442 year: 2019 ident: 10.1016/j.asoc.2024.111857_bib11 article-title: Data-Driven Evolutionary Optimization: An Overview and Case Studies publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2018.2869001 – volume: 25 start-page: 102 year: 2021 ident: 10.1016/j.asoc.2024.111857_bib26 article-title: A coevolutionary framework for constrained multiobjective optimization problems publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2020.3004012 – volume: 16 start-page: 140 year: 2016 ident: 10.1016/j.asoc.2024.111857_bib32 article-title: Multi-objective constrained black-box optimization using radial basis function surrogates publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2016.05.013 – volume: 52 start-page: 5720 year: 2022 ident: 10.1016/j.asoc.2024.111857_bib14 article-title: A three-level radial basis function method for expensive optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3061420 – volume: 9 start-page: 1455 year: 2023 ident: 10.1016/j.asoc.2024.111857_bib25 article-title: A constrained multi-objective optimization algorithm using an efficient global diversity strategy publication-title: Complex Intell. Syst. doi: 10.1007/s40747-022-00851-1 |
| SSID | ssj0016928 |
| Score | 2.4660876 |
| Snippet | Surrogate-assisted multi-objective optimization algorithms have attracted widespread attention due to their outstanding performance in computationally... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 111857 |
| SubjectTerms | Co-evolutionary exploration Computationally expensive Constrained multi-objective Global optimization Reference vector Surrogate model |
| Title | A data-driven co-evolutionary exploration algorithm for computationally expensive constrained multi-objective problems |
| URI | https://dx.doi.org/10.1016/j.asoc.2024.111857 |
| Volume | 163 |
| WOSCitedRecordID | wos001259742200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0016928 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZt0kMvfZemL3TobXGwLa9tHZc2JQ0lBJrSvZmRLDe7bO2wL5J_n5E09hqnhLbQi1mMNDKaz-NPs580jH3QSBHwwyOCSGe4QBEpvlKVCgPIASNhlVdQOU9_zU5P8-lUnpGsaOXKCWR1nV9dycv_6mq8h862W2f_wt2dUbyBv9HpeEW34_WPHD8ZWdVnUC5tHBvpJjBbGs9tvHWaO-91WPxslrP1xS-nNdSuvgPlBheuJYnbteWQtpQEklMnQAwaNfeBckQFaVZ9ktsy2xWGeDLbfiCt9IdEwD9MfT3b5fP9zTOza_iJGh5vQF9A0_V3-oMTtLjY9HMWcdKJsiiRdmszjY-9CJREUkayDc4-_N0K9D7nMD8ExPChHcLG_tyfdT04QPubNWztWrlsijHsPtuPs7HEML4_-XI0Pen-dUqlq8XbPQhtsvJ6wOFIvycyPXJy_oQ9olUFn3g0PGX3TP2MPW4rdnAK4M_ZdsJ74OADcPAeOHgHDo7g4ANw8A4cvAcOPgAHb8Hxgn3_fHT-8TigyhuBFmG4DpQQJhnjShjpKoDAN3YsKxBKxmFS6hDSKgQpTBSXJlaZDnWlINQStKV_ChnkS7ZXN7V5xXiJCwyRQYZEKU5KAQqMkGgjTSJlTB4dsKidxkLTsfT2qRdFqz-cF3bqCzv1hZ_6Azbq-lz6Q1nubD1uvVMQrfR0sUAw3dHv9T_2e8Me7jD_lu2tlxvzjj3Q2_VstXxPmLsBeUekDg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+co-evolutionary+exploration+algorithm+for+computationally+expensive+constrained+multi-objective+problems&rft.jtitle=Applied+soft+computing&rft.au=Long%2C+Wenyi&rft.au=Wang%2C+Peng&rft.au=Dong%2C+Huachao&rft.au=Li%2C+Jinglu&rft.date=2024-09-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.volume=163&rft_id=info:doi/10.1016%2Fj.asoc.2024.111857&rft.externalDocID=S1568494624006318 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |