A dynamic neighborhood balancing-based multi-objective particle swarm optimization for multi-modal problems
•The purpose of this study is to solve multi-modal multi-objective problems.•Using the adaptive parameter adjustment strategy to extend the search space.•The dynamic neighborhood forming strategy can exchange the information between particles in time.•The mutation operator is embedded to make the pa...
Gespeichert in:
| Veröffentlicht in: | Expert systems with applications Jg. 205; S. 117713 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.11.2022
|
| Schlagworte: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •The purpose of this study is to solve multi-modal multi-objective problems.•Using the adaptive parameter adjustment strategy to extend the search space.•The dynamic neighborhood forming strategy can exchange the information between particles in time.•The mutation operator is embedded to make the particle jump out of the local optimum.
To solve the multi-modal multi-objective optimization problems which may have two or more Pareto-optimal solutions with the same fitness value, a new multi-objective particle swarm optimizer with a dynamic neighborhood balancing mechanism (DNB-MOPSO) is proposed in this paper. First, an adaptive parameter adjustment strategy is developed to balance the local and global search, which takes the difference among niches into consideration. Second, according to evolutionary states, a mutation operator is alternatively utilized to construct new solutions for escaping from the local optima. Then, combined with current niching methods, the dynamic neighborhood reform strategy of non-overlapping regions is properly implemented, which can enhance the exploration and keep the population diversity in the decision space. To validate the effectiveness of the proposed algorithm, DNB-MOPSO is compared with the other five popular multi-objective optimization algorithms. It is also applied to solve a real-world problem. The experimental results show the superiority of the proposed algorithm, especially in locating more optimal solutions in the decision space while obtaining the well-distributed Pareto fronts. |
|---|---|
| AbstractList | •The purpose of this study is to solve multi-modal multi-objective problems.•Using the adaptive parameter adjustment strategy to extend the search space.•The dynamic neighborhood forming strategy can exchange the information between particles in time.•The mutation operator is embedded to make the particle jump out of the local optimum.
To solve the multi-modal multi-objective optimization problems which may have two or more Pareto-optimal solutions with the same fitness value, a new multi-objective particle swarm optimizer with a dynamic neighborhood balancing mechanism (DNB-MOPSO) is proposed in this paper. First, an adaptive parameter adjustment strategy is developed to balance the local and global search, which takes the difference among niches into consideration. Second, according to evolutionary states, a mutation operator is alternatively utilized to construct new solutions for escaping from the local optima. Then, combined with current niching methods, the dynamic neighborhood reform strategy of non-overlapping regions is properly implemented, which can enhance the exploration and keep the population diversity in the decision space. To validate the effectiveness of the proposed algorithm, DNB-MOPSO is compared with the other five popular multi-objective optimization algorithms. It is also applied to solve a real-world problem. The experimental results show the superiority of the proposed algorithm, especially in locating more optimal solutions in the decision space while obtaining the well-distributed Pareto fronts. |
| ArticleNumber | 117713 |
| Author | Wang, Qian Chen, Lu Gu, Qinghua Li, Xuexian Li, Xiaoguang |
| Author_xml | – sequence: 1 givenname: Qinghua surname: Gu fullname: Gu, Qinghua email: qinghuagu@126.com organization: School of Management, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China – sequence: 2 givenname: Qian surname: Wang fullname: Wang, Qian organization: School of Management, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China – sequence: 3 givenname: Lu surname: Chen fullname: Chen, Lu email: chenlu@xauat.edu.cn organization: School of Management, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China – sequence: 4 givenname: Xiaoguang surname: Li fullname: Li, Xiaoguang organization: School of Management, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China – sequence: 5 givenname: Xuexian surname: Li fullname: Li, Xuexian organization: School of Management, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China |
| BookMark | eNp9kMtOwzAQRS1UJNrCD7DyD6R47CRuJDZVxUtCYgNry49J65LElR2KyteT0q5YdDWbe2bunAkZdaFDQm6BzYBBebeZYfrWM844nwFICeKCjGEuRVbKSozImFWFzHKQ-RWZpLRhDCRjckw-F9TtO916Szv0q7UJcR2Co0Y3urO-W2VGJ3S0_Wp6nwWzQdv7HdKtjr23DdLhbGxp2Pa-9T-696GjdYinfBucbug2BtNgm67JZa2bhDenOSUfjw_vy-fs9e3pZbl4zaxgrM8MuLKouNVzzUWRVxUaOTdaAgKrWVGVRkCJIIUrc14hczW3AgsnS6nBlCCmZH7ca2NIKWKtrO__qvVR-0YBUwdpaqMO0tRBmjpKG1D-D91G3-q4Pw_dHyEcntp5jCpZj51F5-OgS7ngz-G_X1CKaw |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2025_101890 crossref_primary_10_1007_s00500_023_09157_x crossref_primary_10_1016_j_asoc_2025_113895 crossref_primary_10_1016_j_engstruct_2025_121261 crossref_primary_10_1016_j_future_2025_108076 crossref_primary_10_3390_s23187710 crossref_primary_10_1016_j_asoc_2023_111226 crossref_primary_10_1088_1742_6596_3067_1_012010 crossref_primary_10_1016_j_conbuildmat_2023_132178 crossref_primary_10_1016_j_eswa_2023_120642 crossref_primary_10_1007_s00521_023_09018_6 crossref_primary_10_1016_j_engappai_2024_108040 crossref_primary_10_1016_j_swevo_2023_101257 crossref_primary_10_3390_app13137755 |
| Cites_doi | 10.2514/1.46478 10.1109/TEVC.2021.3064835 10.1109/TEVC.2019.2910721 10.1016/j.ins.2021.05.075 10.1109/TEVC.2012.2203138 10.1016/j.eswa.2020.113353 10.1109/TSMC.2019.2957324 10.1016/j.engappai.2021.104173 10.1016/j.engappai.2020.103905 10.1016/j.asoc.2020.106312 10.1109/ICEC.1998.699146 10.1109/TCYB.2016.2641986 10.1016/j.eswa.2021.114779 10.1109/TEVC.2009.2021467 10.1109/TEVC.2018.2879406 10.1016/j.eswa.2021.116118 10.1109/TLA.2016.7459617 10.1109/TEVC.2004.826067 10.1016/j.swevo.2018.10.016 10.1016/j.asoc.2018.10.041 10.1007/s12293-021-00338-5 10.1007/s10479-019-03430-9 10.1109/TCYB.2013.2256418 10.1016/j.swevo.2021.100842 10.1109/CEC.2002.1004493 10.1145/2001576.2001666 10.1016/j.asoc.2020.106823 10.1109/ICNN.1995.488968 10.1007/s11227-021-03721-8 10.1109/CEC.1999.785514 10.1109/ACCESS.2019.2938063 10.1016/j.ins.2020.01.049 10.1016/j.swevo.2019.100569 10.1109/TEVC.2017.2754271 10.1007/s11042-018-6324-7 10.1016/j.eswa.2020.113184 10.1016/j.knosys.2021.107049 10.1016/j.cor.2013.02.016 10.1007/978-3-540-31880-4_4 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2022.117713 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2022_117713 S0957417422010004 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c300t-b1d6592ca8a235499eb78ba71e10f0596b316e173d6429e0df2c3e5d767a1b613 |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000832957100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Tue Nov 18 22:23:53 EST 2025 Sat Nov 29 07:05:34 EST 2025 Fri Feb 23 02:38:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dynamic neighborhood Mutation operator Particle swarm optimization Multi-modal multi-objective problem Adaptive parameters |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-b1d6592ca8a235499eb78ba71e10f0596b316e173d6429e0df2c3e5d767a1b613 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2022_117713 crossref_primary_10_1016_j_eswa_2022_117713 elsevier_sciencedirect_doi_10_1016_j_eswa_2022_117713 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 2022-11-00 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Karimi, Lotfi, Izadkhah (b0065) 2020; 146 Jha, Saha (b0055) 2021; 98 Ji, Zhang, Gong, Sun (b0060) 2021; 25 Kaveh, Tavakkoli-Moghaddam, Triki, Rahimi, Jamili (b0070) 2021; 296 Weifeng, Gary, Sanyang (b0190) 2013; 44 (Vol. 4, pp. 1942-1948). Wu, Che (b0195) 2020; 94 Xu, Zhang, Ma (b0215) 2016; 33 Ishibuchi, H., Akedo, N., & Nojima, Y. (2011). A many-objective test problem for visually examining diversity maintenance behavior in a decision space. In Gao, Li, Zhang, Luo, Wang (b0030) 2021; 51 Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Srivastava, Singh, Mallipeddi (b0170) 2021; 176 Gu, Wang, Li, Li (b0040) 2021; 223 Gu, Liu, Chen, Xiong (b0035) 2022; 189 (Vol. 2, pp. 1671-1676). Xiaofeng, Xiaoping (b0210) 2015; 29 Zhang, Sun, Ren, Li, Wang, Jia (b0225) 2018; 48 Li, Zou, Yang, Zheng (b0095) 2021; 574 Schuetze, Vasile, Coello Coello (b0155) 2011; 8 Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In (pp. 649–656). Dublin, Ireland: Association for Computing Machinery. Wu, Wu, Liu (b0200) 2019; 74 Mendes, Angelo, Maia, Veloso (b0125) 2016; 14 Kennedy, J., & Mendes, R. (2002). Population structure and particle swarm performance. In (pp. 47-61). Berlin, Heidelberg: Springer Berlin Heidelberg. Qu, Suganthan, Das (b0135) 2013; 17 Zou, Deng, Zheng, Yang (b0250) 2020; 519 Liu, Zhang, Tu (b0110) 2020; 152 Tian, Zhao, Shi (b0180) 2019; 7 (Vol. 3, pp. 1958-1962 Vol. 1953). Coello, Pulido, Lechuga (b0010) 2004; 8 Li, Wood (b0090) 2009 Pal, Bandyopadhyay (b0130) 2021; 62 Zhou, Hu, Zhou, Yuan (b0245) 2021; 100 Liang, Yue, Qu (b0105) 2016 Gu, Wang, Xiong, Jiang, Chen (b0045) 2021 Selçuk, Henri (b0160) 2013; 40 Liang, Xu, Yue, Yu, Song, Crisalle, Qu (b0100) 2019; 44 Zhang, Liu, Tu (b0235) 2020; 95 Yue, Qu, Liang (b0220) 2018; 22 Ren, Shen, Jia (b0145) 2021; 77 Das, Jena (b0015) 2020; 92 Kushwaha, Pant (b0085) 2019; 78 Lu, Sun, Cheng, Shi (b0120) 2021; 13 Xia, Zhuang, Yu (b0205) 2014; 44 Rudolph, Naujoks, Preuss (b0150) 2007 Wang, Zhan, Lin, Yu, Wang, Kwong, Zhang (b0185) 2020; 24 Benjamin, Daniel, Francisco (b0005) 2016; 367 Qu, Xie, Li, Liu, Qiao (b0140) 2018; 29 Zhang, Li, Zhang, Liang, Yen (b0230) 2019; 50 Liu, Yen, Gong (b0115) 2019; 23 Dowlatshahi, Derhami, Nezamabadi-pour (b0025) 2020; 17 Deb, K., & Tiwari, S. (2005). Omni-optimizer: A procedure for single and multi-objective optimization. In C. A. Coello Coello, A. Hernández Aguirre & E. Zitzler (Eds.) (pp. 69-73). Suganthan, P. N. (1999). Particle swarm optimiser with neighbourhood operator. In Zhou, Zhang, Jin (b0240) 2009; 13 Benjamin (10.1016/j.eswa.2022.117713_b0005) 2016; 367 Wu (10.1016/j.eswa.2022.117713_b0200) 2019; 74 10.1016/j.eswa.2022.117713_b0175 Liang (10.1016/j.eswa.2022.117713_b0105) 2016 10.1016/j.eswa.2022.117713_b0050 Selçuk (10.1016/j.eswa.2022.117713_b0160) 2013; 40 Zou (10.1016/j.eswa.2022.117713_b0250) 2020; 519 Ren (10.1016/j.eswa.2022.117713_b0145) 2021; 77 Yue (10.1016/j.eswa.2022.117713_b0220) 2018; 22 Coello (10.1016/j.eswa.2022.117713_b0010) 2004; 8 Wu (10.1016/j.eswa.2022.117713_b0195) 2020; 94 Gu (10.1016/j.eswa.2022.117713_b0040) 2021; 223 Qu (10.1016/j.eswa.2022.117713_b0135) 2013; 17 Pal (10.1016/j.eswa.2022.117713_b0130) 2021; 62 Weifeng (10.1016/j.eswa.2022.117713_b0190) 2013; 44 Jha (10.1016/j.eswa.2022.117713_b0055) 2021; 98 Gu (10.1016/j.eswa.2022.117713_b0045) 2021 Karimi (10.1016/j.eswa.2022.117713_b0065) 2020; 146 10.1016/j.eswa.2022.117713_b0080 Liu (10.1016/j.eswa.2022.117713_b0110) 2020; 152 10.1016/j.eswa.2022.117713_b0165 Zhang (10.1016/j.eswa.2022.117713_b0230) 2019; 50 Gao (10.1016/j.eswa.2022.117713_b0030) 2021; 51 Xu (10.1016/j.eswa.2022.117713_b0215) 2016; 33 Wang (10.1016/j.eswa.2022.117713_b0185) 2020; 24 Zhang (10.1016/j.eswa.2022.117713_b0235) 2020; 95 Tian (10.1016/j.eswa.2022.117713_b0180) 2019; 7 Zhang (10.1016/j.eswa.2022.117713_b0225) 2018; 48 Rudolph (10.1016/j.eswa.2022.117713_b0150) 2007 Li (10.1016/j.eswa.2022.117713_b0095) 2021; 574 Das (10.1016/j.eswa.2022.117713_b0015) 2020; 92 10.1016/j.eswa.2022.117713_b0075 Ji (10.1016/j.eswa.2022.117713_b0060) 2021; 25 Lu (10.1016/j.eswa.2022.117713_b0120) 2021; 13 Xia (10.1016/j.eswa.2022.117713_b0205) 2014; 44 Xiaofeng (10.1016/j.eswa.2022.117713_b0210) 2015; 29 Liu (10.1016/j.eswa.2022.117713_b0115) 2019; 23 Schuetze (10.1016/j.eswa.2022.117713_b0155) 2011; 8 Qu (10.1016/j.eswa.2022.117713_b0140) 2018; 29 Kaveh (10.1016/j.eswa.2022.117713_b0070) 2021; 296 Kushwaha (10.1016/j.eswa.2022.117713_b0085) 2019; 78 10.1016/j.eswa.2022.117713_b0020 Dowlatshahi (10.1016/j.eswa.2022.117713_b0025) 2020; 17 Zhou (10.1016/j.eswa.2022.117713_b0245) 2021; 100 Li (10.1016/j.eswa.2022.117713_b0090) 2009 Liang (10.1016/j.eswa.2022.117713_b0100) 2019; 44 Zhou (10.1016/j.eswa.2022.117713_b0240) 2009; 13 Mendes (10.1016/j.eswa.2022.117713_b0125) 2016; 14 Srivastava (10.1016/j.eswa.2022.117713_b0170) 2021; 176 Gu (10.1016/j.eswa.2022.117713_b0035) 2022; 189 |
| References_xml | – volume: 22 start-page: 805 year: 2018 end-page: 817 ident: b0220 article-title: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems publication-title: IEEE Transactions on Evolutionary Computation – volume: 33 start-page: 134 year: 2016 end-page: 138 ident: b0215 article-title: A new particle swarm optimization algorithm with balancing local and global search ability publication-title: Microelectronics & Computer – volume: 7 start-page: 124008 year: 2019 end-page: 124025 ident: b0180 article-title: DMPSO: Diversity-guided multi-mutation particle swarm optimizer publication-title: IEEE Access – reference: (pp. 649–656). Dublin, Ireland: Association for Computing Machinery. – volume: 51 start-page: 5652 year: 2021 end-page: 5663 ident: b0030 article-title: Solving nonlinear equation systems by a two-phase evolutionary algorithm publication-title: Ieee Transactions on Systems Man Cybernetics-Systems – reference: (Vol. 2, pp. 1671-1676). – volume: 23 start-page: 660 year: 2019 end-page: 674 ident: b0115 article-title: A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies publication-title: IEEE Transactions on Evolutionary Computation – volume: 14 start-page: 1329 year: 2016 end-page: 1334 ident: b0125 article-title: A hybrid multiobjective evolutionary algorithm for truck dispatching in open-pit-mining publication-title: IEEE Latin America Transactions – volume: 100 year: 2021 ident: b0245 article-title: A novel grey prediction evolution algorithm for multimodal multiobjective optimization publication-title: Engineering Applications of Artificial Intelligence – volume: 296 start-page: 131 year: 2021 end-page: 162 ident: b0070 article-title: A new bi-objective model of the urban public transportation hub network design under uncertainty publication-title: Annals of Operations Research – volume: 8 start-page: 53 year: 2011 end-page: 70 ident: b0155 article-title: Computing the set of Epsilon-efficient solutions in multiobjective space mission design publication-title: Journal of Aerospace Computing, Information, and Communication – volume: 98 year: 2021 ident: b0055 article-title: Incorporation of multimodal multiobjective optimization in designing a filter based feature selection technique publication-title: Applied Soft Computing – volume: 189 year: 2022 ident: b0035 article-title: An improved competitive particle swarm optimization for many-objective optimization problems publication-title: Expert Systems with Applications – volume: 176 year: 2021 ident: b0170 article-title: NSGA-II with objective-specific variation operators for multiobjective vehicle routing problem with time windows publication-title: Expert Systems with Applications – volume: 24 start-page: 114 year: 2020 end-page: 128 ident: b0185 article-title: Automatic niching differential evolution with contour prediction approach for multimodal optimization problems publication-title: IEEE Transactions on Evolutionary Computation – volume: 29 start-page: 195 year: 2015 end-page: 207 ident: b0210 article-title: A fully and discriminatorily informed particle swarm optimization with different sharing strategies for superior and inferior information publication-title: Journal of Intelligent & Fuzzy Systems – volume: 13 start-page: 341 year: 2021 end-page: 357 ident: b0120 article-title: An adaptive niching method based on multi-strategy fusion for multimodal optimization publication-title: Memetic Computing – volume: 13 start-page: 1167 year: 2009 end-page: 1189 ident: b0240 article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm publication-title: IEEE Transactions on Evolutionary Computation – volume: 8 start-page: 256 year: 2004 end-page: 279 ident: b0010 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 40 start-page: 1979 year: 2013 end-page: 1990 ident: b0160 article-title: Taking advantage of a diverse set of efficient production schedules: A two-step approach for scheduling with side concerns publication-title: Computers & Operations Research – volume: 25 start-page: 794 year: 2021 end-page: 808 ident: b0060 article-title: Dual-surrogate-assisted cooperative particle swarm optimization for expensive multimodal problems publication-title: IEEE Transactions on Evolutionary Computation – reference: (Vol. 4, pp. 1942-1948). – reference: Suganthan, P. N. (1999). Particle swarm optimiser with neighbourhood operator. In – volume: 17 start-page: 7 year: 2020 end-page: 24 ident: b0025 article-title: Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization publication-title: Iranian Journal of Fuzzy Systems – volume: 62 year: 2021 ident: b0130 article-title: Decomposition in decision and objective space for multi-modal multi-objective optimization publication-title: Swarm and Evolutionary Computation – reference: Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In – reference: Kennedy, J., & Mendes, R. (2002). Population structure and particle swarm performance. In – volume: 519 start-page: 332 year: 2020 end-page: 347 ident: b0250 article-title: A close neighbor mobility method using particle swarm optimizer for solving multimodal optimization problems publication-title: Information Sciences – volume: 92 year: 2020 ident: b0015 article-title: Multi-robot path planning using improved particle swarm optimization algorithm through novel evolutionary operators publication-title: Applied Soft Computing – reference: (pp. 47-61). Berlin, Heidelberg: Springer Berlin Heidelberg. – volume: 574 start-page: 413 year: 2021 end-page: 430 ident: b0095 article-title: A two-archive algorithm with decomposition and fitness allocation for multi-modal multi-objective optimization publication-title: Information Sciences – volume: 146 year: 2020 ident: b0065 article-title: Multiplex community detection in complex networks using an evolutionary approach publication-title: Expert Systems with Applications – volume: 223 year: 2021 ident: b0040 article-title: A surrogate-assisted multi-objective particle swarm optimization of expensive constrained combinatorial optimization problems publication-title: Knowledge-Based Systems – volume: 74 start-page: 440 year: 2019 end-page: 450 ident: b0200 article-title: Couple-based particle swarm optimization for short-term hydrothermal scheduling publication-title: Applied Soft Computing – start-page: 2454 year: 2016 end-page: 2461 ident: b0105 article-title: Multimodal multi-objective optimization: A preliminary study publication-title: In – volume: 94 year: 2020 ident: b0195 article-title: Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search. publication-title: Management Science – start-page: 3164 year: 2009 end-page: 3171 ident: b0090 article-title: Random search with species conservation for multimodal functions publication-title: In – reference: (Vol. 3, pp. 1958-1962 Vol. 1953). – volume: 44 start-page: 1314 year: 2013 end-page: 1327 ident: b0190 article-title: A cluster-based differential evolution with self-adaptive strategy for multimodal optimization publication-title: IEEE Transactions on Cybernetics – volume: 152 year: 2020 ident: b0110 article-title: A modified particle swarm optimization using adaptive strategy publication-title: Expert Systems with Applications – volume: 29 start-page: 70 year: 2018 end-page: 76 ident: b0140 article-title: Particle swarm optimization algorithm based on multi-modal optimization problem publication-title: Journal of Zhongyuan University of Technology – volume: 78 start-page: 23917 year: 2019 end-page: 23947 ident: b0085 article-title: Modified particle swarm optimization for multimodal functions and its application publication-title: Multimedia Tools and Applications – reference: Deb, K., & Tiwari, S. (2005). Omni-optimizer: A procedure for single and multi-objective optimization. In C. A. Coello Coello, A. Hernández Aguirre & E. Zitzler (Eds.), – start-page: 36 year: 2007 end-page: 50 ident: b0150 article-title: Capabilities of EMOA to detect and preserve equivalent Pareto subsets publication-title: Evolutionary Multi-Criterion Optimization – volume: 17 start-page: 387 year: 2013 end-page: 402 ident: b0135 article-title: A distance-based locally informed particle swarm model for multimodal optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 77 start-page: 10850 year: 2021 end-page: 10895 ident: b0145 article-title: A novel dual-biological-community swarm intelligence algorithm with a commensal evolution strategy for multimodal problems publication-title: Journal of Supercomputing – volume: 44 start-page: 378 year: 2014 end-page: 393 ident: b0205 article-title: Combining crowding estimation in objective and decision space with multiple selection and search strategies for multi-objective evolutionary optimization publication-title: IEEE Transactions on Cybernetics – volume: 44 start-page: 1028 year: 2019 end-page: 1059 ident: b0100 article-title: Multimodal multiobjective optimization with differential evolution publication-title: Swarm and Evolutionary Computation – volume: 48 start-page: 436 year: 2018 end-page: 447 ident: b0225 article-title: A dynamic neighborhood learning-based gravitational search algorithm publication-title: IEEE Transactions on Cybernetics – reference: (pp. 69-73). – volume: 367 start-page: 719 year: 2016 end-page: 746 ident: b0005 article-title: Region-based memetic algorithm with archive for multimodal optimisation publication-title: Information Sciences – reference: Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In – year: 2021 ident: b0045 article-title: Surrogate-assisted evolutionary algorithm for expensive constrained multi-objective discrete optimization problems publication-title: Complex & Intelligent Systems. – volume: 50 year: 2019 ident: b0230 article-title: A cluster based PSO with leader updating mechanism and ring-topology for multimodal multi-objective optimization publication-title: Swarm and Evolutionary Computation – reference: Ishibuchi, H., Akedo, N., & Nojima, Y. (2011). A many-objective test problem for visually examining diversity maintenance behavior in a decision space. In – volume: 95 year: 2020 ident: b0235 article-title: A modified particle swarm optimization for multimodal multi-objective optimization publication-title: Engineering Applications of Artificial Intelligence – volume: 8 start-page: 53 year: 2011 ident: 10.1016/j.eswa.2022.117713_b0155 article-title: Computing the set of Epsilon-efficient solutions in multiobjective space mission design publication-title: Journal of Aerospace Computing, Information, and Communication doi: 10.2514/1.46478 – volume: 29 start-page: 70 year: 2018 ident: 10.1016/j.eswa.2022.117713_b0140 article-title: Particle swarm optimization algorithm based on multi-modal optimization problem publication-title: Journal of Zhongyuan University of Technology – volume: 25 start-page: 794 year: 2021 ident: 10.1016/j.eswa.2022.117713_b0060 article-title: Dual-surrogate-assisted cooperative particle swarm optimization for expensive multimodal problems publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2021.3064835 – volume: 17 start-page: 7 year: 2020 ident: 10.1016/j.eswa.2022.117713_b0025 article-title: Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization publication-title: Iranian Journal of Fuzzy Systems – volume: 24 start-page: 114 year: 2020 ident: 10.1016/j.eswa.2022.117713_b0185 article-title: Automatic niching differential evolution with contour prediction approach for multimodal optimization problems publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2019.2910721 – volume: 574 start-page: 413 year: 2021 ident: 10.1016/j.eswa.2022.117713_b0095 article-title: A two-archive algorithm with decomposition and fitness allocation for multi-modal multi-objective optimization publication-title: Information Sciences doi: 10.1016/j.ins.2021.05.075 – volume: 17 start-page: 387 year: 2013 ident: 10.1016/j.eswa.2022.117713_b0135 article-title: A distance-based locally informed particle swarm model for multimodal optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2012.2203138 – year: 2021 ident: 10.1016/j.eswa.2022.117713_b0045 article-title: Surrogate-assisted evolutionary algorithm for expensive constrained multi-objective discrete optimization problems publication-title: Complex & Intelligent Systems. – volume: 152 year: 2020 ident: 10.1016/j.eswa.2022.117713_b0110 article-title: A modified particle swarm optimization using adaptive strategy publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113353 – volume: 51 start-page: 5652 year: 2021 ident: 10.1016/j.eswa.2022.117713_b0030 article-title: Solving nonlinear equation systems by a two-phase evolutionary algorithm publication-title: Ieee Transactions on Systems Man Cybernetics-Systems doi: 10.1109/TSMC.2019.2957324 – start-page: 2454 year: 2016 ident: 10.1016/j.eswa.2022.117713_b0105 article-title: Multimodal multi-objective optimization: A preliminary study – volume: 100 year: 2021 ident: 10.1016/j.eswa.2022.117713_b0245 article-title: A novel grey prediction evolution algorithm for multimodal multiobjective optimization publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2021.104173 – volume: 95 year: 2020 ident: 10.1016/j.eswa.2022.117713_b0235 article-title: A modified particle swarm optimization for multimodal multi-objective optimization publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2020.103905 – start-page: 36 year: 2007 ident: 10.1016/j.eswa.2022.117713_b0150 article-title: Capabilities of EMOA to detect and preserve equivalent Pareto subsets – volume: 29 start-page: 195 year: 2015 ident: 10.1016/j.eswa.2022.117713_b0210 article-title: A fully and discriminatorily informed particle swarm optimization with different sharing strategies for superior and inferior information publication-title: Journal of Intelligent & Fuzzy Systems – volume: 92 year: 2020 ident: 10.1016/j.eswa.2022.117713_b0015 article-title: Multi-robot path planning using improved particle swarm optimization algorithm through novel evolutionary operators publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106312 – volume: 44 start-page: 1314 year: 2013 ident: 10.1016/j.eswa.2022.117713_b0190 article-title: A cluster-based differential evolution with self-adaptive strategy for multimodal optimization publication-title: IEEE Transactions on Cybernetics – ident: 10.1016/j.eswa.2022.117713_b0165 doi: 10.1109/ICEC.1998.699146 – volume: 48 start-page: 436 year: 2018 ident: 10.1016/j.eswa.2022.117713_b0225 article-title: A dynamic neighborhood learning-based gravitational search algorithm publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2016.2641986 – volume: 176 year: 2021 ident: 10.1016/j.eswa.2022.117713_b0170 article-title: NSGA-II with objective-specific variation operators for multiobjective vehicle routing problem with time windows publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.114779 – volume: 13 start-page: 1167 year: 2009 ident: 10.1016/j.eswa.2022.117713_b0240 article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2009.2021467 – volume: 23 start-page: 660 year: 2019 ident: 10.1016/j.eswa.2022.117713_b0115 article-title: A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2018.2879406 – volume: 189 year: 2022 ident: 10.1016/j.eswa.2022.117713_b0035 article-title: An improved competitive particle swarm optimization for many-objective optimization problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.116118 – volume: 14 start-page: 1329 year: 2016 ident: 10.1016/j.eswa.2022.117713_b0125 article-title: A hybrid multiobjective evolutionary algorithm for truck dispatching in open-pit-mining publication-title: IEEE Latin America Transactions doi: 10.1109/TLA.2016.7459617 – volume: 8 start-page: 256 year: 2004 ident: 10.1016/j.eswa.2022.117713_b0010 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2004.826067 – volume: 44 start-page: 1028 year: 2019 ident: 10.1016/j.eswa.2022.117713_b0100 article-title: Multimodal multiobjective optimization with differential evolution publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2018.10.016 – volume: 74 start-page: 440 year: 2019 ident: 10.1016/j.eswa.2022.117713_b0200 article-title: Couple-based particle swarm optimization for short-term hydrothermal scheduling publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.10.041 – volume: 33 start-page: 134 year: 2016 ident: 10.1016/j.eswa.2022.117713_b0215 article-title: A new particle swarm optimization algorithm with balancing local and global search ability publication-title: Microelectronics & Computer – volume: 13 start-page: 341 year: 2021 ident: 10.1016/j.eswa.2022.117713_b0120 article-title: An adaptive niching method based on multi-strategy fusion for multimodal optimization publication-title: Memetic Computing doi: 10.1007/s12293-021-00338-5 – volume: 296 start-page: 131 year: 2021 ident: 10.1016/j.eswa.2022.117713_b0070 article-title: A new bi-objective model of the urban public transportation hub network design under uncertainty publication-title: Annals of Operations Research doi: 10.1007/s10479-019-03430-9 – volume: 44 start-page: 378 year: 2014 ident: 10.1016/j.eswa.2022.117713_b0205 article-title: Combining crowding estimation in objective and decision space with multiple selection and search strategies for multi-objective evolutionary optimization publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2013.2256418 – volume: 367 start-page: 719 year: 2016 ident: 10.1016/j.eswa.2022.117713_b0005 article-title: Region-based memetic algorithm with archive for multimodal optimisation publication-title: Information Sciences – volume: 62 year: 2021 ident: 10.1016/j.eswa.2022.117713_b0130 article-title: Decomposition in decision and objective space for multi-modal multi-objective optimization publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2021.100842 – ident: 10.1016/j.eswa.2022.117713_b0080 doi: 10.1109/CEC.2002.1004493 – ident: 10.1016/j.eswa.2022.117713_b0050 doi: 10.1145/2001576.2001666 – volume: 98 year: 2021 ident: 10.1016/j.eswa.2022.117713_b0055 article-title: Incorporation of multimodal multiobjective optimization in designing a filter based feature selection technique publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106823 – ident: 10.1016/j.eswa.2022.117713_b0075 doi: 10.1109/ICNN.1995.488968 – volume: 77 start-page: 10850 year: 2021 ident: 10.1016/j.eswa.2022.117713_b0145 article-title: A novel dual-biological-community swarm intelligence algorithm with a commensal evolution strategy for multimodal problems publication-title: Journal of Supercomputing doi: 10.1007/s11227-021-03721-8 – ident: 10.1016/j.eswa.2022.117713_b0175 doi: 10.1109/CEC.1999.785514 – volume: 7 start-page: 124008 year: 2019 ident: 10.1016/j.eswa.2022.117713_b0180 article-title: DMPSO: Diversity-guided multi-mutation particle swarm optimizer publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2938063 – volume: 519 start-page: 332 year: 2020 ident: 10.1016/j.eswa.2022.117713_b0250 article-title: A close neighbor mobility method using particle swarm optimizer for solving multimodal optimization problems publication-title: Information Sciences doi: 10.1016/j.ins.2020.01.049 – start-page: 3164 year: 2009 ident: 10.1016/j.eswa.2022.117713_b0090 article-title: Random search with species conservation for multimodal functions – volume: 50 year: 2019 ident: 10.1016/j.eswa.2022.117713_b0230 article-title: A cluster based PSO with leader updating mechanism and ring-topology for multimodal multi-objective optimization publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2019.100569 – volume: 22 start-page: 805 year: 2018 ident: 10.1016/j.eswa.2022.117713_b0220 article-title: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2017.2754271 – volume: 78 start-page: 23917 year: 2019 ident: 10.1016/j.eswa.2022.117713_b0085 article-title: Modified particle swarm optimization for multimodal functions and its application publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-018-6324-7 – volume: 146 year: 2020 ident: 10.1016/j.eswa.2022.117713_b0065 article-title: Multiplex community detection in complex networks using an evolutionary approach publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113184 – volume: 223 year: 2021 ident: 10.1016/j.eswa.2022.117713_b0040 article-title: A surrogate-assisted multi-objective particle swarm optimization of expensive constrained combinatorial optimization problems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107049 – volume: 40 start-page: 1979 year: 2013 ident: 10.1016/j.eswa.2022.117713_b0160 article-title: Taking advantage of a diverse set of efficient production schedules: A two-step approach for scheduling with side concerns publication-title: Computers & Operations Research doi: 10.1016/j.cor.2013.02.016 – volume: 94 year: 2020 ident: 10.1016/j.eswa.2022.117713_b0195 article-title: Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search. Omega-International Journal of publication-title: Management Science – ident: 10.1016/j.eswa.2022.117713_b0020 doi: 10.1007/978-3-540-31880-4_4 |
| SSID | ssj0017007 |
| Score | 2.4890153 |
| Snippet | •The purpose of this study is to solve multi-modal multi-objective problems.•Using the adaptive parameter adjustment strategy to extend the search space.•The... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 117713 |
| SubjectTerms | Adaptive parameters Dynamic neighborhood Multi-modal multi-objective problem Mutation operator Particle swarm optimization |
| Title | A dynamic neighborhood balancing-based multi-objective particle swarm optimization for multi-modal problems |
| URI | https://dx.doi.org/10.1016/j.eswa.2022.117713 |
| Volume | 205 |
| WOSCitedRecordID | wos000832957100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeqjgMXYHyI8TH5wC1yFcdJ7ByraQimamJioN6iOHZh3ZpUbTN24X_nObbTrEMTIHGJIiuOLb-fnp-f3-89hN6BSKVKeElUnJYEzhszIguqCEt5PBM6orot2vd1wk9PxXSafRoMfnouzPUVrypxc5Mt_6uooQ2EbaizfyHu7qfQAO8gdHiC2OH5R4IfB8pWmQ8q4_YEGbeZi6WJYSxhoyJm41I2kpDUcm41XrB0vwrWP4rVIqhBlSwcR7MNRbTfL2plqFu2Cs36llvf5EzeuMzQnjPXux3vAn0aI9UzmMj3ZrslOK_1WQ-sR443Mml8y6SNPJheFPW3pnA7rnNYwFmX3nJYdEyabdiSdUdyElNbsWekrTIWnJGU2wqKXltHLUv7rua3Toj5SMMqjcyw7XW05bnuZNT-bAYzY0UmFKDNJrsX8SQTQ7Q3_ng8PemuoXho-fZ-co51ZQMEd0f6vWXTs1bOn6BH7piBx1am-2igq6fosS_hgZ1Gf4Yux9ihBffRgnfQgnfQgj1acIsW3EcLBrTgHlqwR8tz9OX98fnRB-Lqb5CSheGGSKrMpXtZiCJixo-gJRey4FTTcGbKNklGU005U3CIzXSoZlHJdKJ4ygsqwU58gYZVXemXCEsqNYsk00WaxQmLM8mZ0GDegn0teJkdIOrXLi9dcnpTI-Uq91GI89ysd27WO7frfYCCrs_Spma59-vEiyR3xqU1GnNA0D39Xv1jv9fo4Rb8b9Bws2r0W_SgvN5crFeHDmi_AOCCoiY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+neighborhood+balancing-based+multi-objective+particle+swarm+optimization+for+multi-modal+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Gu%2C+Qinghua&rft.au=Wang%2C+Qian&rft.au=Chen%2C+Lu&rft.au=Li%2C+Xiaoguang&rft.date=2022-11-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=205&rft_id=info:doi/10.1016%2Fj.eswa.2022.117713&rft.externalDocID=S0957417422010004 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |