SEAMS: A surrogate-assisted evolutionary algorithm with metric-based dynamic strategy for expensive multi-objective optimization
In real-world scenarios where resources for evaluating expensive optimization problems are limited and the reliability of trained models is hard to assess, the quality of the non-dominated front formed by algorithms tends to be low. This paper proposes a metric-based surrogate-assisted evolutionary...
Uloženo v:
| Vydáno v: | Expert systems with applications Ročník 265; s. 126050 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.03.2025
|
| Témata: | |
| ISSN: | 0957-4174 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!