A dynamic neighborhood balancing-based multi-objective particle swarm optimization for multi-modal problems

•The purpose of this study is to solve multi-modal multi-objective problems.•Using the adaptive parameter adjustment strategy to extend the search space.•The dynamic neighborhood forming strategy can exchange the information between particles in time.•The mutation operator is embedded to make the pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 205; S. 117713
Hauptverfasser: Gu, Qinghua, Wang, Qian, Chen, Lu, Li, Xiaoguang, Li, Xuexian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.11.2022
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •The purpose of this study is to solve multi-modal multi-objective problems.•Using the adaptive parameter adjustment strategy to extend the search space.•The dynamic neighborhood forming strategy can exchange the information between particles in time.•The mutation operator is embedded to make the particle jump out of the local optimum. To solve the multi-modal multi-objective optimization problems which may have two or more Pareto-optimal solutions with the same fitness value, a new multi-objective particle swarm optimizer with a dynamic neighborhood balancing mechanism (DNB-MOPSO) is proposed in this paper. First, an adaptive parameter adjustment strategy is developed to balance the local and global search, which takes the difference among niches into consideration. Second, according to evolutionary states, a mutation operator is alternatively utilized to construct new solutions for escaping from the local optima. Then, combined with current niching methods, the dynamic neighborhood reform strategy of non-overlapping regions is properly implemented, which can enhance the exploration and keep the population diversity in the decision space. To validate the effectiveness of the proposed algorithm, DNB-MOPSO is compared with the other five popular multi-objective optimization algorithms. It is also applied to solve a real-world problem. The experimental results show the superiority of the proposed algorithm, especially in locating more optimal solutions in the decision space while obtaining the well-distributed Pareto fronts.
AbstractList •The purpose of this study is to solve multi-modal multi-objective problems.•Using the adaptive parameter adjustment strategy to extend the search space.•The dynamic neighborhood forming strategy can exchange the information between particles in time.•The mutation operator is embedded to make the particle jump out of the local optimum. To solve the multi-modal multi-objective optimization problems which may have two or more Pareto-optimal solutions with the same fitness value, a new multi-objective particle swarm optimizer with a dynamic neighborhood balancing mechanism (DNB-MOPSO) is proposed in this paper. First, an adaptive parameter adjustment strategy is developed to balance the local and global search, which takes the difference among niches into consideration. Second, according to evolutionary states, a mutation operator is alternatively utilized to construct new solutions for escaping from the local optima. Then, combined with current niching methods, the dynamic neighborhood reform strategy of non-overlapping regions is properly implemented, which can enhance the exploration and keep the population diversity in the decision space. To validate the effectiveness of the proposed algorithm, DNB-MOPSO is compared with the other five popular multi-objective optimization algorithms. It is also applied to solve a real-world problem. The experimental results show the superiority of the proposed algorithm, especially in locating more optimal solutions in the decision space while obtaining the well-distributed Pareto fronts.
ArticleNumber 117713
Author Wang, Qian
Chen, Lu
Gu, Qinghua
Li, Xuexian
Li, Xiaoguang
Author_xml – sequence: 1
  givenname: Qinghua
  surname: Gu
  fullname: Gu, Qinghua
  email: qinghuagu@126.com
  organization: School of Management, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
– sequence: 2
  givenname: Qian
  surname: Wang
  fullname: Wang, Qian
  organization: School of Management, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
– sequence: 3
  givenname: Lu
  surname: Chen
  fullname: Chen, Lu
  email: chenlu@xauat.edu.cn
  organization: School of Management, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
– sequence: 4
  givenname: Xiaoguang
  surname: Li
  fullname: Li, Xiaoguang
  organization: School of Management, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
– sequence: 5
  givenname: Xuexian
  surname: Li
  fullname: Li, Xuexian
  organization: School of Management, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
BookMark eNp9kMtOwzAQRS1UJNrCD7DyD6R47CRuJDZVxUtCYgNry49J65LElR2KyteT0q5YdDWbe2bunAkZdaFDQm6BzYBBebeZYfrWM844nwFICeKCjGEuRVbKSozImFWFzHKQ-RWZpLRhDCRjckw-F9TtO916Szv0q7UJcR2Co0Y3urO-W2VGJ3S0_Wp6nwWzQdv7HdKtjr23DdLhbGxp2Pa-9T-696GjdYinfBucbug2BtNgm67JZa2bhDenOSUfjw_vy-fs9e3pZbl4zaxgrM8MuLKouNVzzUWRVxUaOTdaAgKrWVGVRkCJIIUrc14hczW3AgsnS6nBlCCmZH7ca2NIKWKtrO__qvVR-0YBUwdpaqMO0tRBmjpKG1D-D91G3-q4Pw_dHyEcntp5jCpZj51F5-OgS7ngz-G_X1CKaw
CitedBy_id crossref_primary_10_1016_j_swevo_2025_101890
crossref_primary_10_1007_s00500_023_09157_x
crossref_primary_10_1016_j_asoc_2025_113895
crossref_primary_10_1016_j_engstruct_2025_121261
crossref_primary_10_1016_j_future_2025_108076
crossref_primary_10_3390_s23187710
crossref_primary_10_1016_j_asoc_2023_111226
crossref_primary_10_1088_1742_6596_3067_1_012010
crossref_primary_10_1016_j_conbuildmat_2023_132178
crossref_primary_10_1016_j_eswa_2023_120642
crossref_primary_10_1007_s00521_023_09018_6
crossref_primary_10_1016_j_engappai_2024_108040
crossref_primary_10_1016_j_swevo_2023_101257
crossref_primary_10_3390_app13137755
Cites_doi 10.2514/1.46478
10.1109/TEVC.2021.3064835
10.1109/TEVC.2019.2910721
10.1016/j.ins.2021.05.075
10.1109/TEVC.2012.2203138
10.1016/j.eswa.2020.113353
10.1109/TSMC.2019.2957324
10.1016/j.engappai.2021.104173
10.1016/j.engappai.2020.103905
10.1016/j.asoc.2020.106312
10.1109/ICEC.1998.699146
10.1109/TCYB.2016.2641986
10.1016/j.eswa.2021.114779
10.1109/TEVC.2009.2021467
10.1109/TEVC.2018.2879406
10.1016/j.eswa.2021.116118
10.1109/TLA.2016.7459617
10.1109/TEVC.2004.826067
10.1016/j.swevo.2018.10.016
10.1016/j.asoc.2018.10.041
10.1007/s12293-021-00338-5
10.1007/s10479-019-03430-9
10.1109/TCYB.2013.2256418
10.1016/j.swevo.2021.100842
10.1109/CEC.2002.1004493
10.1145/2001576.2001666
10.1016/j.asoc.2020.106823
10.1109/ICNN.1995.488968
10.1007/s11227-021-03721-8
10.1109/CEC.1999.785514
10.1109/ACCESS.2019.2938063
10.1016/j.ins.2020.01.049
10.1016/j.swevo.2019.100569
10.1109/TEVC.2017.2754271
10.1007/s11042-018-6324-7
10.1016/j.eswa.2020.113184
10.1016/j.knosys.2021.107049
10.1016/j.cor.2013.02.016
10.1007/978-3-540-31880-4_4
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2022.117713
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_117713
S0957417422010004
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-b1d6592ca8a235499eb78ba71e10f0596b316e173d6429e0df2c3e5d767a1b613
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000832957100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Tue Nov 18 22:23:53 EST 2025
Sat Nov 29 07:05:34 EST 2025
Fri Feb 23 02:38:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dynamic neighborhood
Mutation operator
Particle swarm optimization
Multi-modal multi-objective problem
Adaptive parameters
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-b1d6592ca8a235499eb78ba71e10f0596b316e173d6429e0df2c3e5d767a1b613
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2022_117713
crossref_primary_10_1016_j_eswa_2022_117713
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_117713
PublicationCentury 2000
PublicationDate 2022-11-01
2022-11-00
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Karimi, Lotfi, Izadkhah (b0065) 2020; 146
Jha, Saha (b0055) 2021; 98
Ji, Zhang, Gong, Sun (b0060) 2021; 25
Kaveh, Tavakkoli-Moghaddam, Triki, Rahimi, Jamili (b0070) 2021; 296
Weifeng, Gary, Sanyang (b0190) 2013; 44
(Vol. 4, pp. 1942-1948).
Wu, Che (b0195) 2020; 94
Xu, Zhang, Ma (b0215) 2016; 33
Ishibuchi, H., Akedo, N., & Nojima, Y. (2011). A many-objective test problem for visually examining diversity maintenance behavior in a decision space. In
Gao, Li, Zhang, Luo, Wang (b0030) 2021; 51
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In
Srivastava, Singh, Mallipeddi (b0170) 2021; 176
Gu, Wang, Li, Li (b0040) 2021; 223
Gu, Liu, Chen, Xiong (b0035) 2022; 189
(Vol. 2, pp. 1671-1676).
Xiaofeng, Xiaoping (b0210) 2015; 29
Zhang, Sun, Ren, Li, Wang, Jia (b0225) 2018; 48
Li, Zou, Yang, Zheng (b0095) 2021; 574
Schuetze, Vasile, Coello Coello (b0155) 2011; 8
Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In
(pp. 649–656). Dublin, Ireland: Association for Computing Machinery.
Wu, Wu, Liu (b0200) 2019; 74
Mendes, Angelo, Maia, Veloso (b0125) 2016; 14
Kennedy, J., & Mendes, R. (2002). Population structure and particle swarm performance. In
(pp. 47-61). Berlin, Heidelberg: Springer Berlin Heidelberg.
Qu, Suganthan, Das (b0135) 2013; 17
Zou, Deng, Zheng, Yang (b0250) 2020; 519
Liu, Zhang, Tu (b0110) 2020; 152
Tian, Zhao, Shi (b0180) 2019; 7
(Vol. 3, pp. 1958-1962 Vol. 1953).
Coello, Pulido, Lechuga (b0010) 2004; 8
Li, Wood (b0090) 2009
Pal, Bandyopadhyay (b0130) 2021; 62
Zhou, Hu, Zhou, Yuan (b0245) 2021; 100
Liang, Yue, Qu (b0105) 2016
Gu, Wang, Xiong, Jiang, Chen (b0045) 2021
Selçuk, Henri (b0160) 2013; 40
Liang, Xu, Yue, Yu, Song, Crisalle, Qu (b0100) 2019; 44
Zhang, Liu, Tu (b0235) 2020; 95
Yue, Qu, Liang (b0220) 2018; 22
Ren, Shen, Jia (b0145) 2021; 77
Das, Jena (b0015) 2020; 92
Kushwaha, Pant (b0085) 2019; 78
Lu, Sun, Cheng, Shi (b0120) 2021; 13
Xia, Zhuang, Yu (b0205) 2014; 44
Rudolph, Naujoks, Preuss (b0150) 2007
Wang, Zhan, Lin, Yu, Wang, Kwong, Zhang (b0185) 2020; 24
Benjamin, Daniel, Francisco (b0005) 2016; 367
Qu, Xie, Li, Liu, Qiao (b0140) 2018; 29
Zhang, Li, Zhang, Liang, Yen (b0230) 2019; 50
Liu, Yen, Gong (b0115) 2019; 23
Dowlatshahi, Derhami, Nezamabadi-pour (b0025) 2020; 17
Deb, K., & Tiwari, S. (2005). Omni-optimizer: A procedure for single and multi-objective optimization. In C. A. Coello Coello, A. Hernández Aguirre & E. Zitzler (Eds.)
(pp. 69-73).
Suganthan, P. N. (1999). Particle swarm optimiser with neighbourhood operator. In
Zhou, Zhang, Jin (b0240) 2009; 13
Benjamin (10.1016/j.eswa.2022.117713_b0005) 2016; 367
Wu (10.1016/j.eswa.2022.117713_b0200) 2019; 74
10.1016/j.eswa.2022.117713_b0175
Liang (10.1016/j.eswa.2022.117713_b0105) 2016
10.1016/j.eswa.2022.117713_b0050
Selçuk (10.1016/j.eswa.2022.117713_b0160) 2013; 40
Zou (10.1016/j.eswa.2022.117713_b0250) 2020; 519
Ren (10.1016/j.eswa.2022.117713_b0145) 2021; 77
Yue (10.1016/j.eswa.2022.117713_b0220) 2018; 22
Coello (10.1016/j.eswa.2022.117713_b0010) 2004; 8
Wu (10.1016/j.eswa.2022.117713_b0195) 2020; 94
Gu (10.1016/j.eswa.2022.117713_b0040) 2021; 223
Qu (10.1016/j.eswa.2022.117713_b0135) 2013; 17
Pal (10.1016/j.eswa.2022.117713_b0130) 2021; 62
Weifeng (10.1016/j.eswa.2022.117713_b0190) 2013; 44
Jha (10.1016/j.eswa.2022.117713_b0055) 2021; 98
Gu (10.1016/j.eswa.2022.117713_b0045) 2021
Karimi (10.1016/j.eswa.2022.117713_b0065) 2020; 146
10.1016/j.eswa.2022.117713_b0080
Liu (10.1016/j.eswa.2022.117713_b0110) 2020; 152
10.1016/j.eswa.2022.117713_b0165
Zhang (10.1016/j.eswa.2022.117713_b0230) 2019; 50
Gao (10.1016/j.eswa.2022.117713_b0030) 2021; 51
Xu (10.1016/j.eswa.2022.117713_b0215) 2016; 33
Wang (10.1016/j.eswa.2022.117713_b0185) 2020; 24
Zhang (10.1016/j.eswa.2022.117713_b0235) 2020; 95
Tian (10.1016/j.eswa.2022.117713_b0180) 2019; 7
Zhang (10.1016/j.eswa.2022.117713_b0225) 2018; 48
Rudolph (10.1016/j.eswa.2022.117713_b0150) 2007
Li (10.1016/j.eswa.2022.117713_b0095) 2021; 574
Das (10.1016/j.eswa.2022.117713_b0015) 2020; 92
10.1016/j.eswa.2022.117713_b0075
Ji (10.1016/j.eswa.2022.117713_b0060) 2021; 25
Lu (10.1016/j.eswa.2022.117713_b0120) 2021; 13
Xia (10.1016/j.eswa.2022.117713_b0205) 2014; 44
Xiaofeng (10.1016/j.eswa.2022.117713_b0210) 2015; 29
Liu (10.1016/j.eswa.2022.117713_b0115) 2019; 23
Schuetze (10.1016/j.eswa.2022.117713_b0155) 2011; 8
Qu (10.1016/j.eswa.2022.117713_b0140) 2018; 29
Kaveh (10.1016/j.eswa.2022.117713_b0070) 2021; 296
Kushwaha (10.1016/j.eswa.2022.117713_b0085) 2019; 78
10.1016/j.eswa.2022.117713_b0020
Dowlatshahi (10.1016/j.eswa.2022.117713_b0025) 2020; 17
Zhou (10.1016/j.eswa.2022.117713_b0245) 2021; 100
Li (10.1016/j.eswa.2022.117713_b0090) 2009
Liang (10.1016/j.eswa.2022.117713_b0100) 2019; 44
Zhou (10.1016/j.eswa.2022.117713_b0240) 2009; 13
Mendes (10.1016/j.eswa.2022.117713_b0125) 2016; 14
Srivastava (10.1016/j.eswa.2022.117713_b0170) 2021; 176
Gu (10.1016/j.eswa.2022.117713_b0035) 2022; 189
References_xml – volume: 22
  start-page: 805
  year: 2018
  end-page: 817
  ident: b0220
  article-title: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 33
  start-page: 134
  year: 2016
  end-page: 138
  ident: b0215
  article-title: A new particle swarm optimization algorithm with balancing local and global search ability
  publication-title: Microelectronics & Computer
– volume: 7
  start-page: 124008
  year: 2019
  end-page: 124025
  ident: b0180
  article-title: DMPSO: Diversity-guided multi-mutation particle swarm optimizer
  publication-title: IEEE Access
– reference: (pp. 649–656). Dublin, Ireland: Association for Computing Machinery.
– volume: 51
  start-page: 5652
  year: 2021
  end-page: 5663
  ident: b0030
  article-title: Solving nonlinear equation systems by a two-phase evolutionary algorithm
  publication-title: Ieee Transactions on Systems Man Cybernetics-Systems
– reference: (Vol. 2, pp. 1671-1676).
– volume: 23
  start-page: 660
  year: 2019
  end-page: 674
  ident: b0115
  article-title: A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 14
  start-page: 1329
  year: 2016
  end-page: 1334
  ident: b0125
  article-title: A hybrid multiobjective evolutionary algorithm for truck dispatching in open-pit-mining
  publication-title: IEEE Latin America Transactions
– volume: 100
  year: 2021
  ident: b0245
  article-title: A novel grey prediction evolution algorithm for multimodal multiobjective optimization
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 296
  start-page: 131
  year: 2021
  end-page: 162
  ident: b0070
  article-title: A new bi-objective model of the urban public transportation hub network design under uncertainty
  publication-title: Annals of Operations Research
– volume: 8
  start-page: 53
  year: 2011
  end-page: 70
  ident: b0155
  article-title: Computing the set of Epsilon-efficient solutions in multiobjective space mission design
  publication-title: Journal of Aerospace Computing, Information, and Communication
– volume: 98
  year: 2021
  ident: b0055
  article-title: Incorporation of multimodal multiobjective optimization in designing a filter based feature selection technique
  publication-title: Applied Soft Computing
– volume: 189
  year: 2022
  ident: b0035
  article-title: An improved competitive particle swarm optimization for many-objective optimization problems
  publication-title: Expert Systems with Applications
– volume: 176
  year: 2021
  ident: b0170
  article-title: NSGA-II with objective-specific variation operators for multiobjective vehicle routing problem with time windows
  publication-title: Expert Systems with Applications
– volume: 24
  start-page: 114
  year: 2020
  end-page: 128
  ident: b0185
  article-title: Automatic niching differential evolution with contour prediction approach for multimodal optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 29
  start-page: 195
  year: 2015
  end-page: 207
  ident: b0210
  article-title: A fully and discriminatorily informed particle swarm optimization with different sharing strategies for superior and inferior information
  publication-title: Journal of Intelligent & Fuzzy Systems
– volume: 13
  start-page: 341
  year: 2021
  end-page: 357
  ident: b0120
  article-title: An adaptive niching method based on multi-strategy fusion for multimodal optimization
  publication-title: Memetic Computing
– volume: 13
  start-page: 1167
  year: 2009
  end-page: 1189
  ident: b0240
  article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 8
  start-page: 256
  year: 2004
  end-page: 279
  ident: b0010
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 40
  start-page: 1979
  year: 2013
  end-page: 1990
  ident: b0160
  article-title: Taking advantage of a diverse set of efficient production schedules: A two-step approach for scheduling with side concerns
  publication-title: Computers & Operations Research
– volume: 25
  start-page: 794
  year: 2021
  end-page: 808
  ident: b0060
  article-title: Dual-surrogate-assisted cooperative particle swarm optimization for expensive multimodal problems
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: (Vol. 4, pp. 1942-1948).
– reference: Suganthan, P. N. (1999). Particle swarm optimiser with neighbourhood operator. In
– volume: 17
  start-page: 7
  year: 2020
  end-page: 24
  ident: b0025
  article-title: Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization
  publication-title: Iranian Journal of Fuzzy Systems
– volume: 62
  year: 2021
  ident: b0130
  article-title: Decomposition in decision and objective space for multi-modal multi-objective optimization
  publication-title: Swarm and Evolutionary Computation
– reference: Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In
– reference: Kennedy, J., & Mendes, R. (2002). Population structure and particle swarm performance. In
– volume: 519
  start-page: 332
  year: 2020
  end-page: 347
  ident: b0250
  article-title: A close neighbor mobility method using particle swarm optimizer for solving multimodal optimization problems
  publication-title: Information Sciences
– volume: 92
  year: 2020
  ident: b0015
  article-title: Multi-robot path planning using improved particle swarm optimization algorithm through novel evolutionary operators
  publication-title: Applied Soft Computing
– reference: (pp. 47-61). Berlin, Heidelberg: Springer Berlin Heidelberg.
– volume: 574
  start-page: 413
  year: 2021
  end-page: 430
  ident: b0095
  article-title: A two-archive algorithm with decomposition and fitness allocation for multi-modal multi-objective optimization
  publication-title: Information Sciences
– volume: 146
  year: 2020
  ident: b0065
  article-title: Multiplex community detection in complex networks using an evolutionary approach
  publication-title: Expert Systems with Applications
– volume: 223
  year: 2021
  ident: b0040
  article-title: A surrogate-assisted multi-objective particle swarm optimization of expensive constrained combinatorial optimization problems
  publication-title: Knowledge-Based Systems
– volume: 74
  start-page: 440
  year: 2019
  end-page: 450
  ident: b0200
  article-title: Couple-based particle swarm optimization for short-term hydrothermal scheduling
  publication-title: Applied Soft Computing
– start-page: 2454
  year: 2016
  end-page: 2461
  ident: b0105
  article-title: Multimodal multi-objective optimization: A preliminary study
  publication-title: In
– volume: 94
  year: 2020
  ident: b0195
  article-title: Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search.
  publication-title: Management Science
– start-page: 3164
  year: 2009
  end-page: 3171
  ident: b0090
  article-title: Random search with species conservation for multimodal functions
  publication-title: In
– reference: (Vol. 3, pp. 1958-1962 Vol. 1953).
– volume: 44
  start-page: 1314
  year: 2013
  end-page: 1327
  ident: b0190
  article-title: A cluster-based differential evolution with self-adaptive strategy for multimodal optimization
  publication-title: IEEE Transactions on Cybernetics
– volume: 152
  year: 2020
  ident: b0110
  article-title: A modified particle swarm optimization using adaptive strategy
  publication-title: Expert Systems with Applications
– volume: 29
  start-page: 70
  year: 2018
  end-page: 76
  ident: b0140
  article-title: Particle swarm optimization algorithm based on multi-modal optimization problem
  publication-title: Journal of Zhongyuan University of Technology
– volume: 78
  start-page: 23917
  year: 2019
  end-page: 23947
  ident: b0085
  article-title: Modified particle swarm optimization for multimodal functions and its application
  publication-title: Multimedia Tools and Applications
– reference: Deb, K., & Tiwari, S. (2005). Omni-optimizer: A procedure for single and multi-objective optimization. In C. A. Coello Coello, A. Hernández Aguirre & E. Zitzler (Eds.),
– start-page: 36
  year: 2007
  end-page: 50
  ident: b0150
  article-title: Capabilities of EMOA to detect and preserve equivalent Pareto subsets
  publication-title: Evolutionary Multi-Criterion Optimization
– volume: 17
  start-page: 387
  year: 2013
  end-page: 402
  ident: b0135
  article-title: A distance-based locally informed particle swarm model for multimodal optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 77
  start-page: 10850
  year: 2021
  end-page: 10895
  ident: b0145
  article-title: A novel dual-biological-community swarm intelligence algorithm with a commensal evolution strategy for multimodal problems
  publication-title: Journal of Supercomputing
– volume: 44
  start-page: 378
  year: 2014
  end-page: 393
  ident: b0205
  article-title: Combining crowding estimation in objective and decision space with multiple selection and search strategies for multi-objective evolutionary optimization
  publication-title: IEEE Transactions on Cybernetics
– volume: 44
  start-page: 1028
  year: 2019
  end-page: 1059
  ident: b0100
  article-title: Multimodal multiobjective optimization with differential evolution
  publication-title: Swarm and Evolutionary Computation
– volume: 48
  start-page: 436
  year: 2018
  end-page: 447
  ident: b0225
  article-title: A dynamic neighborhood learning-based gravitational search algorithm
  publication-title: IEEE Transactions on Cybernetics
– reference: (pp. 69-73).
– volume: 367
  start-page: 719
  year: 2016
  end-page: 746
  ident: b0005
  article-title: Region-based memetic algorithm with archive for multimodal optimisation
  publication-title: Information Sciences
– reference: Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In
– year: 2021
  ident: b0045
  article-title: Surrogate-assisted evolutionary algorithm for expensive constrained multi-objective discrete optimization problems
  publication-title: Complex & Intelligent Systems.
– volume: 50
  year: 2019
  ident: b0230
  article-title: A cluster based PSO with leader updating mechanism and ring-topology for multimodal multi-objective optimization
  publication-title: Swarm and Evolutionary Computation
– reference: Ishibuchi, H., Akedo, N., & Nojima, Y. (2011). A many-objective test problem for visually examining diversity maintenance behavior in a decision space. In
– volume: 95
  year: 2020
  ident: b0235
  article-title: A modified particle swarm optimization for multimodal multi-objective optimization
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 8
  start-page: 53
  year: 2011
  ident: 10.1016/j.eswa.2022.117713_b0155
  article-title: Computing the set of Epsilon-efficient solutions in multiobjective space mission design
  publication-title: Journal of Aerospace Computing, Information, and Communication
  doi: 10.2514/1.46478
– volume: 29
  start-page: 70
  year: 2018
  ident: 10.1016/j.eswa.2022.117713_b0140
  article-title: Particle swarm optimization algorithm based on multi-modal optimization problem
  publication-title: Journal of Zhongyuan University of Technology
– volume: 25
  start-page: 794
  year: 2021
  ident: 10.1016/j.eswa.2022.117713_b0060
  article-title: Dual-surrogate-assisted cooperative particle swarm optimization for expensive multimodal problems
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2021.3064835
– volume: 17
  start-page: 7
  year: 2020
  ident: 10.1016/j.eswa.2022.117713_b0025
  article-title: Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization
  publication-title: Iranian Journal of Fuzzy Systems
– volume: 24
  start-page: 114
  year: 2020
  ident: 10.1016/j.eswa.2022.117713_b0185
  article-title: Automatic niching differential evolution with contour prediction approach for multimodal optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2019.2910721
– volume: 574
  start-page: 413
  year: 2021
  ident: 10.1016/j.eswa.2022.117713_b0095
  article-title: A two-archive algorithm with decomposition and fitness allocation for multi-modal multi-objective optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.05.075
– volume: 17
  start-page: 387
  year: 2013
  ident: 10.1016/j.eswa.2022.117713_b0135
  article-title: A distance-based locally informed particle swarm model for multimodal optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2012.2203138
– year: 2021
  ident: 10.1016/j.eswa.2022.117713_b0045
  article-title: Surrogate-assisted evolutionary algorithm for expensive constrained multi-objective discrete optimization problems
  publication-title: Complex & Intelligent Systems.
– volume: 152
  year: 2020
  ident: 10.1016/j.eswa.2022.117713_b0110
  article-title: A modified particle swarm optimization using adaptive strategy
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113353
– volume: 51
  start-page: 5652
  year: 2021
  ident: 10.1016/j.eswa.2022.117713_b0030
  article-title: Solving nonlinear equation systems by a two-phase evolutionary algorithm
  publication-title: Ieee Transactions on Systems Man Cybernetics-Systems
  doi: 10.1109/TSMC.2019.2957324
– start-page: 2454
  year: 2016
  ident: 10.1016/j.eswa.2022.117713_b0105
  article-title: Multimodal multi-objective optimization: A preliminary study
– volume: 100
  year: 2021
  ident: 10.1016/j.eswa.2022.117713_b0245
  article-title: A novel grey prediction evolution algorithm for multimodal multiobjective optimization
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2021.104173
– volume: 95
  year: 2020
  ident: 10.1016/j.eswa.2022.117713_b0235
  article-title: A modified particle swarm optimization for multimodal multi-objective optimization
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.103905
– start-page: 36
  year: 2007
  ident: 10.1016/j.eswa.2022.117713_b0150
  article-title: Capabilities of EMOA to detect and preserve equivalent Pareto subsets
– volume: 29
  start-page: 195
  year: 2015
  ident: 10.1016/j.eswa.2022.117713_b0210
  article-title: A fully and discriminatorily informed particle swarm optimization with different sharing strategies for superior and inferior information
  publication-title: Journal of Intelligent & Fuzzy Systems
– volume: 92
  year: 2020
  ident: 10.1016/j.eswa.2022.117713_b0015
  article-title: Multi-robot path planning using improved particle swarm optimization algorithm through novel evolutionary operators
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106312
– volume: 44
  start-page: 1314
  year: 2013
  ident: 10.1016/j.eswa.2022.117713_b0190
  article-title: A cluster-based differential evolution with self-adaptive strategy for multimodal optimization
  publication-title: IEEE Transactions on Cybernetics
– ident: 10.1016/j.eswa.2022.117713_b0165
  doi: 10.1109/ICEC.1998.699146
– volume: 48
  start-page: 436
  year: 2018
  ident: 10.1016/j.eswa.2022.117713_b0225
  article-title: A dynamic neighborhood learning-based gravitational search algorithm
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2016.2641986
– volume: 176
  year: 2021
  ident: 10.1016/j.eswa.2022.117713_b0170
  article-title: NSGA-II with objective-specific variation operators for multiobjective vehicle routing problem with time windows
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.114779
– volume: 13
  start-page: 1167
  year: 2009
  ident: 10.1016/j.eswa.2022.117713_b0240
  article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2009.2021467
– volume: 23
  start-page: 660
  year: 2019
  ident: 10.1016/j.eswa.2022.117713_b0115
  article-title: A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2018.2879406
– volume: 189
  year: 2022
  ident: 10.1016/j.eswa.2022.117713_b0035
  article-title: An improved competitive particle swarm optimization for many-objective optimization problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.116118
– volume: 14
  start-page: 1329
  year: 2016
  ident: 10.1016/j.eswa.2022.117713_b0125
  article-title: A hybrid multiobjective evolutionary algorithm for truck dispatching in open-pit-mining
  publication-title: IEEE Latin America Transactions
  doi: 10.1109/TLA.2016.7459617
– volume: 8
  start-page: 256
  year: 2004
  ident: 10.1016/j.eswa.2022.117713_b0010
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.826067
– volume: 44
  start-page: 1028
  year: 2019
  ident: 10.1016/j.eswa.2022.117713_b0100
  article-title: Multimodal multiobjective optimization with differential evolution
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2018.10.016
– volume: 74
  start-page: 440
  year: 2019
  ident: 10.1016/j.eswa.2022.117713_b0200
  article-title: Couple-based particle swarm optimization for short-term hydrothermal scheduling
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.10.041
– volume: 33
  start-page: 134
  year: 2016
  ident: 10.1016/j.eswa.2022.117713_b0215
  article-title: A new particle swarm optimization algorithm with balancing local and global search ability
  publication-title: Microelectronics & Computer
– volume: 13
  start-page: 341
  year: 2021
  ident: 10.1016/j.eswa.2022.117713_b0120
  article-title: An adaptive niching method based on multi-strategy fusion for multimodal optimization
  publication-title: Memetic Computing
  doi: 10.1007/s12293-021-00338-5
– volume: 296
  start-page: 131
  year: 2021
  ident: 10.1016/j.eswa.2022.117713_b0070
  article-title: A new bi-objective model of the urban public transportation hub network design under uncertainty
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-019-03430-9
– volume: 44
  start-page: 378
  year: 2014
  ident: 10.1016/j.eswa.2022.117713_b0205
  article-title: Combining crowding estimation in objective and decision space with multiple selection and search strategies for multi-objective evolutionary optimization
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2013.2256418
– volume: 367
  start-page: 719
  year: 2016
  ident: 10.1016/j.eswa.2022.117713_b0005
  article-title: Region-based memetic algorithm with archive for multimodal optimisation
  publication-title: Information Sciences
– volume: 62
  year: 2021
  ident: 10.1016/j.eswa.2022.117713_b0130
  article-title: Decomposition in decision and objective space for multi-modal multi-objective optimization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2021.100842
– ident: 10.1016/j.eswa.2022.117713_b0080
  doi: 10.1109/CEC.2002.1004493
– ident: 10.1016/j.eswa.2022.117713_b0050
  doi: 10.1145/2001576.2001666
– volume: 98
  year: 2021
  ident: 10.1016/j.eswa.2022.117713_b0055
  article-title: Incorporation of multimodal multiobjective optimization in designing a filter based feature selection technique
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106823
– ident: 10.1016/j.eswa.2022.117713_b0075
  doi: 10.1109/ICNN.1995.488968
– volume: 77
  start-page: 10850
  year: 2021
  ident: 10.1016/j.eswa.2022.117713_b0145
  article-title: A novel dual-biological-community swarm intelligence algorithm with a commensal evolution strategy for multimodal problems
  publication-title: Journal of Supercomputing
  doi: 10.1007/s11227-021-03721-8
– ident: 10.1016/j.eswa.2022.117713_b0175
  doi: 10.1109/CEC.1999.785514
– volume: 7
  start-page: 124008
  year: 2019
  ident: 10.1016/j.eswa.2022.117713_b0180
  article-title: DMPSO: Diversity-guided multi-mutation particle swarm optimizer
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2938063
– volume: 519
  start-page: 332
  year: 2020
  ident: 10.1016/j.eswa.2022.117713_b0250
  article-title: A close neighbor mobility method using particle swarm optimizer for solving multimodal optimization problems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.01.049
– start-page: 3164
  year: 2009
  ident: 10.1016/j.eswa.2022.117713_b0090
  article-title: Random search with species conservation for multimodal functions
– volume: 50
  year: 2019
  ident: 10.1016/j.eswa.2022.117713_b0230
  article-title: A cluster based PSO with leader updating mechanism and ring-topology for multimodal multi-objective optimization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2019.100569
– volume: 22
  start-page: 805
  year: 2018
  ident: 10.1016/j.eswa.2022.117713_b0220
  article-title: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2017.2754271
– volume: 78
  start-page: 23917
  year: 2019
  ident: 10.1016/j.eswa.2022.117713_b0085
  article-title: Modified particle swarm optimization for multimodal functions and its application
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-018-6324-7
– volume: 146
  year: 2020
  ident: 10.1016/j.eswa.2022.117713_b0065
  article-title: Multiplex community detection in complex networks using an evolutionary approach
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113184
– volume: 223
  year: 2021
  ident: 10.1016/j.eswa.2022.117713_b0040
  article-title: A surrogate-assisted multi-objective particle swarm optimization of expensive constrained combinatorial optimization problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107049
– volume: 40
  start-page: 1979
  year: 2013
  ident: 10.1016/j.eswa.2022.117713_b0160
  article-title: Taking advantage of a diverse set of efficient production schedules: A two-step approach for scheduling with side concerns
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2013.02.016
– volume: 94
  year: 2020
  ident: 10.1016/j.eswa.2022.117713_b0195
  article-title: Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search. Omega-International Journal of
  publication-title: Management Science
– ident: 10.1016/j.eswa.2022.117713_b0020
  doi: 10.1007/978-3-540-31880-4_4
SSID ssj0017007
Score 2.4890153
Snippet •The purpose of this study is to solve multi-modal multi-objective problems.•Using the adaptive parameter adjustment strategy to extend the search space.•The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 117713
SubjectTerms Adaptive parameters
Dynamic neighborhood
Multi-modal multi-objective problem
Mutation operator
Particle swarm optimization
Title A dynamic neighborhood balancing-based multi-objective particle swarm optimization for multi-modal problems
URI https://dx.doi.org/10.1016/j.eswa.2022.117713
Volume 205
WOSCitedRecordID wos000832957100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeqjgMXYHyI8TH5wC1yFcdJ7ByraQimamJioN6iOHZh3ZpUbTN24X_nObbTrEMTIHGJIiuOLb-fnp-f3-89hN6BSKVKeElUnJYEzhszIguqCEt5PBM6orot2vd1wk9PxXSafRoMfnouzPUVrypxc5Mt_6uooQ2EbaizfyHu7qfQAO8gdHiC2OH5R4IfB8pWmQ8q4_YEGbeZi6WJYSxhoyJm41I2kpDUcm41XrB0vwrWP4rVIqhBlSwcR7MNRbTfL2plqFu2Cs36llvf5EzeuMzQnjPXux3vAn0aI9UzmMj3ZrslOK_1WQ-sR443Mml8y6SNPJheFPW3pnA7rnNYwFmX3nJYdEyabdiSdUdyElNbsWekrTIWnJGU2wqKXltHLUv7rua3Toj5SMMqjcyw7XW05bnuZNT-bAYzY0UmFKDNJrsX8SQTQ7Q3_ng8PemuoXho-fZ-co51ZQMEd0f6vWXTs1bOn6BH7piBx1am-2igq6fosS_hgZ1Gf4Yux9ihBffRgnfQgnfQgj1acIsW3EcLBrTgHlqwR8tz9OX98fnRB-Lqb5CSheGGSKrMpXtZiCJixo-gJRey4FTTcGbKNklGU005U3CIzXSoZlHJdKJ4ygsqwU58gYZVXemXCEsqNYsk00WaxQmLM8mZ0GDegn0teJkdIOrXLi9dcnpTI-Uq91GI89ysd27WO7frfYCCrs_Spma59-vEiyR3xqU1GnNA0D39Xv1jv9fo4Rb8b9Bws2r0W_SgvN5crFeHDmi_AOCCoiY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+neighborhood+balancing-based+multi-objective+particle+swarm+optimization+for+multi-modal+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Gu%2C+Qinghua&rft.au=Wang%2C+Qian&rft.au=Chen%2C+Lu&rft.au=Li%2C+Xiaoguang&rft.date=2022-11-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=205&rft_id=info:doi/10.1016%2Fj.eswa.2022.117713&rft.externalDocID=S0957417422010004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon