Exponential gannet firefly optimization algorithm enabled deep learning for diabetic retinopathy detection
•The highlights of the article are given below for your kind perusal. Kindly, consider and forward my article for further processes.•U-Net is used for lesion segmentation of diabetic retinopathy fundus images.•Gannet Pelican Optimization Algorithm (GPOA)to identify various types of lesions.•Deep Q N...
Uložené v:
| Vydané v: | Biomedical signal processing and control Ročník 87; s. 105376 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.01.2024
|
| Predmet: | |
| ISSN: | 1746-8094, 1746-8108 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •The highlights of the article are given below for your kind perusal. Kindly, consider and forward my article for further processes.•U-Net is used for lesion segmentation of diabetic retinopathy fundus images.•Gannet Pelican Optimization Algorithm (GPOA)to identify various types of lesions.•Deep Q Network (DQN) is used for the detection of diabetic retinopathy.•EGFOA is used for the training of DQN.
The diabetes complication which causes various damage to the human eye lead to complete blindness is called diabetic retinopathy. The investigation of the optimization-based Deep Learning (DL) approach is introduced for the detection of diabetic retinopathy using fundus images. Here, the fundus images are pre-processed initially using a median filter and Region of Interest (RoI) extraction, to remove the noise in the image. U-Net is used for lesion segmentation and trained using the introduced Gannet Pelican Optimization Algorithm (GPOA) to identify various types of lesions where GPOA is the integration of the Gannet Optimization Algorithm (GOA) and Pelican Optimization Algorithm (POA). The data augmentation process is carried out using flipping, rotation, shearing, cropping, and translation of fundus images, and the data-augmented fundus image is allowed for a feature extraction process where the image and vector-based features of fundus images are extracted. In addition, Deep Q Network (DQN) is used for the detection of diabetic retinopathy and is trained using the introduced Exponential Gannet Pelican Optimization Algorithm (EGFOA). The EGFOA is the combination of Exponentially Weighted Moving Average (EWMA), Gannet Optimization Algorithm (GOA), and Firefly Optimization Algorithm (FFA). Experimental outcomes achieved a maximum of 91.6% of accuracy, 92.2% of sensitivity, and 91.9% of specificity. |
|---|---|
| AbstractList | •The highlights of the article are given below for your kind perusal. Kindly, consider and forward my article for further processes.•U-Net is used for lesion segmentation of diabetic retinopathy fundus images.•Gannet Pelican Optimization Algorithm (GPOA)to identify various types of lesions.•Deep Q Network (DQN) is used for the detection of diabetic retinopathy.•EGFOA is used for the training of DQN.
The diabetes complication which causes various damage to the human eye lead to complete blindness is called diabetic retinopathy. The investigation of the optimization-based Deep Learning (DL) approach is introduced for the detection of diabetic retinopathy using fundus images. Here, the fundus images are pre-processed initially using a median filter and Region of Interest (RoI) extraction, to remove the noise in the image. U-Net is used for lesion segmentation and trained using the introduced Gannet Pelican Optimization Algorithm (GPOA) to identify various types of lesions where GPOA is the integration of the Gannet Optimization Algorithm (GOA) and Pelican Optimization Algorithm (POA). The data augmentation process is carried out using flipping, rotation, shearing, cropping, and translation of fundus images, and the data-augmented fundus image is allowed for a feature extraction process where the image and vector-based features of fundus images are extracted. In addition, Deep Q Network (DQN) is used for the detection of diabetic retinopathy and is trained using the introduced Exponential Gannet Pelican Optimization Algorithm (EGFOA). The EGFOA is the combination of Exponentially Weighted Moving Average (EWMA), Gannet Optimization Algorithm (GOA), and Firefly Optimization Algorithm (FFA). Experimental outcomes achieved a maximum of 91.6% of accuracy, 92.2% of sensitivity, and 91.9% of specificity. |
| ArticleNumber | 105376 |
| Author | Madhusudhana Rao, T.V. Maram, Balajee Chigurukota, Dhanunjayarao Prabhakar, Telagarapu |
| Author_xml | – sequence: 1 givenname: Telagarapu surname: Prabhakar fullname: Prabhakar, Telagarapu organization: Department of ECE, GMR Institute of Technology, GMR Nagar, RAJAM -532 127, Vizianagaram (Dist.), AP, India – sequence: 2 givenname: T.V. surname: Madhusudhana Rao fullname: Madhusudhana Rao, T.V. organization: Department of Computer Science and Engineering, Vignan's Institute of Information Technology, Visakhapatnam, India – sequence: 3 givenname: Balajee surname: Maram fullname: Maram, Balajee email: maram.e15007@cumail.in organization: Department of Computer Science and Engineering, Chandigarh University, Gharuan, Mohali -140055, Punjab, India – sequence: 4 givenname: Dhanunjayarao surname: Chigurukota fullname: Chigurukota, Dhanunjayarao organization: Department of CSE, Gokaraju Lailavathi Womens Engineering college, Bachupally, Hyderabad, India |
| BookMark | eNp9kF1LwzAUhoNMcJv-Aa_yBzqTNk1b8EbG_ICBN3odTpPTLaVLSxrE-etNnd54sZuTwyHPC--zIDPXOyTklrMVZ1zetat6HPQqZWkWD3lWyAsy54WQSclZOfvbWSWuyGIcW8ZEWXAxJ-3mc4hRLljo6A6cw0Ab67HpjrQfgj3YLwi2dxS6Xe9t2B8oOqg7NNQgDrRD8M66HW16T42FGoPV1Mfp-gHC_hi_BdRTxDW5bKAb8eb3XZL3x83b-jnZvj69rB-2ic4YC0nNKs6BoaxFXcgCuMnrjDfQQCUxz6UQPJVlXUFWGS5yqDgTmclFiWVlGMhsScpTrvb9OMYqStvwUyJ4sJ3iTE3OVKsmZ2pypk7OIpr-QwdvD-CP56H7E4Sx1IdFr0Zt0Wk00aMOyvT2HP4NIaKKIA |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2024_106252 crossref_primary_10_1016_j_compbiomed_2025_110054 crossref_primary_10_1007_s44196_025_00943_z crossref_primary_10_1007_s42044_025_00298_w crossref_primary_10_1016_j_bspc_2025_107569 crossref_primary_10_1007_s11042_024_19603_z crossref_primary_10_7717_peerj_cs_2508 crossref_primary_10_1109_ACCESS_2024_3494840 crossref_primary_10_1007_s13721_025_00530_4 crossref_primary_10_1016_j_imavis_2025_105537 crossref_primary_10_1007_s40998_025_00897_0 crossref_primary_10_1002_cem_3593 crossref_primary_10_1080_17434440_2025_2486476 crossref_primary_10_1016_j_compbiomed_2025_110863 crossref_primary_10_1016_j_pdpdt_2025_104552 crossref_primary_10_1007_s10462_024_10716_3 crossref_primary_10_1016_j_eswa_2024_124221 |
| Cites_doi | 10.1016/j.matcom.2022.06.007 10.1145/3106426.3109426 10.5120/11826-7528 10.33969/AIS.2020.21001 10.1007/s11042-020-10238-4 10.1016/j.compeleceng.2018.07.042 10.1109/ACCESS.2020.3005152 10.3390/s22030855 10.1109/ISDA.2012.6416547 10.1016/j.patcog.2008.06.010 10.1093/comjnl/bxab057 10.1109/TIP.2010.2042645 10.1109/ACCESS.2021.3101142 10.3390/diagnostics12071607 10.1016/j.bspc.2021.102600 10.1080/03610919208813040 10.1007/s42452-019-1800-x 10.1109/TIP.2010.2041397 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2023.105376 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1746-8108 |
| ExternalDocumentID | 10_1016_j_bspc_2023_105376 S1746809423008091 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-b0911a0e6b4b767a1d5b31fafa96e556441268b9a39d145a91043d548e89d0a63 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001069369000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1746-8094 |
| IngestDate | Sat Nov 29 06:59:55 EST 2025 Tue Nov 18 21:36:34 EST 2025 Fri Feb 23 02:33:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Pelican optimization algorithm Diabetic retinopathy Gannet optimization algorithm Firefly optimization algorithm Lesion segmentation RoI extraction |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-b0911a0e6b4b767a1d5b31fafa96e556441268b9a39d145a91043d548e89d0a63 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2023_105376 crossref_primary_10_1016_j_bspc_2023_105376 elsevier_sciencedirect_doi_10_1016_j_bspc_2023_105376 |
| PublicationCentury | 2000 |
| PublicationDate | January 2024 2024-01-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zolghadr-Asli, Bozorg-Haddad, Chu (b0085) 2018 Saccucci, Amin, Lucas (b0130) 1992; 21 Wan, Liang, Zhang (b0035) 2018; 72 Jin, B., Yang, J., Huang, X. and Khan, D., “Deep deformable Q-Network: an extension of deep Q-Network”, In Proceedings of the International Conference on Web Intelligence, pp. 963-966, August 2017. Ronneberger, Fischer, Brox (b0060) 2015 Shirke, Patil, Potgantwar (b0055) 2022 Gayathri, Gopi, Palanisamy (b0025) 2020; 62 Hemanth (b0095) 2020; 2 Cristin, Kumar, Anbhazhagan (b0140) 2021; 64 Sasaki, Horiuchi, Kato (b0125) September 2017 Saranya, Prabakaran (b0020) 2020 Pan, Zhang, Wang, Snášel, Chu (b0065) 2022; 202 Arora, S. and Singh, S., “The firefly optimization algorithm: convergence analysis and parameter selection” International Journal of Computer Applications, vol.69, no.3, 2013. Khairandish, Sharma, Jain, Chatterjee, Jhanjhi (b0090) 2021 Butt, Iskandar, Abdelhamid, Latif, Alghazo (b0040) 2022; 12 Lakshmiprabha, N.S. and Majumder, S., “Face recognition system invariant to plastic surgery”, In proceeding of 2012 12th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 258-263, IEEE, November 2012. Saranya, Kiruthika Devi, Bharanidharan (b0045) 2022 Tan, Triggs (b0100) 2010; 19 Trojovský, Dehghani (b0070) 2022; 22 Qureshi, Ma, Abbas (b0010) 2021; 80 Indian Diabetic Retinopathy Image Dataset (IDRID) taken from “https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid”, accessed on December 2022. Xie, Shan, Chen, Chen (b0105) 2010; 19 Maheshan, Prasanna Kumar (b0050) 2020; 2 Kaushik, Singh, Kaur, Alshazly, Zaguia, Hamam (b0030) 2021; 9 Khalifa, Loey, Mirjalili (b0075) 2021 Rahadianti, Manurung, Murni (b0080) 2010 Liu, Yang (b0115) 2008; 41 Shankar, Zhang, Liu, Wu, Chen (b0005) 2020; 8 Das, Kharbanda, Suchetha, Raman, Dhas (b0015) 2021; 68 Das (10.1016/j.bspc.2023.105376_b0015) 2021; 68 Liu (10.1016/j.bspc.2023.105376_b0115) 2008; 41 Wan (10.1016/j.bspc.2023.105376_b0035) 2018; 72 Hemanth (10.1016/j.bspc.2023.105376_b0095) 2020; 2 Sasaki (10.1016/j.bspc.2023.105376_b0125) 2017 Kaushik (10.1016/j.bspc.2023.105376_b0030) 2021; 9 Trojovský (10.1016/j.bspc.2023.105376_b0070) 2022; 22 10.1016/j.bspc.2023.105376_b0120 Ronneberger (10.1016/j.bspc.2023.105376_b0060) 2015 10.1016/j.bspc.2023.105376_b0145 Pan (10.1016/j.bspc.2023.105376_b0065) 2022; 202 Saranya (10.1016/j.bspc.2023.105376_b0045) 2022 Qureshi (10.1016/j.bspc.2023.105376_b0010) 2021; 80 Maheshan (10.1016/j.bspc.2023.105376_b0050) 2020; 2 Rahadianti (10.1016/j.bspc.2023.105376_b0080) 2010 Shirke (10.1016/j.bspc.2023.105376_b0055) 2022 Xie (10.1016/j.bspc.2023.105376_b0105) 2010; 19 Saranya (10.1016/j.bspc.2023.105376_b0020) 2020 Cristin (10.1016/j.bspc.2023.105376_b0140) 2021; 64 Saccucci (10.1016/j.bspc.2023.105376_b0130) 1992; 21 Zolghadr-Asli (10.1016/j.bspc.2023.105376_b0085) 2018 Khalifa (10.1016/j.bspc.2023.105376_b0075) 2021 Tan (10.1016/j.bspc.2023.105376_b0100) 2010; 19 Gayathri (10.1016/j.bspc.2023.105376_b0025) 2020; 62 Butt (10.1016/j.bspc.2023.105376_b0040) 2022; 12 10.1016/j.bspc.2023.105376_b0135 Shankar (10.1016/j.bspc.2023.105376_b0005) 2020; 8 Khairandish (10.1016/j.bspc.2023.105376_b0090) 2021 10.1016/j.bspc.2023.105376_b0110 |
| References_xml | – year: 2022 ident: b0055 article-title: “A Hybrid Optimization Driven Deep Learning Technique For Automated Detection Of Skin Cancer Using Twco (Taylor Water Cycle Optimization) publication-title: Approach” – volume: 19 start-page: 1349 year: 2010 end-page: 1361 ident: b0105 article-title: Fusing local patterns of gabor magnitude and phase for face recognition publication-title: IEEE Trans. Image Process. – start-page: 143 year: 2018 end-page: 149 ident: b0085 article-title: Crow search algorithm (CSA). In proceeding of Advanced optimization by nature-inspired algorithms – volume: 202 start-page: 343 year: 2022 end-page: 373 ident: b0065 article-title: Gannet optimization algorithm: A new metaheuristic algorithm for solving engineering optimization problems publication-title: Math. Comput. Simul – start-page: 1 year: 2021 end-page: 27 ident: b0075 article-title: A comprehensive survey of recent trends in deep learning for digital images augmentation publication-title: Artif. Intell. Rev. – volume: 19 start-page: 1635 year: 2010 end-page: 1650 ident: b0100 article-title: Enhanced local texture feature sets for face recognition under difficult lighting conditions publication-title: IEEE Trans. Image Process. – reference: Arora, S. and Singh, S., “The firefly optimization algorithm: convergence analysis and parameter selection” International Journal of Computer Applications, vol.69, no.3, 2013. – volume: 9 start-page: 108276 year: 2021 end-page: 108292 ident: b0030 article-title: Diabetic retinopathy diagnosis from fundus images using stacked generalization of deep models publication-title: IEEE Access – start-page: 799 year: September 2017 end-page: 804 ident: b0125 publication-title: A Study on Vision-bAsed Mobile Robot LeArning by Deep Q-network – year: 2010 ident: b0080 article-title: Clustering batik images based on log-gabor and colour histogram features – volume: 2 start-page: 1 year: 2020 end-page: 7 ident: b0050 article-title: Performance of image pre-processing filters for noise removal in transformer oil images at different temperatures publication-title: SN Applied Sciences – volume: 21 start-page: 627 year: 1992 end-page: 657 ident: b0130 article-title: Exponentially weighted moving average control schemes with variable sampling intervals publication-title: Communications in Statistics-simulation and Computation – start-page: 234 year: 2015 end-page: 241 ident: b0060 publication-title: U-net: Convolutional Networks for Biomedical Image Segmentation – volume: 22 start-page: 855 year: 2022 ident: b0070 article-title: Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications publication-title: Sensors – volume: 8 start-page: 118164 year: 2020 end-page: 118173 ident: b0005 article-title: Hyperparameter tuning deep learning for diabetic retinopathy fundus image classification publication-title: IEEE Access – year: 2021 ident: b0090 article-title: A hybrid CNN-SVM threshold segmentation approach for tumor detection and classification of MRI brain images publication-title: IRBM – volume: 64 start-page: 1514 year: 2021 end-page: 1530 ident: b0140 article-title: Severity Level Classification of Brain Tumor based on MRI Images using Fractional-Chicken Swarm Optimization Algorithm publication-title: Comput. J. – volume: 80 start-page: 11691 year: 2021 end-page: 11721 ident: b0010 article-title: Diabetic retinopathy detection and stage classification in eye fundus images using active deep learning publication-title: Multimed. Tools Appl. – reference: Lakshmiprabha, N.S. and Majumder, S., “Face recognition system invariant to plastic surgery”, In proceeding of 2012 12th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 258-263, IEEE, November 2012. – volume: 68 year: 2021 ident: b0015 article-title: Deep learning architecture based on segmented fundus image features for classification of diabetic retinopathy publication-title: Biomed. Signal Process. Control – volume: 12 start-page: 1607 year: 2022 ident: b0040 article-title: Diabetic Retinopathy Detection from Fundus Images of the Eye Using Hybrid Deep Learning Features publication-title: Diagnostics – reference: Indian Diabetic Retinopathy Image Dataset (IDRID) taken from “https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid”, accessed on December 2022. – volume: 72 start-page: 274 year: 2018 end-page: 282 ident: b0035 article-title: Deep convolutional neural networks for diabetic retinopathy detection by image classification publication-title: Comput. Electr. Eng. – volume: 41 start-page: 3521 year: 2008 end-page: 3527 ident: b0115 article-title: Image retrieval based on the texton co-occurrence matrix publication-title: Pattern Recogn. – volume: 62 year: 2020 ident: b0025 article-title: A lightweight CNN for Diabetic Retinopathy classification from fundus images publication-title: Biomed. Signal Process. Control – start-page: 1 year: 2020 end-page: 10 ident: b0020 article-title: “Automatic detection of non-proliferative diabetic retinopathy in retinal fundus images using convolution neural network” publication-title: Journal of Ambient Intelligence and Humanized Computing – volume: 2 start-page: 1 year: 2020 end-page: 13 ident: b0095 article-title: EEG signal based modified Kohonen neural networks for classification of human mental emotions publication-title: Journal of Artificial Intelligence and Systems – year: 2022 ident: b0045 article-title: Detection of Diabetic Retinopathy in Retinal Fundus Images using DenseNet based Deep Learning Model publication-title: In the ProceedIngs of the 2022 International Mobile and Embedded Technology Conference (MECON) – reference: Jin, B., Yang, J., Huang, X. and Khan, D., “Deep deformable Q-Network: an extension of deep Q-Network”, In Proceedings of the International Conference on Web Intelligence, pp. 963-966, August 2017. – volume: 202 start-page: 343 year: 2022 ident: 10.1016/j.bspc.2023.105376_b0065 article-title: Gannet optimization algorithm: A new metaheuristic algorithm for solving engineering optimization problems publication-title: Math. Comput. Simul doi: 10.1016/j.matcom.2022.06.007 – ident: 10.1016/j.bspc.2023.105376_b0120 doi: 10.1145/3106426.3109426 – year: 2021 ident: 10.1016/j.bspc.2023.105376_b0090 article-title: A hybrid CNN-SVM threshold segmentation approach for tumor detection and classification of MRI brain images publication-title: IRBM – ident: 10.1016/j.bspc.2023.105376_b0135 doi: 10.5120/11826-7528 – start-page: 234 year: 2015 ident: 10.1016/j.bspc.2023.105376_b0060 – volume: 2 start-page: 1 year: 2020 ident: 10.1016/j.bspc.2023.105376_b0095 article-title: EEG signal based modified Kohonen neural networks for classification of human mental emotions publication-title: Journal of Artificial Intelligence and Systems doi: 10.33969/AIS.2020.21001 – volume: 80 start-page: 11691 issue: 8 year: 2021 ident: 10.1016/j.bspc.2023.105376_b0010 article-title: Diabetic retinopathy detection and stage classification in eye fundus images using active deep learning publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-10238-4 – start-page: 1 year: 2020 ident: 10.1016/j.bspc.2023.105376_b0020 article-title: “Automatic detection of non-proliferative diabetic retinopathy in retinal fundus images using convolution neural network” publication-title: Journal of Ambient Intelligence and Humanized Computing – volume: 72 start-page: 274 year: 2018 ident: 10.1016/j.bspc.2023.105376_b0035 article-title: Deep convolutional neural networks for diabetic retinopathy detection by image classification publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2018.07.042 – start-page: 143 year: 2018 ident: 10.1016/j.bspc.2023.105376_b0085 – start-page: 799 year: 2017 ident: 10.1016/j.bspc.2023.105376_b0125 – year: 2022 ident: 10.1016/j.bspc.2023.105376_b0045 article-title: Detection of Diabetic Retinopathy in Retinal Fundus Images using DenseNet based Deep Learning Model – volume: 8 start-page: 118164 year: 2020 ident: 10.1016/j.bspc.2023.105376_b0005 article-title: Hyperparameter tuning deep learning for diabetic retinopathy fundus image classification publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3005152 – volume: 22 start-page: 855 issue: 3 year: 2022 ident: 10.1016/j.bspc.2023.105376_b0070 article-title: Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications publication-title: Sensors doi: 10.3390/s22030855 – ident: 10.1016/j.bspc.2023.105376_b0110 doi: 10.1109/ISDA.2012.6416547 – ident: 10.1016/j.bspc.2023.105376_b0145 – volume: 62 year: 2020 ident: 10.1016/j.bspc.2023.105376_b0025 article-title: A lightweight CNN for Diabetic Retinopathy classification from fundus images publication-title: Biomed. Signal Process. Control – volume: 41 start-page: 3521 issue: 12 year: 2008 ident: 10.1016/j.bspc.2023.105376_b0115 article-title: Image retrieval based on the texton co-occurrence matrix publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2008.06.010 – volume: 64 start-page: 1514 issue: 10 year: 2021 ident: 10.1016/j.bspc.2023.105376_b0140 article-title: Severity Level Classification of Brain Tumor based on MRI Images using Fractional-Chicken Swarm Optimization Algorithm publication-title: Comput. J. doi: 10.1093/comjnl/bxab057 – volume: 19 start-page: 1635 issue: 6 year: 2010 ident: 10.1016/j.bspc.2023.105376_b0100 article-title: Enhanced local texture feature sets for face recognition under difficult lighting conditions publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2042645 – year: 2022 ident: 10.1016/j.bspc.2023.105376_b0055 article-title: “A Hybrid Optimization Driven Deep Learning Technique For Automated Detection Of Skin Cancer Using Twco (Taylor Water Cycle Optimization) publication-title: Approach” – volume: 9 start-page: 108276 year: 2021 ident: 10.1016/j.bspc.2023.105376_b0030 article-title: Diabetic retinopathy diagnosis from fundus images using stacked generalization of deep models publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3101142 – start-page: 1 year: 2021 ident: 10.1016/j.bspc.2023.105376_b0075 article-title: A comprehensive survey of recent trends in deep learning for digital images augmentation publication-title: Artif. Intell. Rev. – volume: 12 start-page: 1607 issue: 7 year: 2022 ident: 10.1016/j.bspc.2023.105376_b0040 article-title: Diabetic Retinopathy Detection from Fundus Images of the Eye Using Hybrid Deep Learning Features publication-title: Diagnostics doi: 10.3390/diagnostics12071607 – volume: 68 year: 2021 ident: 10.1016/j.bspc.2023.105376_b0015 article-title: Deep learning architecture based on segmented fundus image features for classification of diabetic retinopathy publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102600 – volume: 21 start-page: 627 issue: 3 year: 1992 ident: 10.1016/j.bspc.2023.105376_b0130 article-title: Exponentially weighted moving average control schemes with variable sampling intervals publication-title: Communications in Statistics-simulation and Computation doi: 10.1080/03610919208813040 – volume: 2 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.bspc.2023.105376_b0050 article-title: Performance of image pre-processing filters for noise removal in transformer oil images at different temperatures publication-title: SN Applied Sciences doi: 10.1007/s42452-019-1800-x – volume: 19 start-page: 1349 issue: 5 year: 2010 ident: 10.1016/j.bspc.2023.105376_b0105 article-title: Fusing local patterns of gabor magnitude and phase for face recognition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2041397 – year: 2010 ident: 10.1016/j.bspc.2023.105376_b0080 |
| SSID | ssj0048714 |
| Score | 2.4076295 |
| Snippet | •The highlights of the article are given below for your kind perusal. Kindly, consider and forward my article for further processes.•U-Net is used for lesion... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105376 |
| SubjectTerms | Diabetic retinopathy Firefly optimization algorithm Gannet optimization algorithm Lesion segmentation Pelican optimization algorithm RoI extraction |
| Title | Exponential gannet firefly optimization algorithm enabled deep learning for diabetic retinopathy detection |
| URI | https://dx.doi.org/10.1016/j.bspc.2023.105376 |
| Volume | 87 |
| WOSCitedRecordID | wos001069369000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIEXJ dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLgc4IJ5ieckHblGq5p0cl6UIEFohKKi3aBw7bbLZJEqTVfuf-JGM4yQNBa0AiUtUpbbTznyyZybzzRDyKnLB9TmAHqG_oduMcz2Q-Q6Axy0XpogN1taZ_ehdXPirVfBpMvnec2GuMy_P_d0uKP-rqvEeKltSZ_9C3cOieAM_o9LximrH6x8pfrEri1zmAKHw1yBZN1qM-1qc7bUC94erjnipQbYuqqTeXGmi5U9xjQtR9m0kVHqlisy2VZ7rJC9k--I9Dqvb_K38pxfCLY1fcSyTtTRxS0VB6EmQXU78sBVXwDZwqdK7lyKDNVRQNocAOd8024ZvIAftM7Tx3OXs2-zwfaWQ_BoySMWAzvNNsm6q5rJQRvEbnN_kKexxeDEOcJj2UYBjYN4c0pzkRu3ZspCyapA8E6N7xtwf7-7qOP_loFAxi3TGtqUsZGlasuGx5R1V5W7P-S9yXfko9NbQvpalEk5Mzwn8KTk5e79YfehPfvT92lryw2_rSFoqn_D4Sb83hEbGzfIeudt5JfRMoek-mYj8AbkzqlX5kKQjXFGFK9rhio5xRQdc0Q5XVOKK9riiiCva44qOcEUHXD0iX98ulufv9K5Rhx6hSGqdoVAMmAuX2cxzPTC4wywjhhgCVziONLlN12cBWAE3bAfQRLUtjr6y8AM-B9d6TKY5_oUnhIIRR0x2VrTiyGbCQX8mtnDRyLScWDDnlBi91MKoq2Ivm6lkYZ-umIZS0qGUdKgkfUq0YU6parjcONrplRF2VqiyLkPEzg3znv7jvGfk9gH1z8m0rhrxgtyKrutkW73sIPYDd0q0Ew |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponential+gannet+firefly+optimization+algorithm+enabled+deep+learning+for+diabetic+retinopathy+detection&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Prabhakar%2C+Telagarapu&rft.au=Madhusudhana+Rao%2C+T.V.&rft.au=Maram%2C+Balajee&rft.au=Chigurukota%2C+Dhanunjayarao&rft.date=2024-01-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=87&rft_id=info:doi/10.1016%2Fj.bspc.2023.105376&rft.externalDocID=S1746809423008091 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |