A new adaptive decomposition-based evolutionary algorithm for multi- and many-objective optimization

•An adaptive decomposition approach is proposed to guide the evolution process.•A structured metric is designed to assess the quality of the candidate solutions.•The structured metric performs differently on different rank fronts.•Once a weight vector is generated, the sub-objective space is divided...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 213; s. 119080
Hlavní autori: Bao, Chunteng, Gao, Diju, Gu, Wei, Xu, Lihong, D.Goodman, Erik
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.03.2023
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •An adaptive decomposition approach is proposed to guide the evolution process.•A structured metric is designed to assess the quality of the candidate solutions.•The structured metric performs differently on different rank fronts.•Once a weight vector is generated, the sub-objective space is divided into two ones. In decomposition-based multi-objective evolutionary algorithms (MOEAs), a set of uniformly distributed reference vectors (RVs) is usually adopted to decompose a multi-objective optimization problem (MOP) into several single-objective sub-problems, and the RVs are fixed during evolution. When it comes to multi-objective optimization problems (MOPs) with complex Pareto fronts (PFs), the effectiveness of the multi-objective evolutionary algorithm (MOEA) may degrade. To solve this problem, this article proposes an adaptive decomposition-based evolutionary algorithm (ADEA) for both multi- and many-objective optimization. In ADEA, the candidate solutions themselves are used as RVs, so that the RVs can be automatically adjusted to the shape of the Pareto front (PF). Also, the RVs are successively generated one by one, and once a reference vector (RV) is generated, the corresponding sub-objective space is dynamically decomposed into two sub-spaces. Moreover, a variable metric is proposed and merged with the proposed adaptive decomposition approach to assist the selection operation in evolutionary many-objective optimization (EMO). The effectiveness of ADEA is compared with several state-of-the-art MOEAs on a variety of benchmark MOPs with up to 15 objectives. The empirical results demonstrate that ADEA has competitive performance on most of the MOPs used in this study.
AbstractList •An adaptive decomposition approach is proposed to guide the evolution process.•A structured metric is designed to assess the quality of the candidate solutions.•The structured metric performs differently on different rank fronts.•Once a weight vector is generated, the sub-objective space is divided into two ones. In decomposition-based multi-objective evolutionary algorithms (MOEAs), a set of uniformly distributed reference vectors (RVs) is usually adopted to decompose a multi-objective optimization problem (MOP) into several single-objective sub-problems, and the RVs are fixed during evolution. When it comes to multi-objective optimization problems (MOPs) with complex Pareto fronts (PFs), the effectiveness of the multi-objective evolutionary algorithm (MOEA) may degrade. To solve this problem, this article proposes an adaptive decomposition-based evolutionary algorithm (ADEA) for both multi- and many-objective optimization. In ADEA, the candidate solutions themselves are used as RVs, so that the RVs can be automatically adjusted to the shape of the Pareto front (PF). Also, the RVs are successively generated one by one, and once a reference vector (RV) is generated, the corresponding sub-objective space is dynamically decomposed into two sub-spaces. Moreover, a variable metric is proposed and merged with the proposed adaptive decomposition approach to assist the selection operation in evolutionary many-objective optimization (EMO). The effectiveness of ADEA is compared with several state-of-the-art MOEAs on a variety of benchmark MOPs with up to 15 objectives. The empirical results demonstrate that ADEA has competitive performance on most of the MOPs used in this study.
ArticleNumber 119080
Author Gao, Diju
D.Goodman, Erik
Gu, Wei
Bao, Chunteng
Xu, Lihong
Author_xml – sequence: 1
  givenname: Chunteng
  surname: Bao
  fullname: Bao, Chunteng
  email: jiuzhe321@163.com
  organization: Key Laboratory Marine Technology and Control Engineering, Ministry of Transport, Shanghai Maritime University, Shanghai, 201306, China
– sequence: 2
  givenname: Diju
  surname: Gao
  fullname: Gao, Diju
  email: djgao@shmtu.edu.cn
  organization: Key Laboratory Marine Technology and Control Engineering, Ministry of Transport, Shanghai Maritime University, Shanghai, 201306, China
– sequence: 3
  givenname: Wei
  surname: Gu
  fullname: Gu, Wei
  email: weigu@shmtu.edu.cn
  organization: Key Laboratory Marine Technology and Control Engineering, Ministry of Transport, Shanghai Maritime University, Shanghai, 201306, China
– sequence: 4
  givenname: Lihong
  surname: Xu
  fullname: Xu, Lihong
  email: xulhk@163.com
  organization: College of Electronics and Information Engineering, Tongji University, Shanghai, 201804, China
– sequence: 5
  givenname: Erik
  surname: D.Goodman
  fullname: D.Goodman, Erik
  email: goodman@egr.msu.edu
  organization: BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
BookMark eNp9kMtqwzAQRUVJoUnaH-hKPyBXD0e2oJsQ-oJAN9kLWRq3CrYVJCch_fraSVddZDEMsziXO2eGJl3oAKFHRjNGmXzaZpCOJuOU84wxRUt6g6asLASRhRITNKVqUZCcFfkdmqW0pZQVlBZT5Ja4gyM2zux6fwDswIZ2F5LvfehIZRI4DIfQ7MfbxBM2zVeIvv9ucR0ibvdN7wk2ncOt6U4kVFuw56Aw5LX-x4zcPbqtTZPg4W_P0eb1ZbN6J-vPt4_Vck2soLQnBkohaKksA2l4JfIqh0rmi2FgoZypeF3lpRNSgQUJypVKcsYZ1ExaZ8Qc8UusjSGlCLXeRd8OpTWjetSkt3rUpEdN-qJpgMp_kPX9uXUfjW-uo88XFIafDh6iTtZDZ8H5OFjQLvhr-C8o3YiE
CitedBy_id crossref_primary_10_1038_s41598_024_55040_6
crossref_primary_10_1002_cpe_8196
crossref_primary_10_1016_j_asoc_2023_110360
crossref_primary_10_1109_TEVC_2023_3345470
crossref_primary_10_1109_ACCESS_2024_3427812
crossref_primary_10_1016_j_asoc_2023_111006
crossref_primary_10_1016_j_eswa_2023_120402
crossref_primary_10_1016_j_eswa_2024_126060
crossref_primary_10_1002_cpe_7704
crossref_primary_10_1016_j_ipm_2025_104267
crossref_primary_10_1109_TCC_2025_3591549
crossref_primary_10_1016_j_eswa_2024_126086
crossref_primary_10_1016_j_swevo_2023_101451
crossref_primary_10_1016_j_swevo_2024_101530
crossref_primary_10_1002_sys_21690
crossref_primary_10_1109_JAS_2024_124545
crossref_primary_10_1016_j_ins_2024_121837
crossref_primary_10_1016_j_ins_2024_121858
crossref_primary_10_1109_ACCESS_2024_3383916
crossref_primary_10_1016_j_ins_2023_119533
crossref_primary_10_1002_cpe_8221
crossref_primary_10_1007_s10614_024_10587_4
crossref_primary_10_1016_j_asoc_2023_110295
crossref_primary_10_26599_TST_2024_9010164
crossref_primary_10_3390_sym16101289
crossref_primary_10_1007_s12065_024_00942_7
crossref_primary_10_1016_j_swevo_2025_101926
crossref_primary_10_1016_j_engappai_2024_109850
crossref_primary_10_1016_j_ins_2024_121364
crossref_primary_10_3390_electronics13153071
crossref_primary_10_1007_s10669_024_09984_9
crossref_primary_10_3390_math11102340
crossref_primary_10_1016_j_eswa_2023_121244
crossref_primary_10_1002_ese3_70241
crossref_primary_10_1016_j_eswa_2025_126675
crossref_primary_10_1016_j_ins_2024_120832
crossref_primary_10_1016_j_eswa_2024_123186
crossref_primary_10_1109_JIOT_2025_3569576
crossref_primary_10_1038_s41598_024_76877_x
Cites_doi 10.1109/TEVC.2015.2420112
10.1109/TEVC.2015.2443001
10.1109/TCYB.2015.2507366
10.1109/TEVC.2013.2281534
10.1109/TEVC.2018.2883094
10.1162/106365600568202
10.1109/TEVC.2014.2378512
10.1109/TCYB.2017.2737519
10.1109/TEVC.2019.2915767
10.1109/TEVC.2016.2587808
10.1109/TEVC.2015.2455812
10.1109/ICNC.2011.6022367
10.1109/4235.797969
10.1109/TEVC.2018.2866854
10.1109/TEVC.2016.2519378
10.1016/j.swevo.2017.01.002
10.1016/j.ins.2020.06.028
10.1109/TCYB.2016.2638902
10.1109/TEVC.2016.2592479
10.1109/TEVC.2014.2308305
10.1109/TEVC.2013.2281535
10.1162/EVCO_a_00109
10.1109/TEVC.2013.2281533
10.1109/TEVC.2014.2373386
10.1109/TEVC.2010.2077298
10.1109/ACCESS.2017.2751071
10.1109/TEVC.2018.2848921
10.1109/TEVC.2007.892759
10.1109/TEVC.2020.3020046
10.1162/EVCO_a_00009
10.1109/TEVC.2017.2725902
10.1145/1527125.1527138
10.1109/TEVC.2020.2964705
10.1109/TEVC.2005.861417
10.1016/j.ins.2021.01.015
10.1137/S1052623496307510
10.1016/j.ejor.2006.08.008
10.1109/TEVC.2017.2749619
10.1109/TEVC.2015.2395073
10.1109/TEVC.2020.2991040
10.1109/TEVC.2016.2587749
10.1016/j.ins.2018.07.012
10.1109/TEVC.2020.3035825
10.1109/TEVC.2020.3016049
10.1109/TEVC.2017.2695579
10.1109/TEVC.2003.810758
10.1109/TEVC.2019.2909271
10.1109/4235.996017
10.1109/TCYB.2013.2247594
10.1007/978-3-319-45823-6_76
10.1109/TCYB.2017.2737554
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2022.119080
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_119080
S095741742202098X
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-ae833089c1e6a2b34b4eb645b64e59dab2fb48d369ece6e9d8962121ef16cda3
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000890594500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 07:07:01 EST 2025
Tue Nov 18 21:12:14 EST 2025
Fri Feb 23 02:38:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pareto front
Many-objective optimization
Multi-objective evolutionary algorithm
Adaptive decomposition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-ae833089c1e6a2b34b4eb645b64e59dab2fb48d369ece6e9d8962121ef16cda3
ParticipantIDs crossref_primary_10_1016_j_eswa_2022_119080
crossref_citationtrail_10_1016_j_eswa_2022_119080
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_119080
PublicationCentury 2000
PublicationDate 2023-03-01
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Schott (b0155) 1995
Auger, A., Bader, J., Brockhoff, D., & Zitzler, E. (2009, January). Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point.
Deb, Jain (b0065) 2014; 18
Wang, Zhang, Li, Ishibuchi, Jiao (b0205) 2017; 34
Yuan, Xu, Wang, Yao (b0225) 2016; 20
Qi, Ma, Liu, Jiao, Sun, Wu (b0150) 2014; 22
Xiang, Zhou, Li, Chen (b0215) 2017; 21
Liu, Chen, Zhang, Deb (b0120) 2018; 22
Cheng, R., Li, M., Tian, Y., Zhang, X., Jin, Y., & Yao, X. (2017, June).
Gu, Cheung (b0080) 2018; 22
Ma, Liu, Qi, Wang, Li, Jiao, Gong (b0135) 2016; 20
Beume, Naujoks, Emmerich (b0020) 2007; 181
Zhang, Tian, Cheng, Jin (b0250) 2015; 19
pp. 87-102
Wang, Yao (b0200) 2014; 44
Zhang, Li (b0245) 2007; 11
.
Shanghai, China.
Shang, Ishibuchi, Ni (b0165) 2020; 24
Cai, Xiao, Li, Hu, Ishibuchi, Li (b0030) 2021; 25
Jiang, S., Cai, Z., Zhang, J., & Ong, Y. S. (2011, July). Multiobjective optimization by decomposition with Pareto-adaptive weight vectors.
https://doi.org/10.1145/1527125.1527138.
Zhao, Zhang, Zhang (b0260) 2020; 540
Jiang, Yang (b0105) 2017; 21
Tomczyk, Kadziński (b0195) 2020; 24
San Francisco.
Zhang, Tian, Jin (b0255) 2015; 19
Zitzler, Thiele (b0285) 1999; 3
Tanabe, Ishibuchi, Oyama (b0180) 2017; 5
Singh, Bhattacharjee, Ray (b0170) 2019; 23
Tian, Cheng, Zhang, Su, Jin (b0190) 2019; 23
Cheng, Jin, Narukawa, Sendhoff (b0035) 2015; 19
Jain, Deb (b0100) 2014; 18
Pamulapati, Mallipeddi, Suganthan (b0140) 2019; 23
Li, Deb, Zhang, Kwong (b0115) 2015; 19
While, Bradstreet, Barone (b0210) 2012; 16
Zitzler, Künzli (b0275) 2004, September
Zitzler, Deb, Thiele (b0270) 2000; 8
Xu, Xue, Zhang (b0220) 2021; 25
Bader, Zitzler (b0015) 2011; 19
Asafuddoula, Singh, Ray (b0005) 2018; 48
Liu, Gong, Sun, Jin (b0130) 2017; 47
Edinburgh, United kingdom. https://doi.org/10.1007/978-3-319-45823-6_76.
Tian, Cheng, Zhang, Cheng, Jin (b0185) 2018; 22
Zhang, Li, Li, Chen (b0240) 2021; 25
Liu, Gu, Zhang (b0125) 2014; 18
Das, Dennis (b0055) 1998; 8
Corne, D. W., Jerram, N. R., Knowles, J. D., & Oates, M. J. (2001, July). PESA-II: Region-based selection in evolutionary multiobjective optimization.
Cai, Mei, Fan (b0025) 2018; 48
San Sebastián, Spain.
Zhang, Wang, Li, Hu, Li, Wu (b0235) 2021; 563
Huband, Hingston, Barone, While (b0090) 2006; 10
H. Ishibuchi S. Yu H. Masuda Y. Nojima Performance of Decomposition-Based Many-Objective Algorithms Strongly Depends on Pareto Front Shapes IEEE Transactions on Evolutionary Computation 21 2 2017 169 190 https://doi.org/ 10.1109/TEVC.2016.2587749.
Deb, Thiele, Laumanns, Zitzler (b0075) 2005
Li, Zhang, Deng (b0110) 2017; 47
Zitzler, Thiele, Laumanns, Fonseca, Da Fonseca (b0290) 2003; 7
Cheng, Jin, Olhofer, Sendhoff (b0040) 2016; 20
Picard, Schiffmann (b0145) 2021; 25
Shang, Ishibuchi (b0160) 2020; 24
Guerreiro, A. P., & Fonseca, C. M. (2016, September). Hypervolume sharpe-ratio indicator: Formalization and first theoretical results.
Deb, Agrawal (b0060) 1995; 9
Deb, Pratap, Agarwal, Meyarivan (b0070) 2002; 6
Yuan, Xu, Wang, Zhang, Yao (b0230) 2016; 20
Zhou, Dai, Zhang, Li, Ma (b0265) 2018; 465
Jiang (10.1016/j.eswa.2022.119080_b0105) 2017; 21
Tanabe (10.1016/j.eswa.2022.119080_b0180) 2017; 5
Zitzler (10.1016/j.eswa.2022.119080_b0275) 2004
Ma (10.1016/j.eswa.2022.119080_b0135) 2016; 20
Zhang (10.1016/j.eswa.2022.119080_b0240) 2021; 25
Shang (10.1016/j.eswa.2022.119080_b0165) 2020; 24
Zhang (10.1016/j.eswa.2022.119080_b0250) 2015; 19
Xu (10.1016/j.eswa.2022.119080_b0220) 2021; 25
10.1016/j.eswa.2022.119080_b0010
Cai (10.1016/j.eswa.2022.119080_b0030) 2021; 25
10.1016/j.eswa.2022.119080_b0175
Singh (10.1016/j.eswa.2022.119080_b0170) 2019; 23
10.1016/j.eswa.2022.119080_b0095
10.1016/j.eswa.2022.119080_b0050
Tomczyk (10.1016/j.eswa.2022.119080_b0195) 2020; 24
Tian (10.1016/j.eswa.2022.119080_b0185) 2018; 22
Zitzler (10.1016/j.eswa.2022.119080_b0285) 1999; 3
Picard (10.1016/j.eswa.2022.119080_b0145) 2021; 25
Pamulapati (10.1016/j.eswa.2022.119080_b0140) 2019; 23
Gu (10.1016/j.eswa.2022.119080_b0080) 2018; 22
Tian (10.1016/j.eswa.2022.119080_b0190) 2019; 23
Zhang (10.1016/j.eswa.2022.119080_b0235) 2021; 563
Zitzler (10.1016/j.eswa.2022.119080_b0290) 2003; 7
Yuan (10.1016/j.eswa.2022.119080_b0230) 2016; 20
Zhao (10.1016/j.eswa.2022.119080_b0260) 2020; 540
Wang (10.1016/j.eswa.2022.119080_b0205) 2017; 34
Asafuddoula (10.1016/j.eswa.2022.119080_b0005) 2018; 48
Deb (10.1016/j.eswa.2022.119080_b0070) 2002; 6
Liu (10.1016/j.eswa.2022.119080_b0130) 2017; 47
Qi (10.1016/j.eswa.2022.119080_b0150) 2014; 22
Beume (10.1016/j.eswa.2022.119080_b0020) 2007; 181
Li (10.1016/j.eswa.2022.119080_b0115) 2015; 19
Zhou (10.1016/j.eswa.2022.119080_b0265) 2018; 465
Zitzler (10.1016/j.eswa.2022.119080_b0270) 2000; 8
Yuan (10.1016/j.eswa.2022.119080_b0225) 2016; 20
Cheng (10.1016/j.eswa.2022.119080_b0040) 2016; 20
Zhang (10.1016/j.eswa.2022.119080_b0255) 2015; 19
Liu (10.1016/j.eswa.2022.119080_b0125) 2014; 18
Huband (10.1016/j.eswa.2022.119080_b0090) 2006; 10
Xiang (10.1016/j.eswa.2022.119080_b0215) 2017; 21
Cheng (10.1016/j.eswa.2022.119080_b0035) 2015; 19
Cai (10.1016/j.eswa.2022.119080_b0025) 2018; 48
Deb (10.1016/j.eswa.2022.119080_b0075) 2005
Schott (10.1016/j.eswa.2022.119080_b0155) 1995
While (10.1016/j.eswa.2022.119080_b0210) 2012; 16
Jain (10.1016/j.eswa.2022.119080_b0100) 2014; 18
Wang (10.1016/j.eswa.2022.119080_b0200) 2014; 44
Shang (10.1016/j.eswa.2022.119080_b0160) 2020; 24
Liu (10.1016/j.eswa.2022.119080_b0120) 2018; 22
Li (10.1016/j.eswa.2022.119080_b0110) 2017; 47
10.1016/j.eswa.2022.119080_b0045
10.1016/j.eswa.2022.119080_b0085
Deb (10.1016/j.eswa.2022.119080_b0065) 2014; 18
Das (10.1016/j.eswa.2022.119080_b0055) 1998; 8
Bader (10.1016/j.eswa.2022.119080_b0015) 2011; 19
Zhang (10.1016/j.eswa.2022.119080_b0245) 2007; 11
Deb (10.1016/j.eswa.2022.119080_b0060) 1995; 9
References_xml – volume: 10
  start-page: 477
  year: 2006
  end-page: 506
  ident: b0090
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 20
  start-page: 16
  year: 2016
  end-page: 37
  ident: b0225
  article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 16
  start-page: 86
  year: 2012
  end-page: 95
  ident: b0210
  article-title: A fast way of calculating exact hypervolumes
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 5
  start-page: 19597
  year: 2017
  end-page: 19619
  ident: b0180
  article-title: Benchmarking Multi- and Many-Objective Evolutionary Algorithms Under Two Optimization Scenarios
  publication-title: IEEE Access
– volume: 23
  start-page: 331
  year: 2019
  end-page: 345
  ident: b0190
  article-title: A Strengthened Dominance Relation Considering Convergence and Diversity for Evolutionary Many-Objective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 19
  start-page: 761
  year: 2015
  end-page: 776
  ident: b0255
  article-title: A Knee Point-Driven Evolutionary Algorithm for Many-Objective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 21
  start-page: 329
  year: 2017
  end-page: 346
  ident: b0105
  article-title: A strength pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 540
  start-page: 435
  year: 2020
  end-page: 448
  ident: b0260
  article-title: A decomposition-based many-objective ant colony optimization algorithm with adaptive reference points
  publication-title: Information Sciences
– volume: 9
  start-page: 115
  year: 1995
  end-page: 148
  ident: b0060
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Systems
– volume: 47
  start-page: 52
  year: 2017
  end-page: 66
  ident: b0110
  article-title: Biased Multiobjective Optimization and Decomposition Algorithm
  publication-title: IEEE Transactions on Cybernetics
– volume: 19
  start-page: 694
  year: 2015
  end-page: 716
  ident: b0115
  article-title: An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 34
  start-page: 89
  year: 2017
  end-page: 102
  ident: b0205
  article-title: On the use of two reference points in decomposition based multiobjective evolutionary algorithms
  publication-title: Swarm and Evolutionary Computation
– volume: 19
  start-page: 45
  year: 2011
  end-page: 76
  ident: b0015
  article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evolutionary Computation
– reference: , Edinburgh, United kingdom. https://doi.org/10.1007/978-3-319-45823-6_76.
– reference: Cheng, R., Li, M., Tian, Y., Zhang, X., Jin, Y., & Yao, X. (2017, June).
– reference: . San Sebastián, Spain.
– volume: 465
  start-page: 232
  year: 2018
  end-page: 247
  ident: b0265
  article-title: Entropy based evolutionary algorithm with adaptive reference points for many-objective optimization problems
  publication-title: Information Sciences
– volume: 23
  start-page: 904
  year: 2019
  end-page: 912
  ident: b0170
  article-title: Distance-Based Subset Selection for Benchmarking in Evolutionary Multi/Many-Objective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 20
  start-page: 180
  year: 2016
  end-page: 198
  ident: b0230
  article-title: Balancing Convergence and Diversity in Decomposition-Based Many-Objective Optimizers
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: Auger, A., Bader, J., Brockhoff, D., & Zitzler, E. (2009, January). Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point.
– volume: 22
  start-page: 433
  year: 2018
  end-page: 448
  ident: b0120
  article-title: Adaptively Allocating Search Effort in Challenging Many-Objective Optimization Problems
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 20
  start-page: 773
  year: 2016
  end-page: 791
  ident: b0040
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 48
  start-page: 2321
  year: 2018
  end-page: 2334
  ident: b0005
  article-title: An enhanced decomposition-based evolutionary algorithm with adaptive reference vectors
  publication-title: IEEE Transactions on Cybernetics
– volume: 47
  start-page: 2689
  year: 2017
  end-page: 2702
  ident: b0130
  article-title: A Many-Objective Evolutionary Algorithm Using A One-by-One Selection Strategy
  publication-title: IEEE Transactions on Cybernetics
– year: 1995
  ident: b0155
  article-title: Fault tolerant design using single and multicriteria genetic algorithm optimization
– volume: 21
  start-page: 131
  year: 2017
  end-page: 152
  ident: b0215
  article-title: A Vector Angle-Based Evolutionary Algorithm for Unconstrained Many-Objective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b0245
  article-title: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 19
  start-page: 201
  year: 2015
  end-page: 213
  ident: b0250
  article-title: An Efficient Approach to Nondominated Sorting for Evolutionary Multiobjective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 181
  start-page: 1653
  year: 2007
  end-page: 1669
  ident: b0020
  article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume
  publication-title: European Journal of Operational Research
– reference: https://doi.org/10.1145/1527125.1527138.
– reference: Guerreiro, A. P., & Fonseca, C. M. (2016, September). Hypervolume sharpe-ratio indicator: Formalization and first theoretical results.
– volume: 18
  start-page: 450
  year: 2014
  end-page: 455
  ident: b0125
  article-title: Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective Subproblems
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: b0285
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 24
  start-page: 839
  year: 2020
  end-page: 852
  ident: b0160
  article-title: A New Hypervolume-Based Evolutionary Algorithm for Many-Objective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 563
  start-page: 70
  year: 2021
  end-page: 90
  ident: b0235
  article-title: Many-Objective Evolutionary Algorithm with Adaptive Reference Vector
  publication-title: Information Sciences
– volume: 24
  start-page: 320
  year: 2020
  end-page: 334
  ident: b0195
  article-title: Decomposition-Based Interactive Evolutionary Algorithm for Multiple Objective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 48
  start-page: 1
  year: 2018
  end-page: 14
  ident: b0025
  article-title: A Decomposition-Based Many-Objective Evolutionary Algorithm With Two Types of Adjustments for Direction Vectors
  publication-title: IEEE Transactions on Cybernetics
– reference: (pp. 87-102)
– volume: 25
  start-page: 21
  year: 2021
  end-page: 34
  ident: b0030
  article-title: A Grid-Based Inverted Generational Distance for Multi/Many-Objective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 8
  start-page: 631
  year: 1998
  end-page: 657
  ident: b0055
  article-title: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM Journal on Optimization
– volume: 22
  start-page: 609
  year: 2018
  end-page: 622
  ident: b0185
  article-title: An Indicator-Based Multiobjective Evolutionary Algorithm With Reference Point Adaptation for Better Versatility
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 25
  start-page: 205
  year: 2021
  end-page: 218
  ident: b0220
  article-title: A Duplication Analysis-Based Evolutionary Algorithm for Biobjective Feature Selection
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: Corne, D. W., Jerram, N. R., Knowles, J. D., & Oates, M. J. (2001, July). PESA-II: Region-based selection in evolutionary multiobjective optimization.
– volume: 23
  start-page: 346
  year: 2019
  end-page: 352
  ident: b0140
  article-title: —An Indicator for Multi and Many-Objective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 25
  start-page: 234
  year: 2021
  end-page: 246
  ident: b0145
  article-title: Realistic Constrained Multiobjective Optimization Benchmark Problems From Design
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 22
  start-page: 211
  year: 2018
  end-page: 225
  ident: b0080
  article-title: Self-Organizing Map-Based Weight Design for Decomposition-Based Many-Objective Evolutionary Algorithm
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 20
  start-page: 275
  year: 2016
  end-page: 298
  ident: b0135
  article-title: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 44
  start-page: 92
  year: 2014
  end-page: 102
  ident: b0200
  article-title: Corner Sort for Pareto-Based Many-Objective Optimization
  publication-title: IEEE Transactions on Cybernetics
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: b0065
  article-title: An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 105
  year: 2005
  end-page: 145
  ident: b0075
  article-title: Scalable test problems for evolutionary multiobjective optimization
  publication-title: Evolutionary Multiobjective Optimization
– reference: H. Ishibuchi S. Yu H. Masuda Y. Nojima Performance of Decomposition-Based Many-Objective Algorithms Strongly Depends on Pareto Front Shapes IEEE Transactions on Evolutionary Computation 21 2 2017 169 190 https://doi.org/ 10.1109/TEVC.2016.2587749.
– volume: 7
  start-page: 117
  year: 2003
  end-page: 132
  ident: b0290
  article-title: Performance assessment of multiobjective optimizers: An analysis and review
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0070
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 19
  start-page: 838
  year: 2015
  end-page: 856
  ident: b0035
  article-title: A Multiobjective Evolutionary Algorithm Using Gaussian Process-Based Inverse Modeling
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 25
  start-page: 334
  year: 2021
  end-page: 345
  ident: b0240
  article-title: A New Many-Objective Evolutionary Algorithm Based on Determinantal Point Processes
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 8
  start-page: 173
  year: 2000
  end-page: 195
  ident: b0270
  article-title: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results
  publication-title: Evolutionary Computation
– reference: .
– volume: 22
  start-page: 231
  year: 2014
  end-page: 264
  ident: b0150
  article-title: MOEA/D with adaptive weight adjustment
  publication-title: Evolutionary Computation
– volume: 18
  start-page: 602
  year: 2014
  end-page: 622
  ident: b0100
  article-title: An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 24
  start-page: 185
  year: 2020
  end-page: 192
  ident: b0165
  article-title: R2-Based Hypervolume Contribution Approximation
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: , San Francisco.
– start-page: 832
  year: 2004, September
  end-page: 842
  ident: b0275
  article-title: Indicator-based selection in multiobjective search
  publication-title: International Conference on Parallel Problem Solving from Nature
– reference: , Shanghai, China.
– reference: Jiang, S., Cai, Z., Zhang, J., & Ong, Y. S. (2011, July). Multiobjective optimization by decomposition with Pareto-adaptive weight vectors.
– volume: 20
  start-page: 16
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2022.119080_b0225
  article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2015.2420112
– volume: 20
  start-page: 180
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2022.119080_b0230
  article-title: Balancing Convergence and Diversity in Decomposition-Based Many-Objective Optimizers
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2015.2443001
– volume: 9
  start-page: 115
  issue: 2
  year: 1995
  ident: 10.1016/j.eswa.2022.119080_b0060
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Systems
– volume: 47
  start-page: 52
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2022.119080_b0110
  article-title: Biased Multiobjective Optimization and Decomposition Algorithm
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2015.2507366
– volume: 18
  start-page: 602
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2022.119080_b0100
  article-title: An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281534
– volume: 23
  start-page: 904
  issue: 5
  year: 2019
  ident: 10.1016/j.eswa.2022.119080_b0170
  article-title: Distance-Based Subset Selection for Benchmarking in Evolutionary Multi/Many-Objective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2018.2883094
– volume: 8
  start-page: 173
  issue: 2
  year: 2000
  ident: 10.1016/j.eswa.2022.119080_b0270
  article-title: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568202
– volume: 19
  start-page: 761
  issue: 6
  year: 2015
  ident: 10.1016/j.eswa.2022.119080_b0255
  article-title: A Knee Point-Driven Evolutionary Algorithm for Many-Objective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2014.2378512
– volume: 48
  start-page: 2321
  issue: 8
  year: 2018
  ident: 10.1016/j.eswa.2022.119080_b0005
  article-title: An enhanced decomposition-based evolutionary algorithm with adaptive reference vectors
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2017.2737519
– volume: 24
  start-page: 320
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2022.119080_b0195
  article-title: Decomposition-Based Interactive Evolutionary Algorithm for Multiple Objective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2019.2915767
– volume: 21
  start-page: 131
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2022.119080_b0215
  article-title: A Vector Angle-Based Evolutionary Algorithm for Unconstrained Many-Objective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2016.2587808
– volume: 20
  start-page: 275
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2022.119080_b0135
  article-title: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2015.2455812
– ident: 10.1016/j.eswa.2022.119080_b0175
  doi: 10.1109/ICNC.2011.6022367
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.eswa.2022.119080_b0285
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.797969
– volume: 23
  start-page: 331
  issue: 2
  year: 2019
  ident: 10.1016/j.eswa.2022.119080_b0190
  article-title: A Strengthened Dominance Relation Considering Convergence and Diversity for Evolutionary Many-Objective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2018.2866854
– volume: 20
  start-page: 773
  issue: 5
  year: 2016
  ident: 10.1016/j.eswa.2022.119080_b0040
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2016.2519378
– year: 1995
  ident: 10.1016/j.eswa.2022.119080_b0155
– volume: 34
  start-page: 89
  year: 2017
  ident: 10.1016/j.eswa.2022.119080_b0205
  article-title: On the use of two reference points in decomposition based multiobjective evolutionary algorithms
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2017.01.002
– volume: 540
  start-page: 435
  year: 2020
  ident: 10.1016/j.eswa.2022.119080_b0260
  article-title: A decomposition-based many-objective ant colony optimization algorithm with adaptive reference points
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.06.028
– volume: 47
  start-page: 2689
  issue: 9
  year: 2017
  ident: 10.1016/j.eswa.2022.119080_b0130
  article-title: A Many-Objective Evolutionary Algorithm Using A One-by-One Selection Strategy
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2016.2638902
– ident: 10.1016/j.eswa.2022.119080_b0045
– volume: 21
  start-page: 329
  issue: 3
  year: 2017
  ident: 10.1016/j.eswa.2022.119080_b0105
  article-title: A strength pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2016.2592479
– volume: 19
  start-page: 201
  issue: 2
  year: 2015
  ident: 10.1016/j.eswa.2022.119080_b0250
  article-title: An Efficient Approach to Nondominated Sorting for Evolutionary Multiobjective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2014.2308305
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2022.119080_b0065
  article-title: An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281535
– volume: 22
  start-page: 231
  issue: 2
  year: 2014
  ident: 10.1016/j.eswa.2022.119080_b0150
  article-title: MOEA/D with adaptive weight adjustment
  publication-title: Evolutionary Computation
  doi: 10.1162/EVCO_a_00109
– volume: 18
  start-page: 450
  issue: 3
  year: 2014
  ident: 10.1016/j.eswa.2022.119080_b0125
  article-title: Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective Subproblems
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281533
– start-page: 105
  year: 2005
  ident: 10.1016/j.eswa.2022.119080_b0075
  article-title: Scalable test problems for evolutionary multiobjective optimization
– volume: 19
  start-page: 694
  issue: 5
  year: 2015
  ident: 10.1016/j.eswa.2022.119080_b0115
  article-title: An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2014.2373386
– volume: 16
  start-page: 86
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2022.119080_b0210
  article-title: A fast way of calculating exact hypervolumes
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2010.2077298
– volume: 5
  start-page: 19597
  year: 2017
  ident: 10.1016/j.eswa.2022.119080_b0180
  article-title: Benchmarking Multi- and Many-Objective Evolutionary Algorithms Under Two Optimization Scenarios
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2751071
– volume: 23
  start-page: 346
  issue: 2
  year: 2019
  ident: 10.1016/j.eswa.2022.119080_b0140
  article-title: ISDE+—An Indicator for Multi and Many-Objective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2018.2848921
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.eswa.2022.119080_b0245
  article-title: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.892759
– volume: 25
  start-page: 234
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2022.119080_b0145
  article-title: Realistic Constrained Multiobjective Optimization Benchmark Problems From Design
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2020.3020046
– volume: 19
  start-page: 45
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2022.119080_b0015
  article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evolutionary Computation
  doi: 10.1162/EVCO_a_00009
– volume: 22
  start-page: 433
  issue: 3
  year: 2018
  ident: 10.1016/j.eswa.2022.119080_b0120
  article-title: Adaptively Allocating Search Effort in Challenging Many-Objective Optimization Problems
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2017.2725902
– ident: 10.1016/j.eswa.2022.119080_b0010
  doi: 10.1145/1527125.1527138
– volume: 24
  start-page: 839
  issue: 5
  year: 2020
  ident: 10.1016/j.eswa.2022.119080_b0160
  article-title: A New Hypervolume-Based Evolutionary Algorithm for Many-Objective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2020.2964705
– volume: 10
  start-page: 477
  issue: 5
  year: 2006
  ident: 10.1016/j.eswa.2022.119080_b0090
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.861417
– volume: 563
  start-page: 70
  year: 2021
  ident: 10.1016/j.eswa.2022.119080_b0235
  article-title: Many-Objective Evolutionary Algorithm with Adaptive Reference Vector
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.01.015
– volume: 8
  start-page: 631
  issue: 3
  year: 1998
  ident: 10.1016/j.eswa.2022.119080_b0055
  article-title: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/S1052623496307510
– volume: 181
  start-page: 1653
  issue: 3
  year: 2007
  ident: 10.1016/j.eswa.2022.119080_b0020
  article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.08.008
– start-page: 832
  year: 2004
  ident: 10.1016/j.eswa.2022.119080_b0275
  article-title: Indicator-based selection in multiobjective search
– volume: 22
  start-page: 609
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2022.119080_b0185
  article-title: An Indicator-Based Multiobjective Evolutionary Algorithm With Reference Point Adaptation for Better Versatility
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2017.2749619
– volume: 19
  start-page: 838
  issue: 6
  year: 2015
  ident: 10.1016/j.eswa.2022.119080_b0035
  article-title: A Multiobjective Evolutionary Algorithm Using Gaussian Process-Based Inverse Modeling
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2015.2395073
– ident: 10.1016/j.eswa.2022.119080_b0050
– volume: 25
  start-page: 21
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.119080_b0030
  article-title: A Grid-Based Inverted Generational Distance for Multi/Many-Objective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2020.2991040
– ident: 10.1016/j.eswa.2022.119080_b0095
  doi: 10.1109/TEVC.2016.2587749
– volume: 465
  start-page: 232
  year: 2018
  ident: 10.1016/j.eswa.2022.119080_b0265
  article-title: Entropy based evolutionary algorithm with adaptive reference points for many-objective optimization problems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.07.012
– volume: 25
  start-page: 334
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2022.119080_b0240
  article-title: A New Many-Objective Evolutionary Algorithm Based on Determinantal Point Processes
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2020.3035825
– volume: 25
  start-page: 205
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2022.119080_b0220
  article-title: A Duplication Analysis-Based Evolutionary Algorithm for Biobjective Feature Selection
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2020.3016049
– volume: 22
  start-page: 211
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2022.119080_b0080
  article-title: Self-Organizing Map-Based Weight Design for Decomposition-Based Many-Objective Evolutionary Algorithm
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2017.2695579
– volume: 7
  start-page: 117
  issue: 2
  year: 2003
  ident: 10.1016/j.eswa.2022.119080_b0290
  article-title: Performance assessment of multiobjective optimizers: An analysis and review
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2003.810758
– volume: 24
  start-page: 185
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2022.119080_b0165
  article-title: R2-Based Hypervolume Contribution Approximation
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2019.2909271
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.eswa.2022.119080_b0070
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 44
  start-page: 92
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2022.119080_b0200
  article-title: Corner Sort for Pareto-Based Many-Objective Optimization
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2013.2247594
– ident: 10.1016/j.eswa.2022.119080_b0085
  doi: 10.1007/978-3-319-45823-6_76
– volume: 48
  start-page: 1
  issue: 8
  year: 2018
  ident: 10.1016/j.eswa.2022.119080_b0025
  article-title: A Decomposition-Based Many-Objective Evolutionary Algorithm With Two Types of Adjustments for Direction Vectors
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2017.2737554
SSID ssj0017007
Score 2.5681694
Snippet •An adaptive decomposition approach is proposed to guide the evolution process.•A structured metric is designed to assess the quality of the candidate...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119080
SubjectTerms Adaptive decomposition
Many-objective optimization
Multi-objective evolutionary algorithm
Pareto front
Title A new adaptive decomposition-based evolutionary algorithm for multi- and many-objective optimization
URI https://dx.doi.org/10.1016/j.eswa.2022.119080
Volume 213
WOSCitedRecordID wos000890594500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgcuvBHLSz5wq7zKw3GcYwWLAKEVhwr1Ftmxs23VJlU3KSvx5xnHdpouy4o9cEgUWbFrdT5NZsbfzCD0vgTXH9ySmID3kxFaiIBwzUpSmEbwHKQuu1yYH9_S83M-m2XfR6NfPhdmt0qril9dZZv_KmoYA2Gb1Nk7iLtfFAbgGYQOdxA73P9J8BPTJXwslNh0rCClDWvcUbOI-Wipsd65HRjKnFhd1NtFM193jMOOYEi6I4U16AlSy6VVieMa1lu7rM2DeL4plty4ktA-WW5wLL6Pldqo7Lw1rPmLnvhjhz8ulm0_1HbMP73wA7PWhg_mtZvnwhQg_J6n1ccbU0JD25LHq94ojAfKMwTjxLZ1-kOv2xDD8lRf_jTFoqLodP_yYRHtax-3nnLo2WzL3KyRmzVyu8Y9dBylSQYq8Xjy5Wz2tT-ESgObbe937nKuLD3w-k5utmsGtsr0MXronAw8seB4gka6eooe-QYe2OnzZ0hNMGAFe6zgG7CCh1jBPVYwYAVbrGDACj7ECh5i5TmafjqbfvhMXNsNUsRB0BCheRwHPCtCzUQkYyqplowmcOkkU0JGpaRcxSzThWY6UzxjYACFugxZoUT8Ah1VdaVfIpyUSoJ7nWrBGQ0DLhJJqQYnVVJWlJqdoND_Z3nhStKbziir_O_SOkHjfs7GFmS59e3EiyJ3JqU1FXNA1i3zXt3pV16jB3vIv0FHzbbVb9H9YtcsLrfvHKx-A0szmwU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+adaptive+decomposition-based+evolutionary+algorithm+for+multi-+and+many-objective+optimization&rft.jtitle=Expert+systems+with+applications&rft.au=Bao%2C+Chunteng&rft.au=Gao%2C+Diju&rft.au=Gu%2C+Wei&rft.au=Xu%2C+Lihong&rft.date=2023-03-01&rft.issn=0957-4174&rft.volume=213&rft.spage=119080&rft_id=info:doi/10.1016%2Fj.eswa.2022.119080&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2022_119080
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon