SEAMS: A surrogate-assisted evolutionary algorithm with metric-based dynamic strategy for expensive multi-objective optimization
In real-world scenarios where resources for evaluating expensive optimization problems are limited and the reliability of trained models is hard to assess, the quality of the non-dominated front formed by algorithms tends to be low. This paper proposes a metric-based surrogate-assisted evolutionary...
Saved in:
| Published in: | Expert systems with applications Vol. 265; p. 126050 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
15.03.2025
|
| Subjects: | |
| ISSN: | 0957-4174 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In real-world scenarios where resources for evaluating expensive optimization problems are limited and the reliability of trained models is hard to assess, the quality of the non-dominated front formed by algorithms tends to be low. This paper proposes a metric-based surrogate-assisted evolutionary algorithm for multi-objective expensive optimization, incorporating a novel model management strategy that integrates a regeneration mechanism. This approach aims to achieve a well-balanced convergence and diversity, facilitating the attainment of high-quality non-dominated fronts to address expensive multi-objective optimization problems. The model management strategy, based on metrics, comprehensively evaluates the reliability of the classification model and selects appropriate strategies for offspring selection. Moreover, through significance analysis of the population, the regeneration mechanism identifies high-quality dimensions for regenerating offspring. The algorithm maximizes the utilization of the classification model to guide the generation and selection of offspring in the population. Experiments on DTLZ, MaF, WFG, and the high-dimensional portfolio optimization problem demonstrate that the proposed algorithm outperforms nine state-of-the-art surrogate-assisted evolutionary algorithms, highlighting its superior performance across various scenarios.
[Display omitted]
•Propose a surrogate-assisted algorithm for expensive multi-objective optimization.•Apply dynamic offspring selection based on metrics in the optimization process.•Introduce an offspring regeneration mechanism for better model and population use.•Enhance diversity with linear weight-assisted generic front modeling.•Achieve better non-dominated fronts on DTLZ, MaF, and WFG open datasets. |
|---|---|
| AbstractList | In real-world scenarios where resources for evaluating expensive optimization problems are limited and the reliability of trained models is hard to assess, the quality of the non-dominated front formed by algorithms tends to be low. This paper proposes a metric-based surrogate-assisted evolutionary algorithm for multi-objective expensive optimization, incorporating a novel model management strategy that integrates a regeneration mechanism. This approach aims to achieve a well-balanced convergence and diversity, facilitating the attainment of high-quality non-dominated fronts to address expensive multi-objective optimization problems. The model management strategy, based on metrics, comprehensively evaluates the reliability of the classification model and selects appropriate strategies for offspring selection. Moreover, through significance analysis of the population, the regeneration mechanism identifies high-quality dimensions for regenerating offspring. The algorithm maximizes the utilization of the classification model to guide the generation and selection of offspring in the population. Experiments on DTLZ, MaF, WFG, and the high-dimensional portfolio optimization problem demonstrate that the proposed algorithm outperforms nine state-of-the-art surrogate-assisted evolutionary algorithms, highlighting its superior performance across various scenarios.
[Display omitted]
•Propose a surrogate-assisted algorithm for expensive multi-objective optimization.•Apply dynamic offspring selection based on metrics in the optimization process.•Introduce an offspring regeneration mechanism for better model and population use.•Enhance diversity with linear weight-assisted generic front modeling.•Achieve better non-dominated fronts on DTLZ, MaF, and WFG open datasets. |
| ArticleNumber | 126050 |
| Author | Liu, Haitao Wang, Chia-Hung |
| Author_xml | – sequence: 1 givenname: Haitao orcidid: 0009-0005-6946-8597 surname: Liu fullname: Liu, Haitao email: 2221308054@smail.fjut.edu.cn organization: College of Computer Science and Mathematics, Fujian University of Technology, Fujian 350118, China – sequence: 2 givenname: Chia-Hung orcidid: 0000-0001-5700-8108 surname: Wang fullname: Wang, Chia-Hung email: 61201506@fjut.edu.cn organization: College of Computer Science and Mathematics, Fujian University of Technology, Fujian 350118, China |
| BookMark | eNp9kM1OAjEURrvAREBfwFVfYPC2w0zBuCEEfxKMC3TddNo7WDIzJW0BceWjOyOuXLDpTZN7vtzvDEivcQ0ScsNgxIDlt5sRhoMaceDjEeM5ZNAjfZhmIhkzMb4kgxA2AEwAiD75Xi1mL6s7OqNh571bq4iJCsGGiIbi3lW7aF2j_JGqau28jR81PbQvrTF6q5NChXbRHBtVW01D9G3A-khL5yl-brEJdo-03lXRJq7YoI7d322jre2X6qKvyEWpqoDXf3NI3h8Wb_OnZPn6-DyfLROdAsREmVSMleGgUiizacFVAapgukQzNQJUboTgkBtTTtjEYJHhJDdFxos852YqeDok_JSrvQvBYym33tZtMclAdt7kRnbeZOdNnry10OQfpG38Pbstaqvz6P0JxbbU3qKXQVtsNBrrWw3SOHsO_wE7sJHR |
| CitedBy_id | crossref_primary_10_1038_s41598_025_86158_w crossref_primary_10_3390_electronics14132559 crossref_primary_10_3390_math13132158 |
| Cites_doi | 10.1109/TCYB.2020.2979930 10.1016/j.engappai.2023.107000 10.1007/s10489-024-05271-x 10.1007/s40747-017-0039-7 10.1016/j.ins.2020.01.048 10.1016/j.ins.2024.120405 10.1162/evco_a_00329 10.1016/j.knosys.2023.110630 10.1109/TEVC.2021.3073648 10.1109/TEVC.2009.2021467 10.1016/j.ins.2023.03.101 10.1109/TEVC.2018.2869001 10.1109/TCYB.2018.2794503 10.1007/s40747-021-00362-5 10.1109/TSMC.2020.3044418 10.1109/TEVC.2005.851275 10.1016/j.swevo.2022.101081 10.1016/j.swevo.2020.100774 10.1109/45.329294 10.1016/j.ress.2005.11.040 10.1109/MCI.2017.2742868 10.1016/j.asoc.2023.110525 10.1016/j.ejor.2021.04.053 10.1145/3376916 10.1109/TEVC.2005.861417 10.1016/j.swevo.2023.101323 10.1109/TCYB.2018.2883914 10.1016/j.swevo.2024.101703 10.1109/CEC.2015.7257247 10.1007/s00500-017-2965-0 10.3390/math11081800 10.1109/TEVC.2018.2802784 10.1016/j.ins.2022.12.021 10.1016/j.asoc.2023.110223 10.1109/TCYB.2018.2811761 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2024.126050 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_eswa_2024_126050 S0957417424029178 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNPGV BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSH SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AAYWO AAYXX ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c300t-ad374ad20a30f59b2ab0ab1cfed9d70a6d77206ddf818deb5e86db52b662d9723 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001385688700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sat Nov 29 08:00:38 EST 2025 Tue Nov 18 22:23:08 EST 2025 Sat Apr 05 15:39:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Front modeling Evolutionary algorithms Surrogate-assisted optimization Expensive multi-objective optimization Classification Model management |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-ad374ad20a30f59b2ab0ab1cfed9d70a6d77206ddf818deb5e86db52b662d9723 |
| ORCID | 0009-0005-6946-8597 0000-0001-5700-8108 |
| ParticipantIDs | crossref_primary_10_1016_j_eswa_2024_126050 crossref_citationtrail_10_1016_j_eswa_2024_126050 elsevier_sciencedirect_doi_10_1016_j_eswa_2024_126050 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-15 |
| PublicationDateYYYYMMDD | 2025-03-15 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Falcón-Cardona, Coello (b9) 2020; 53 Li, Wang, Dong, Shen, Chen (b18) 2022 Li, Gao, Garg, Shen, Huang (b17) 2021; 60 Wang, Yuan, Zeng, Lin (b41) 2024; 54 Li, Feng, Yu (b16) 2024 Tenne, Goh (b33) 2010 Song, Wang, He, Jin (b30) 2021; 25 Huband, Hingston, Barone, While (b13) 2006; 10 Wang, Chen, Zhao, Suo (b39) 2023; 11 Tian, Cheng, Zhang, Jin (b34) 2017; 12 Bian, Tian, Yu, Yu (b4) 2023; 274 Guo, Wang, Gao, Jin, Ding, Chai (b12) 2022; 52 Araújo, Farias, Gonçalves (b2) 2024 Wang, Jin, Schmitt, Olhofer (b40) 2020; 519 Luo, Gupta, Ong, Wang (b21) 2018; 49 Rodríguez, Alejo-Cerezo, Coello (b28) 2024; 84 Zhang, J., Zhou, A., & Zhang, G. (2015). A classification and Pareto domination based multiobjective evolutionary algorithm. In Miguel Antonio, Coello Coello (b23) 2016 Chugh, Sindhya, Hakanen, Miettinen (b6) 2019; 23 Dutta, Mallipeddi, Das (b8) 2023; 139 Yu, Wu, Liang, Yue (b45) 2024 Geerdes, Chaigneau, Lingiardi (b10) 2020 Yacoubi, Manita, Chhabra, Korbaa, Mirjalili (b44) 2023; 144 Pan, He, Tian, Wang, Zhang, Jin (b24) 2019; 23 Salazar, Rocco, Galván (b29) 2006; 91 Jin, Wang, Chugh, Guo, Miettinen (b14) 2018; 23 Kouka, BenSaid, Fdhila, Fourati, Hussain, Alimi (b15) 2023; 623 Lin, He, Cheng (b20) 2022; 8 Steponavičė, Hyndman, Smith-Miles, Villanova (b32) 2014 Tian, Lu, Zhang, Tan, Jin (b36) 2021; 51 Song, Yang, Chen, Zhang (b31) 2016 Qu, Ma, Clausen, Jørgensen (b27) 2021 Powers, Ailab (b26) 2011; 2 While, Hingston, Barone, Huband (b43) 2006; 10 Li, Xie, Wang, Wang, Gong (b19) 2023; 634 Guo, Jin, Ding, Chai (b11) 2019; 49 Cheng, Li, Tian, Zhang, Yang, Jin, Yao (b5) 2017; 3 Wang, Zeng, Yuan (b42) 2024 Mazumdar, López-Ibáñez, Chugh, Hakanen, Miettinen (b22) 2023; 31 (pp. 2883–2890). ISBN: 1941-0026 VO -. Zhou, Zhang, Jin (b48) 2009; 13 Petchrompo, Wannakrairot, Parlikad (b25) 2022; 297 Tian, Zhang, Cheng, He, Jin (b37) 2018; 50 Bebis, Georgiopoulos (b3) 1994; 13 Tian, Hu, He, Ma, Zhang, Zhang (b35) 2023; 80 Deb, Thiele, Laumanns, Zitzler (b7) 2005 Van Veldhuizen (b38) 1999 Zhang, Li, Zhao, Qi, Liu (b46) 2022; 72 Abdi, Asadpour, Seyfari (b1) 2023; 126 Bian (10.1016/j.eswa.2024.126050_b4) 2023; 274 Yu (10.1016/j.eswa.2024.126050_b45) 2024 Song (10.1016/j.eswa.2024.126050_b30) 2021; 25 Guo (10.1016/j.eswa.2024.126050_b11) 2019; 49 10.1016/j.eswa.2024.126050_b47 Tian (10.1016/j.eswa.2024.126050_b35) 2023; 80 Abdi (10.1016/j.eswa.2024.126050_b1) 2023; 126 Wang (10.1016/j.eswa.2024.126050_b39) 2023; 11 While (10.1016/j.eswa.2024.126050_b43) 2006; 10 Mazumdar (10.1016/j.eswa.2024.126050_b22) 2023; 31 Tian (10.1016/j.eswa.2024.126050_b36) 2021; 51 Wang (10.1016/j.eswa.2024.126050_b41) 2024; 54 Li (10.1016/j.eswa.2024.126050_b18) 2022 Steponavičė (10.1016/j.eswa.2024.126050_b32) 2014 Zhou (10.1016/j.eswa.2024.126050_b48) 2009; 13 Tian (10.1016/j.eswa.2024.126050_b34) 2017; 12 Pan (10.1016/j.eswa.2024.126050_b24) 2019; 23 Lin (10.1016/j.eswa.2024.126050_b20) 2022; 8 Tian (10.1016/j.eswa.2024.126050_b37) 2018; 50 Wang (10.1016/j.eswa.2024.126050_b42) 2024 Huband (10.1016/j.eswa.2024.126050_b13) 2006; 10 Bebis (10.1016/j.eswa.2024.126050_b3) 1994; 13 Cheng (10.1016/j.eswa.2024.126050_b5) 2017; 3 Araújo (10.1016/j.eswa.2024.126050_b2) 2024 Yacoubi (10.1016/j.eswa.2024.126050_b44) 2023; 144 Petchrompo (10.1016/j.eswa.2024.126050_b25) 2022; 297 Geerdes (10.1016/j.eswa.2024.126050_b10) 2020 Li (10.1016/j.eswa.2024.126050_b16) 2024 Miguel Antonio (10.1016/j.eswa.2024.126050_b23) 2016 Kouka (10.1016/j.eswa.2024.126050_b15) 2023; 623 Luo (10.1016/j.eswa.2024.126050_b21) 2018; 49 Qu (10.1016/j.eswa.2024.126050_b27) 2021 Salazar (10.1016/j.eswa.2024.126050_b29) 2006; 91 Van Veldhuizen (10.1016/j.eswa.2024.126050_b38) 1999 Wang (10.1016/j.eswa.2024.126050_b40) 2020; 519 Dutta (10.1016/j.eswa.2024.126050_b8) 2023; 139 Jin (10.1016/j.eswa.2024.126050_b14) 2018; 23 Powers (10.1016/j.eswa.2024.126050_b26) 2011; 2 Guo (10.1016/j.eswa.2024.126050_b12) 2022; 52 Rodríguez (10.1016/j.eswa.2024.126050_b28) 2024; 84 Chugh (10.1016/j.eswa.2024.126050_b6) 2019; 23 Falcón-Cardona (10.1016/j.eswa.2024.126050_b9) 2020; 53 Li (10.1016/j.eswa.2024.126050_b19) 2023; 634 Zhang (10.1016/j.eswa.2024.126050_b46) 2022; 72 Li (10.1016/j.eswa.2024.126050_b17) 2021; 60 Song (10.1016/j.eswa.2024.126050_b31) 2016 Tenne (10.1016/j.eswa.2024.126050_b33) 2010 Deb (10.1016/j.eswa.2024.126050_b7) 2005 |
| References_xml | – volume: 623 start-page: 220 year: 2023 end-page: 241 ident: b15 article-title: A novel approach of many-objective particle swarm optimization with cooperative agents based on an inverted generational distance indicator publication-title: Information Sciences – volume: 144 year: 2023 ident: b44 article-title: A multi-objective Chaos Game Optimization algorithm based on decomposition and random learning mechanisms for numerical optimization publication-title: Applied Soft Computing – volume: 3 start-page: 67 year: 2017 end-page: 81 ident: b5 article-title: A benchmark test suite for evolutionary many-objective optimization publication-title: Complex & Intelligent Systems – volume: 23 start-page: 74 year: 2019 end-page: 88 ident: b24 article-title: A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 49 start-page: 1012 year: 2019 end-page: 1025 ident: b11 article-title: Heterogeneous ensemble-based infill criterion for evolutionary multiobjective optimization of expensive problems publication-title: IEEE Transactions on Cybernetics – volume: 31 start-page: 375 year: 2023 end-page: 399 ident: b22 article-title: Treed Gaussian process regression for solving offline data-driven continuous multiobjective optimization problems publication-title: Evolutionary Computation – volume: 51 start-page: 3115 year: 2021 end-page: 3128 ident: b36 article-title: Solving large-scale multiobjective optimization problems with sparse optimal solutions via unsupervised neural networks publication-title: IEEE Transactions on Cybernetics – volume: 13 start-page: 1167 year: 2009 end-page: 1189 ident: b48 article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm publication-title: IEEE Transactions on Evolutionary Computation – start-page: 1 year: 2024 ident: b16 article-title: Solving high-dimensional expensive multiobjective optimization problems by adaptive decision variable grouping publication-title: IEEE Transactions on Evolutionary Computation – reference: Zhang, J., Zhou, A., & Zhang, G. (2015). A classification and Pareto domination based multiobjective evolutionary algorithm. In – volume: 80 year: 2023 ident: b35 article-title: A pairwise comparison based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization publication-title: Swarm and Evolutionary Computation – volume: 54 start-page: 1770 year: 2024 end-page: 1797 ident: b41 article-title: A deep learning integrated framework for predicting stock index price and fluctuation via singular spectrum analysis and particle swarm optimization publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies – volume: 11 start-page: 1800 year: 2023 ident: b39 article-title: An efficient end-to-end obstacle avoidance path planning algorithm for intelligent vehicles based on improved whale optimization algorithm publication-title: Mathematics – start-page: 468 year: 2016 end-page: 475 ident: b31 article-title: A random-based dynamic grouping strategy for large scale multi-objective optimization publication-title: 2016 IEEE congress on evolutionary computation – volume: 10 start-page: 29 year: 2006 end-page: 38 ident: b43 article-title: A faster algorithm for calculating hypervolume publication-title: IEEE Transactions on Evolutionary Computation – start-page: 105 year: 2005 end-page: 145 ident: b7 article-title: Scalable test problems for evolutionary multiobjective optimization publication-title: Evolutionary multiobjective optimization: theoretical advances and applications – volume: 91 start-page: 1057 year: 2006 end-page: 1070 ident: b29 article-title: Optimization of constrained multiple-objective reliability problems using evolutionary algorithms publication-title: Reliability Engineering & System Safety – start-page: 525 year: 2016 end-page: 534 ident: b23 article-title: Decomposition-based approach for solving large scale multi-objective problems publication-title: Parallel problem solving from nature–PPSN XIV: 14th international conference, Edinburgh, UK, September 17–21, 2016, proceedings 14 – volume: 519 start-page: 317 year: 2020 end-page: 331 ident: b40 article-title: An adaptive Bayesian approach to surrogate-assisted evolutionary multi-objective optimization publication-title: Information Sciences – volume: 49 start-page: 1708 year: 2018 end-page: 1721 ident: b21 article-title: Evolutionary optimization of expensive multiobjective problems with co-sub-Pareto front Gaussian process surrogates publication-title: IEEE Transactions on Cybernetics – volume: 72 year: 2022 ident: b46 article-title: A convolutional neural network-based surrogate model for multi-objective optimization evolutionary algorithm based on decomposition publication-title: Swarm and Evolutionary Computation – volume: 53 start-page: 1 year: 2020 end-page: 35 ident: b9 article-title: Indicator-based multi-objective evolutionary algorithms: A comprehensive survey publication-title: ACM Computing Surveys – volume: 50 start-page: 1106 year: 2018 end-page: 1119 ident: b37 article-title: Guiding evolutionary multiobjective optimization with generic front modeling publication-title: IEEE Transactions on Cybernetics – volume: 52 start-page: 2084 year: 2022 end-page: 2097 ident: b12 article-title: Evolutionary optimization of high-dimensional multiobjective and many-objective expensive problems assisted by a dropout neural network publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – year: 2022 ident: b18 article-title: A classification surrogate-assisted multi-objective evolutionary algorithm for expensive optimization publication-title: Knowledge-Based Systems – volume: 12 start-page: 73 year: 2017 end-page: 87 ident: b34 article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum] publication-title: IEEE Computational Intelligence Magazine – volume: 274 year: 2023 ident: b4 article-title: Bayesian Co-evolutionary Optimization based entropy search for high-dimensional many-objective optimization publication-title: Knowledge-Based Systems – year: 2024 ident: b45 article-title: Surrogate-assisted PSO with archive-based neighborhood search for medium-dimensional expensive multi-objective problems publication-title: Information Sciences – start-page: 825 year: 2021 end-page: 831 ident: b27 article-title: A comprehensive review on evolutionary algorithm solving multi-objective problems publication-title: 2021 22nd IEEE international conference on industrial technology, vol. 1 – year: 2024 ident: b2 article-title: Self-organizing surrogate-assisted non-dominated sorting differential evolution publication-title: Swarm and Evolutionary Computation – volume: 13 start-page: 27 year: 1994 end-page: 31 ident: b3 article-title: Feed-forward neural networks publication-title: IEEE Potentials – volume: 297 start-page: 203 year: 2022 end-page: 220 ident: b25 article-title: Pruning Pareto optimal solutions for multi-objective portfolio asset management publication-title: European Journal of Operational Research – volume: 23 start-page: 3137 year: 2019 end-page: 3166 ident: b6 article-title: A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms publication-title: Soft Computing – year: 2020 ident: b10 article-title: Modern blast furnace ironmaking: an introduction (2020) – volume: 23 start-page: 442 year: 2018 end-page: 458 ident: b14 article-title: Data-driven evolutionary optimization: An overview and case studies publication-title: IEEE Transactions on Evolutionary Computation – start-page: 341 year: 2014 end-page: 352 ident: b32 article-title: Efficient identification of the Pareto optimal set publication-title: Learning and intelligent optimization: 8th international conference, Lion 8, Gainesville, FL, USA, February 16–21, 2014. revised selected papers 8 – year: 2024 ident: b42 article-title: Two-stage stock portfolio optimization based on AI-powered price prediction and mean-CVaR models publication-title: Expert Systems with Applications – volume: 634 start-page: 423 year: 2023 end-page: 442 ident: b19 article-title: Evolutionary algorithm with individual-distribution search strategy and regression-classification surrogates for expensive optimization publication-title: Information Sciences – volume: 84 year: 2024 ident: b28 article-title: Improving multi-objective evolutionary algorithms using Grammatical Evolution publication-title: Swarm and Evolutionary Computation – volume: 8 start-page: 271 year: 2022 end-page: 285 ident: b20 article-title: Adaptive dropout for high-dimensional expensive multiobjective optimization publication-title: Complex & Intelligent Systems – volume: 2 start-page: 2229 year: 2011 end-page: 3981 ident: b26 article-title: Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation publication-title: Journal of Machine Learning Technologies – volume: 10 start-page: 477 year: 2006 end-page: 506 ident: b13 article-title: A review of multiobjective test problems and a scalable test problem toolkit publication-title: IEEE Transactions on Evolutionary Computation – volume: 60 year: 2021 ident: b17 article-title: Two infill criteria driven surrogate-assisted multi-objective evolutionary algorithms for computationally expensive problems with medium dimensions publication-title: Swarm and Evolutionary Computation – volume: 126 year: 2023 ident: b1 article-title: MOSM: A hybrid multi-objective micro evolutionary algorithm publication-title: Engineering Applications of Artificial Intelligence – year: 2010 ident: b33 publication-title: Computational intelligence in expensive optimization problems – volume: 139 year: 2023 ident: b8 article-title: Adaptive mating selection based on weighted indicator for Multi/Many-objective evolutionary algorithm publication-title: Applied Soft Computing – volume: 25 start-page: 1013 year: 2021 end-page: 1027 ident: b30 article-title: A kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation – year: 1999 ident: b38 article-title: Multiobjective evolutionary algorithms: classifications, analyses, and new innovations – reference: (pp. 2883–2890). ISBN: 1941-0026 VO -. – volume: 51 start-page: 3115 issue: 6 year: 2021 ident: 10.1016/j.eswa.2024.126050_b36 article-title: Solving large-scale multiobjective optimization problems with sparse optimal solutions via unsupervised neural networks publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2020.2979930 – volume: 126 year: 2023 ident: 10.1016/j.eswa.2024.126050_b1 article-title: μMOSM: A hybrid multi-objective micro evolutionary algorithm publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2023.107000 – start-page: 105 year: 2005 ident: 10.1016/j.eswa.2024.126050_b7 article-title: Scalable test problems for evolutionary multiobjective optimization – volume: 54 start-page: 1770 issue: 2 year: 2024 ident: 10.1016/j.eswa.2024.126050_b41 article-title: A deep learning integrated framework for predicting stock index price and fluctuation via singular spectrum analysis and particle swarm optimization publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies doi: 10.1007/s10489-024-05271-x – volume: 3 start-page: 67 year: 2017 ident: 10.1016/j.eswa.2024.126050_b5 article-title: A benchmark test suite for evolutionary many-objective optimization publication-title: Complex & Intelligent Systems doi: 10.1007/s40747-017-0039-7 – volume: 519 start-page: 317 year: 2020 ident: 10.1016/j.eswa.2024.126050_b40 article-title: An adaptive Bayesian approach to surrogate-assisted evolutionary multi-objective optimization publication-title: Information Sciences doi: 10.1016/j.ins.2020.01.048 – year: 2024 ident: 10.1016/j.eswa.2024.126050_b45 article-title: Surrogate-assisted PSO with archive-based neighborhood search for medium-dimensional expensive multi-objective problems publication-title: Information Sciences doi: 10.1016/j.ins.2024.120405 – year: 2020 ident: 10.1016/j.eswa.2024.126050_b10 – volume: 31 start-page: 375 issue: 4 year: 2023 ident: 10.1016/j.eswa.2024.126050_b22 article-title: Treed Gaussian process regression for solving offline data-driven continuous multiobjective optimization problems publication-title: Evolutionary Computation doi: 10.1162/evco_a_00329 – volume: 274 year: 2023 ident: 10.1016/j.eswa.2024.126050_b4 article-title: Bayesian Co-evolutionary Optimization based entropy search for high-dimensional many-objective optimization publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2023.110630 – year: 2022 ident: 10.1016/j.eswa.2024.126050_b18 article-title: A classification surrogate-assisted multi-objective evolutionary algorithm for expensive optimization publication-title: Knowledge-Based Systems – volume: 25 start-page: 1013 issue: 6 year: 2021 ident: 10.1016/j.eswa.2024.126050_b30 article-title: A kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2021.3073648 – volume: 13 start-page: 1167 issue: 5 year: 2009 ident: 10.1016/j.eswa.2024.126050_b48 article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2009.2021467 – volume: 634 start-page: 423 year: 2023 ident: 10.1016/j.eswa.2024.126050_b19 article-title: Evolutionary algorithm with individual-distribution search strategy and regression-classification surrogates for expensive optimization publication-title: Information Sciences doi: 10.1016/j.ins.2023.03.101 – volume: 84 year: 2024 ident: 10.1016/j.eswa.2024.126050_b28 article-title: Improving multi-objective evolutionary algorithms using Grammatical Evolution publication-title: Swarm and Evolutionary Computation – volume: 23 start-page: 442 issue: 3 year: 2018 ident: 10.1016/j.eswa.2024.126050_b14 article-title: Data-driven evolutionary optimization: An overview and case studies publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2018.2869001 – start-page: 341 year: 2014 ident: 10.1016/j.eswa.2024.126050_b32 article-title: Efficient identification of the Pareto optimal set – volume: 49 start-page: 1012 issue: 3 year: 2019 ident: 10.1016/j.eswa.2024.126050_b11 article-title: Heterogeneous ensemble-based infill criterion for evolutionary multiobjective optimization of expensive problems publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2018.2794503 – volume: 8 start-page: 271 issue: 1 year: 2022 ident: 10.1016/j.eswa.2024.126050_b20 article-title: Adaptive dropout for high-dimensional expensive multiobjective optimization publication-title: Complex & Intelligent Systems doi: 10.1007/s40747-021-00362-5 – start-page: 525 year: 2016 ident: 10.1016/j.eswa.2024.126050_b23 article-title: Decomposition-based approach for solving large scale multi-objective problems – volume: 52 start-page: 2084 issue: 4 year: 2022 ident: 10.1016/j.eswa.2024.126050_b12 article-title: Evolutionary optimization of high-dimensional multiobjective and many-objective expensive problems assisted by a dropout neural network publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2020.3044418 – year: 2010 ident: 10.1016/j.eswa.2024.126050_b33 – volume: 10 start-page: 29 issue: 1 year: 2006 ident: 10.1016/j.eswa.2024.126050_b43 article-title: A faster algorithm for calculating hypervolume publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.851275 – volume: 72 year: 2022 ident: 10.1016/j.eswa.2024.126050_b46 article-title: A convolutional neural network-based surrogate model for multi-objective optimization evolutionary algorithm based on decomposition publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2022.101081 – volume: 60 year: 2021 ident: 10.1016/j.eswa.2024.126050_b17 article-title: Two infill criteria driven surrogate-assisted multi-objective evolutionary algorithms for computationally expensive problems with medium dimensions publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2020.100774 – volume: 13 start-page: 27 issue: 4 year: 1994 ident: 10.1016/j.eswa.2024.126050_b3 article-title: Feed-forward neural networks publication-title: IEEE Potentials doi: 10.1109/45.329294 – start-page: 468 year: 2016 ident: 10.1016/j.eswa.2024.126050_b31 article-title: A random-based dynamic grouping strategy for large scale multi-objective optimization – volume: 91 start-page: 1057 issue: 9 year: 2006 ident: 10.1016/j.eswa.2024.126050_b29 article-title: Optimization of constrained multiple-objective reliability problems using evolutionary algorithms publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2005.11.040 – volume: 12 start-page: 73 issue: 4 year: 2017 ident: 10.1016/j.eswa.2024.126050_b34 article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum] publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2017.2742868 – volume: 144 year: 2023 ident: 10.1016/j.eswa.2024.126050_b44 article-title: A multi-objective Chaos Game Optimization algorithm based on decomposition and random learning mechanisms for numerical optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2023.110525 – volume: 297 start-page: 203 issue: 1 year: 2022 ident: 10.1016/j.eswa.2024.126050_b25 article-title: Pruning Pareto optimal solutions for multi-objective portfolio asset management publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2021.04.053 – volume: 53 start-page: 1 issue: 2 year: 2020 ident: 10.1016/j.eswa.2024.126050_b9 article-title: Indicator-based multi-objective evolutionary algorithms: A comprehensive survey publication-title: ACM Computing Surveys doi: 10.1145/3376916 – volume: 10 start-page: 477 issue: 5 year: 2006 ident: 10.1016/j.eswa.2024.126050_b13 article-title: A review of multiobjective test problems and a scalable test problem toolkit publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.861417 – volume: 80 year: 2023 ident: 10.1016/j.eswa.2024.126050_b35 article-title: A pairwise comparison based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2023.101323 – volume: 50 start-page: 1106 issue: 3 year: 2018 ident: 10.1016/j.eswa.2024.126050_b37 article-title: Guiding evolutionary multiobjective optimization with generic front modeling publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2018.2883914 – year: 2024 ident: 10.1016/j.eswa.2024.126050_b42 article-title: Two-stage stock portfolio optimization based on AI-powered price prediction and mean-CVaR models publication-title: Expert Systems with Applications – year: 2024 ident: 10.1016/j.eswa.2024.126050_b2 article-title: Self-organizing surrogate-assisted non-dominated sorting differential evolution publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2024.101703 – ident: 10.1016/j.eswa.2024.126050_b47 doi: 10.1109/CEC.2015.7257247 – start-page: 825 year: 2021 ident: 10.1016/j.eswa.2024.126050_b27 article-title: A comprehensive review on evolutionary algorithm solving multi-objective problems – volume: 23 start-page: 3137 year: 2019 ident: 10.1016/j.eswa.2024.126050_b6 article-title: A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms publication-title: Soft Computing doi: 10.1007/s00500-017-2965-0 – year: 1999 ident: 10.1016/j.eswa.2024.126050_b38 – volume: 11 start-page: 1800 issue: 8 year: 2023 ident: 10.1016/j.eswa.2024.126050_b39 article-title: An efficient end-to-end obstacle avoidance path planning algorithm for intelligent vehicles based on improved whale optimization algorithm publication-title: Mathematics doi: 10.3390/math11081800 – start-page: 1 year: 2024 ident: 10.1016/j.eswa.2024.126050_b16 article-title: Solving high-dimensional expensive multiobjective optimization problems by adaptive decision variable grouping publication-title: IEEE Transactions on Evolutionary Computation – volume: 23 start-page: 74 issue: 1 year: 2019 ident: 10.1016/j.eswa.2024.126050_b24 article-title: A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2018.2802784 – volume: 2 start-page: 2229 year: 2011 ident: 10.1016/j.eswa.2024.126050_b26 article-title: Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation publication-title: Journal of Machine Learning Technologies – volume: 623 start-page: 220 year: 2023 ident: 10.1016/j.eswa.2024.126050_b15 article-title: A novel approach of many-objective particle swarm optimization with cooperative agents based on an inverted generational distance indicator publication-title: Information Sciences doi: 10.1016/j.ins.2022.12.021 – volume: 139 year: 2023 ident: 10.1016/j.eswa.2024.126050_b8 article-title: Adaptive mating selection based on weighted indicator for Multi/Many-objective evolutionary algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2023.110223 – volume: 49 start-page: 1708 issue: 5 year: 2018 ident: 10.1016/j.eswa.2024.126050_b21 article-title: Evolutionary optimization of expensive multiobjective problems with co-sub-Pareto front Gaussian process surrogates publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2018.2811761 |
| SSID | ssj0017007 |
| Score | 2.494351 |
| Snippet | In real-world scenarios where resources for evaluating expensive optimization problems are limited and the reliability of trained models is hard to assess, the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 126050 |
| SubjectTerms | Classification Evolutionary algorithms Expensive multi-objective optimization Front modeling Model management Surrogate-assisted optimization |
| Title | SEAMS: A surrogate-assisted evolutionary algorithm with metric-based dynamic strategy for expensive multi-objective optimization |
| URI | https://dx.doi.org/10.1016/j.eswa.2024.126050 |
| Volume | 265 |
| WOSCitedRecordID | wos001385688700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017007 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb5swFLaydIdd9ntq96PyYTfkypgY492iKlPbQzVpnZQbsrFZiRKoCMly3J8-OzaEZl3VHnZBCIFBfB_Pz4_vvQfA54xGJE8YQcYd5WhEI464UAxpJsNM50THUm2bTbDLy2Q65d8Gg02bC7Oes7JMNht-81-hNscM2DZ19hFwd4OaA2bfgG62BnazfRDw3ydmce4Szperuq5snAwZF9niqQK99je3ajkx_1nVRXO9cOHYhe2ulSE7salAuVb1wdKVr3W6TtsPwAnet0JEVMmZM5hBZUzPwud03or221LKjS8Y3abS9X6ad4KgYrWdBUXRiGoX5XeW6PS6EOhs5SdZH6Mg1Iq0XJZmF2xkaBS6fjyt3SUx7VnO0C6s8J1G3cUXZid6-ctWiiKjk93Jtyto781snd6wlbLNUjtGasdI3RhPwAFhlCdDcDA-n0wvuj9QDLtU-_bJfcKV0wbuP8ndTk3PUbl6CZ77FQYcO2a8AgNdvgYv2u4d0BvzN-D3lihf4Bj-TRPYpwnsaAItfLBPE-hpAluaQEMT2NEE7tEE9mnyFvz4Ork6PUO-HwfKIowbJFTERkIRLCKcUy6JkFiYTzrXiiuGRazMUg3HSuXGC1RaUp3ESlIi45go293uHRiWVakPAcSJpkrTJGRMGoc-FLbwLdeEy4zqUIVHIGxfaJr5YvW2Z8o8_TeURyDorrlxpVruPZu2OKXe2XROZGpod8917x91lw_g2e57-AiGTb3Sn8DTbN0Uy_rYc-4PxPWnLw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SEAMS%3A+A+surrogate-assisted+evolutionary+algorithm+with+metric-based+dynamic+strategy+for+expensive+multi-objective+optimization&rft.jtitle=Expert+systems+with+applications&rft.au=Liu%2C+Haitao&rft.au=Wang%2C+Chia-Hung&rft.date=2025-03-15&rft.issn=0957-4174&rft.volume=265&rft.spage=126050&rft_id=info:doi/10.1016%2Fj.eswa.2024.126050&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2024_126050 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |