SEAMS: A surrogate-assisted evolutionary algorithm with metric-based dynamic strategy for expensive multi-objective optimization

In real-world scenarios where resources for evaluating expensive optimization problems are limited and the reliability of trained models is hard to assess, the quality of the non-dominated front formed by algorithms tends to be low. This paper proposes a metric-based surrogate-assisted evolutionary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 265; S. 126050
Hauptverfasser: Liu, Haitao, Wang, Chia-Hung
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.03.2025
Schlagworte:
ISSN:0957-4174
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!