SEAMS: A surrogate-assisted evolutionary algorithm with metric-based dynamic strategy for expensive multi-objective optimization

In real-world scenarios where resources for evaluating expensive optimization problems are limited and the reliability of trained models is hard to assess, the quality of the non-dominated front formed by algorithms tends to be low. This paper proposes a metric-based surrogate-assisted evolutionary...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 265; s. 126050
Hlavní autoři: Liu, Haitao, Wang, Chia-Hung
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.03.2025
Témata:
ISSN:0957-4174
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In real-world scenarios where resources for evaluating expensive optimization problems are limited and the reliability of trained models is hard to assess, the quality of the non-dominated front formed by algorithms tends to be low. This paper proposes a metric-based surrogate-assisted evolutionary algorithm for multi-objective expensive optimization, incorporating a novel model management strategy that integrates a regeneration mechanism. This approach aims to achieve a well-balanced convergence and diversity, facilitating the attainment of high-quality non-dominated fronts to address expensive multi-objective optimization problems. The model management strategy, based on metrics, comprehensively evaluates the reliability of the classification model and selects appropriate strategies for offspring selection. Moreover, through significance analysis of the population, the regeneration mechanism identifies high-quality dimensions for regenerating offspring. The algorithm maximizes the utilization of the classification model to guide the generation and selection of offspring in the population. Experiments on DTLZ, MaF, WFG, and the high-dimensional portfolio optimization problem demonstrate that the proposed algorithm outperforms nine state-of-the-art surrogate-assisted evolutionary algorithms, highlighting its superior performance across various scenarios. [Display omitted] •Propose a surrogate-assisted algorithm for expensive multi-objective optimization.•Apply dynamic offspring selection based on metrics in the optimization process.•Introduce an offspring regeneration mechanism for better model and population use.•Enhance diversity with linear weight-assisted generic front modeling.•Achieve better non-dominated fronts on DTLZ, MaF, and WFG open datasets.
AbstractList In real-world scenarios where resources for evaluating expensive optimization problems are limited and the reliability of trained models is hard to assess, the quality of the non-dominated front formed by algorithms tends to be low. This paper proposes a metric-based surrogate-assisted evolutionary algorithm for multi-objective expensive optimization, incorporating a novel model management strategy that integrates a regeneration mechanism. This approach aims to achieve a well-balanced convergence and diversity, facilitating the attainment of high-quality non-dominated fronts to address expensive multi-objective optimization problems. The model management strategy, based on metrics, comprehensively evaluates the reliability of the classification model and selects appropriate strategies for offspring selection. Moreover, through significance analysis of the population, the regeneration mechanism identifies high-quality dimensions for regenerating offspring. The algorithm maximizes the utilization of the classification model to guide the generation and selection of offspring in the population. Experiments on DTLZ, MaF, WFG, and the high-dimensional portfolio optimization problem demonstrate that the proposed algorithm outperforms nine state-of-the-art surrogate-assisted evolutionary algorithms, highlighting its superior performance across various scenarios. [Display omitted] •Propose a surrogate-assisted algorithm for expensive multi-objective optimization.•Apply dynamic offspring selection based on metrics in the optimization process.•Introduce an offspring regeneration mechanism for better model and population use.•Enhance diversity with linear weight-assisted generic front modeling.•Achieve better non-dominated fronts on DTLZ, MaF, and WFG open datasets.
ArticleNumber 126050
Author Liu, Haitao
Wang, Chia-Hung
Author_xml – sequence: 1
  givenname: Haitao
  orcidid: 0009-0005-6946-8597
  surname: Liu
  fullname: Liu, Haitao
  email: 2221308054@smail.fjut.edu.cn
  organization: College of Computer Science and Mathematics, Fujian University of Technology, Fujian 350118, China
– sequence: 2
  givenname: Chia-Hung
  orcidid: 0000-0001-5700-8108
  surname: Wang
  fullname: Wang, Chia-Hung
  email: 61201506@fjut.edu.cn
  organization: College of Computer Science and Mathematics, Fujian University of Technology, Fujian 350118, China
BookMark eNp9kM1OAjEURrvAREBfwFVfYPC2w0zBuCEEfxKMC3TddNo7WDIzJW0BceWjOyOuXLDpTZN7vtzvDEivcQ0ScsNgxIDlt5sRhoMaceDjEeM5ZNAjfZhmIhkzMb4kgxA2AEwAiD75Xi1mL6s7OqNh571bq4iJCsGGiIbi3lW7aF2j_JGqau28jR81PbQvrTF6q5NChXbRHBtVW01D9G3A-khL5yl-brEJdo-03lXRJq7YoI7d322jre2X6qKvyEWpqoDXf3NI3h8Wb_OnZPn6-DyfLROdAsREmVSMleGgUiizacFVAapgukQzNQJUboTgkBtTTtjEYJHhJDdFxos852YqeDok_JSrvQvBYym33tZtMclAdt7kRnbeZOdNnry10OQfpG38Pbstaqvz6P0JxbbU3qKXQVtsNBrrWw3SOHsO_wE7sJHR
CitedBy_id crossref_primary_10_1038_s41598_025_86158_w
crossref_primary_10_3390_electronics14132559
crossref_primary_10_3390_math13132158
Cites_doi 10.1109/TCYB.2020.2979930
10.1016/j.engappai.2023.107000
10.1007/s10489-024-05271-x
10.1007/s40747-017-0039-7
10.1016/j.ins.2020.01.048
10.1016/j.ins.2024.120405
10.1162/evco_a_00329
10.1016/j.knosys.2023.110630
10.1109/TEVC.2021.3073648
10.1109/TEVC.2009.2021467
10.1016/j.ins.2023.03.101
10.1109/TEVC.2018.2869001
10.1109/TCYB.2018.2794503
10.1007/s40747-021-00362-5
10.1109/TSMC.2020.3044418
10.1109/TEVC.2005.851275
10.1016/j.swevo.2022.101081
10.1016/j.swevo.2020.100774
10.1109/45.329294
10.1016/j.ress.2005.11.040
10.1109/MCI.2017.2742868
10.1016/j.asoc.2023.110525
10.1016/j.ejor.2021.04.053
10.1145/3376916
10.1109/TEVC.2005.861417
10.1016/j.swevo.2023.101323
10.1109/TCYB.2018.2883914
10.1016/j.swevo.2024.101703
10.1109/CEC.2015.7257247
10.1007/s00500-017-2965-0
10.3390/math11081800
10.1109/TEVC.2018.2802784
10.1016/j.ins.2022.12.021
10.1016/j.asoc.2023.110223
10.1109/TCYB.2018.2811761
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2024.126050
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2024_126050
S0957417424029178
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSH
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AAYWO
AAYXX
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-ad374ad20a30f59b2ab0ab1cfed9d70a6d77206ddf818deb5e86db52b662d9723
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001385688700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 08:00:38 EST 2025
Tue Nov 18 22:23:08 EST 2025
Sat Apr 05 15:39:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Front modeling
Evolutionary algorithms
Surrogate-assisted optimization
Expensive multi-objective optimization
Classification
Model management
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-ad374ad20a30f59b2ab0ab1cfed9d70a6d77206ddf818deb5e86db52b662d9723
ORCID 0009-0005-6946-8597
0000-0001-5700-8108
ParticipantIDs crossref_primary_10_1016_j_eswa_2024_126050
crossref_citationtrail_10_1016_j_eswa_2024_126050
elsevier_sciencedirect_doi_10_1016_j_eswa_2024_126050
PublicationCentury 2000
PublicationDate 2025-03-15
PublicationDateYYYYMMDD 2025-03-15
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Falcón-Cardona, Coello (b9) 2020; 53
Li, Wang, Dong, Shen, Chen (b18) 2022
Li, Gao, Garg, Shen, Huang (b17) 2021; 60
Wang, Yuan, Zeng, Lin (b41) 2024; 54
Li, Feng, Yu (b16) 2024
Tenne, Goh (b33) 2010
Song, Wang, He, Jin (b30) 2021; 25
Huband, Hingston, Barone, While (b13) 2006; 10
Wang, Chen, Zhao, Suo (b39) 2023; 11
Tian, Cheng, Zhang, Jin (b34) 2017; 12
Bian, Tian, Yu, Yu (b4) 2023; 274
Guo, Wang, Gao, Jin, Ding, Chai (b12) 2022; 52
Araújo, Farias, Gonçalves (b2) 2024
Wang, Jin, Schmitt, Olhofer (b40) 2020; 519
Luo, Gupta, Ong, Wang (b21) 2018; 49
Rodríguez, Alejo-Cerezo, Coello (b28) 2024; 84
Zhang, J., Zhou, A., & Zhang, G. (2015). A classification and Pareto domination based multiobjective evolutionary algorithm. In
Miguel Antonio, Coello Coello (b23) 2016
Chugh, Sindhya, Hakanen, Miettinen (b6) 2019; 23
Dutta, Mallipeddi, Das (b8) 2023; 139
Yu, Wu, Liang, Yue (b45) 2024
Geerdes, Chaigneau, Lingiardi (b10) 2020
Yacoubi, Manita, Chhabra, Korbaa, Mirjalili (b44) 2023; 144
Pan, He, Tian, Wang, Zhang, Jin (b24) 2019; 23
Salazar, Rocco, Galván (b29) 2006; 91
Jin, Wang, Chugh, Guo, Miettinen (b14) 2018; 23
Kouka, BenSaid, Fdhila, Fourati, Hussain, Alimi (b15) 2023; 623
Lin, He, Cheng (b20) 2022; 8
Steponavičė, Hyndman, Smith-Miles, Villanova (b32) 2014
Tian, Lu, Zhang, Tan, Jin (b36) 2021; 51
Song, Yang, Chen, Zhang (b31) 2016
Qu, Ma, Clausen, Jørgensen (b27) 2021
Powers, Ailab (b26) 2011; 2
While, Hingston, Barone, Huband (b43) 2006; 10
Li, Xie, Wang, Wang, Gong (b19) 2023; 634
Guo, Jin, Ding, Chai (b11) 2019; 49
Cheng, Li, Tian, Zhang, Yang, Jin, Yao (b5) 2017; 3
Wang, Zeng, Yuan (b42) 2024
Mazumdar, López-Ibáñez, Chugh, Hakanen, Miettinen (b22) 2023; 31
(pp. 2883–2890). ISBN: 1941-0026 VO -.
Zhou, Zhang, Jin (b48) 2009; 13
Petchrompo, Wannakrairot, Parlikad (b25) 2022; 297
Tian, Zhang, Cheng, He, Jin (b37) 2018; 50
Bebis, Georgiopoulos (b3) 1994; 13
Tian, Hu, He, Ma, Zhang, Zhang (b35) 2023; 80
Deb, Thiele, Laumanns, Zitzler (b7) 2005
Van Veldhuizen (b38) 1999
Zhang, Li, Zhao, Qi, Liu (b46) 2022; 72
Abdi, Asadpour, Seyfari (b1) 2023; 126
Bian (10.1016/j.eswa.2024.126050_b4) 2023; 274
Yu (10.1016/j.eswa.2024.126050_b45) 2024
Song (10.1016/j.eswa.2024.126050_b30) 2021; 25
Guo (10.1016/j.eswa.2024.126050_b11) 2019; 49
10.1016/j.eswa.2024.126050_b47
Tian (10.1016/j.eswa.2024.126050_b35) 2023; 80
Abdi (10.1016/j.eswa.2024.126050_b1) 2023; 126
Wang (10.1016/j.eswa.2024.126050_b39) 2023; 11
While (10.1016/j.eswa.2024.126050_b43) 2006; 10
Mazumdar (10.1016/j.eswa.2024.126050_b22) 2023; 31
Tian (10.1016/j.eswa.2024.126050_b36) 2021; 51
Wang (10.1016/j.eswa.2024.126050_b41) 2024; 54
Li (10.1016/j.eswa.2024.126050_b18) 2022
Steponavičė (10.1016/j.eswa.2024.126050_b32) 2014
Zhou (10.1016/j.eswa.2024.126050_b48) 2009; 13
Tian (10.1016/j.eswa.2024.126050_b34) 2017; 12
Pan (10.1016/j.eswa.2024.126050_b24) 2019; 23
Lin (10.1016/j.eswa.2024.126050_b20) 2022; 8
Tian (10.1016/j.eswa.2024.126050_b37) 2018; 50
Wang (10.1016/j.eswa.2024.126050_b42) 2024
Huband (10.1016/j.eswa.2024.126050_b13) 2006; 10
Bebis (10.1016/j.eswa.2024.126050_b3) 1994; 13
Cheng (10.1016/j.eswa.2024.126050_b5) 2017; 3
Araújo (10.1016/j.eswa.2024.126050_b2) 2024
Yacoubi (10.1016/j.eswa.2024.126050_b44) 2023; 144
Petchrompo (10.1016/j.eswa.2024.126050_b25) 2022; 297
Geerdes (10.1016/j.eswa.2024.126050_b10) 2020
Li (10.1016/j.eswa.2024.126050_b16) 2024
Miguel Antonio (10.1016/j.eswa.2024.126050_b23) 2016
Kouka (10.1016/j.eswa.2024.126050_b15) 2023; 623
Luo (10.1016/j.eswa.2024.126050_b21) 2018; 49
Qu (10.1016/j.eswa.2024.126050_b27) 2021
Salazar (10.1016/j.eswa.2024.126050_b29) 2006; 91
Van Veldhuizen (10.1016/j.eswa.2024.126050_b38) 1999
Wang (10.1016/j.eswa.2024.126050_b40) 2020; 519
Dutta (10.1016/j.eswa.2024.126050_b8) 2023; 139
Jin (10.1016/j.eswa.2024.126050_b14) 2018; 23
Powers (10.1016/j.eswa.2024.126050_b26) 2011; 2
Guo (10.1016/j.eswa.2024.126050_b12) 2022; 52
Rodríguez (10.1016/j.eswa.2024.126050_b28) 2024; 84
Chugh (10.1016/j.eswa.2024.126050_b6) 2019; 23
Falcón-Cardona (10.1016/j.eswa.2024.126050_b9) 2020; 53
Li (10.1016/j.eswa.2024.126050_b19) 2023; 634
Zhang (10.1016/j.eswa.2024.126050_b46) 2022; 72
Li (10.1016/j.eswa.2024.126050_b17) 2021; 60
Song (10.1016/j.eswa.2024.126050_b31) 2016
Tenne (10.1016/j.eswa.2024.126050_b33) 2010
Deb (10.1016/j.eswa.2024.126050_b7) 2005
References_xml – volume: 623
  start-page: 220
  year: 2023
  end-page: 241
  ident: b15
  article-title: A novel approach of many-objective particle swarm optimization with cooperative agents based on an inverted generational distance indicator
  publication-title: Information Sciences
– volume: 144
  year: 2023
  ident: b44
  article-title: A multi-objective Chaos Game Optimization algorithm based on decomposition and random learning mechanisms for numerical optimization
  publication-title: Applied Soft Computing
– volume: 3
  start-page: 67
  year: 2017
  end-page: 81
  ident: b5
  article-title: A benchmark test suite for evolutionary many-objective optimization
  publication-title: Complex & Intelligent Systems
– volume: 23
  start-page: 74
  year: 2019
  end-page: 88
  ident: b24
  article-title: A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 49
  start-page: 1012
  year: 2019
  end-page: 1025
  ident: b11
  article-title: Heterogeneous ensemble-based infill criterion for evolutionary multiobjective optimization of expensive problems
  publication-title: IEEE Transactions on Cybernetics
– volume: 31
  start-page: 375
  year: 2023
  end-page: 399
  ident: b22
  article-title: Treed Gaussian process regression for solving offline data-driven continuous multiobjective optimization problems
  publication-title: Evolutionary Computation
– volume: 51
  start-page: 3115
  year: 2021
  end-page: 3128
  ident: b36
  article-title: Solving large-scale multiobjective optimization problems with sparse optimal solutions via unsupervised neural networks
  publication-title: IEEE Transactions on Cybernetics
– volume: 13
  start-page: 1167
  year: 2009
  end-page: 1189
  ident: b48
  article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 1
  year: 2024
  ident: b16
  article-title: Solving high-dimensional expensive multiobjective optimization problems by adaptive decision variable grouping
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: Zhang, J., Zhou, A., & Zhang, G. (2015). A classification and Pareto domination based multiobjective evolutionary algorithm. In
– volume: 80
  year: 2023
  ident: b35
  article-title: A pairwise comparison based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization
  publication-title: Swarm and Evolutionary Computation
– volume: 54
  start-page: 1770
  year: 2024
  end-page: 1797
  ident: b41
  article-title: A deep learning integrated framework for predicting stock index price and fluctuation via singular spectrum analysis and particle swarm optimization
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
– volume: 11
  start-page: 1800
  year: 2023
  ident: b39
  article-title: An efficient end-to-end obstacle avoidance path planning algorithm for intelligent vehicles based on improved whale optimization algorithm
  publication-title: Mathematics
– start-page: 468
  year: 2016
  end-page: 475
  ident: b31
  article-title: A random-based dynamic grouping strategy for large scale multi-objective optimization
  publication-title: 2016 IEEE congress on evolutionary computation
– volume: 10
  start-page: 29
  year: 2006
  end-page: 38
  ident: b43
  article-title: A faster algorithm for calculating hypervolume
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 105
  year: 2005
  end-page: 145
  ident: b7
  article-title: Scalable test problems for evolutionary multiobjective optimization
  publication-title: Evolutionary multiobjective optimization: theoretical advances and applications
– volume: 91
  start-page: 1057
  year: 2006
  end-page: 1070
  ident: b29
  article-title: Optimization of constrained multiple-objective reliability problems using evolutionary algorithms
  publication-title: Reliability Engineering & System Safety
– start-page: 525
  year: 2016
  end-page: 534
  ident: b23
  article-title: Decomposition-based approach for solving large scale multi-objective problems
  publication-title: Parallel problem solving from nature–PPSN XIV: 14th international conference, Edinburgh, UK, September 17–21, 2016, proceedings 14
– volume: 519
  start-page: 317
  year: 2020
  end-page: 331
  ident: b40
  article-title: An adaptive Bayesian approach to surrogate-assisted evolutionary multi-objective optimization
  publication-title: Information Sciences
– volume: 49
  start-page: 1708
  year: 2018
  end-page: 1721
  ident: b21
  article-title: Evolutionary optimization of expensive multiobjective problems with co-sub-Pareto front Gaussian process surrogates
  publication-title: IEEE Transactions on Cybernetics
– volume: 72
  year: 2022
  ident: b46
  article-title: A convolutional neural network-based surrogate model for multi-objective optimization evolutionary algorithm based on decomposition
  publication-title: Swarm and Evolutionary Computation
– volume: 53
  start-page: 1
  year: 2020
  end-page: 35
  ident: b9
  article-title: Indicator-based multi-objective evolutionary algorithms: A comprehensive survey
  publication-title: ACM Computing Surveys
– volume: 50
  start-page: 1106
  year: 2018
  end-page: 1119
  ident: b37
  article-title: Guiding evolutionary multiobjective optimization with generic front modeling
  publication-title: IEEE Transactions on Cybernetics
– volume: 52
  start-page: 2084
  year: 2022
  end-page: 2097
  ident: b12
  article-title: Evolutionary optimization of high-dimensional multiobjective and many-objective expensive problems assisted by a dropout neural network
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– year: 2022
  ident: b18
  article-title: A classification surrogate-assisted multi-objective evolutionary algorithm for expensive optimization
  publication-title: Knowledge-Based Systems
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: b34
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Computational Intelligence Magazine
– volume: 274
  year: 2023
  ident: b4
  article-title: Bayesian Co-evolutionary Optimization based entropy search for high-dimensional many-objective optimization
  publication-title: Knowledge-Based Systems
– year: 2024
  ident: b45
  article-title: Surrogate-assisted PSO with archive-based neighborhood search for medium-dimensional expensive multi-objective problems
  publication-title: Information Sciences
– start-page: 825
  year: 2021
  end-page: 831
  ident: b27
  article-title: A comprehensive review on evolutionary algorithm solving multi-objective problems
  publication-title: 2021 22nd IEEE international conference on industrial technology, vol. 1
– year: 2024
  ident: b2
  article-title: Self-organizing surrogate-assisted non-dominated sorting differential evolution
  publication-title: Swarm and Evolutionary Computation
– volume: 13
  start-page: 27
  year: 1994
  end-page: 31
  ident: b3
  article-title: Feed-forward neural networks
  publication-title: IEEE Potentials
– volume: 297
  start-page: 203
  year: 2022
  end-page: 220
  ident: b25
  article-title: Pruning Pareto optimal solutions for multi-objective portfolio asset management
  publication-title: European Journal of Operational Research
– volume: 23
  start-page: 3137
  year: 2019
  end-page: 3166
  ident: b6
  article-title: A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms
  publication-title: Soft Computing
– year: 2020
  ident: b10
  article-title: Modern blast furnace ironmaking: an introduction (2020)
– volume: 23
  start-page: 442
  year: 2018
  end-page: 458
  ident: b14
  article-title: Data-driven evolutionary optimization: An overview and case studies
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 341
  year: 2014
  end-page: 352
  ident: b32
  article-title: Efficient identification of the Pareto optimal set
  publication-title: Learning and intelligent optimization: 8th international conference, Lion 8, Gainesville, FL, USA, February 16–21, 2014. revised selected papers 8
– year: 2024
  ident: b42
  article-title: Two-stage stock portfolio optimization based on AI-powered price prediction and mean-CVaR models
  publication-title: Expert Systems with Applications
– volume: 634
  start-page: 423
  year: 2023
  end-page: 442
  ident: b19
  article-title: Evolutionary algorithm with individual-distribution search strategy and regression-classification surrogates for expensive optimization
  publication-title: Information Sciences
– volume: 84
  year: 2024
  ident: b28
  article-title: Improving multi-objective evolutionary algorithms using Grammatical Evolution
  publication-title: Swarm and Evolutionary Computation
– volume: 8
  start-page: 271
  year: 2022
  end-page: 285
  ident: b20
  article-title: Adaptive dropout for high-dimensional expensive multiobjective optimization
  publication-title: Complex & Intelligent Systems
– volume: 2
  start-page: 2229
  year: 2011
  end-page: 3981
  ident: b26
  article-title: Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation
  publication-title: Journal of Machine Learning Technologies
– volume: 10
  start-page: 477
  year: 2006
  end-page: 506
  ident: b13
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 60
  year: 2021
  ident: b17
  article-title: Two infill criteria driven surrogate-assisted multi-objective evolutionary algorithms for computationally expensive problems with medium dimensions
  publication-title: Swarm and Evolutionary Computation
– volume: 126
  year: 2023
  ident: b1
  article-title: MOSM: A hybrid multi-objective micro evolutionary algorithm
  publication-title: Engineering Applications of Artificial Intelligence
– year: 2010
  ident: b33
  publication-title: Computational intelligence in expensive optimization problems
– volume: 139
  year: 2023
  ident: b8
  article-title: Adaptive mating selection based on weighted indicator for Multi/Many-objective evolutionary algorithm
  publication-title: Applied Soft Computing
– volume: 25
  start-page: 1013
  year: 2021
  end-page: 1027
  ident: b30
  article-title: A kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 1999
  ident: b38
  article-title: Multiobjective evolutionary algorithms: classifications, analyses, and new innovations
– reference: (pp. 2883–2890). ISBN: 1941-0026 VO -.
– volume: 51
  start-page: 3115
  issue: 6
  year: 2021
  ident: 10.1016/j.eswa.2024.126050_b36
  article-title: Solving large-scale multiobjective optimization problems with sparse optimal solutions via unsupervised neural networks
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2020.2979930
– volume: 126
  year: 2023
  ident: 10.1016/j.eswa.2024.126050_b1
  article-title: μMOSM: A hybrid multi-objective micro evolutionary algorithm
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2023.107000
– start-page: 105
  year: 2005
  ident: 10.1016/j.eswa.2024.126050_b7
  article-title: Scalable test problems for evolutionary multiobjective optimization
– volume: 54
  start-page: 1770
  issue: 2
  year: 2024
  ident: 10.1016/j.eswa.2024.126050_b41
  article-title: A deep learning integrated framework for predicting stock index price and fluctuation via singular spectrum analysis and particle swarm optimization
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
  doi: 10.1007/s10489-024-05271-x
– volume: 3
  start-page: 67
  year: 2017
  ident: 10.1016/j.eswa.2024.126050_b5
  article-title: A benchmark test suite for evolutionary many-objective optimization
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-017-0039-7
– volume: 519
  start-page: 317
  year: 2020
  ident: 10.1016/j.eswa.2024.126050_b40
  article-title: An adaptive Bayesian approach to surrogate-assisted evolutionary multi-objective optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.01.048
– year: 2024
  ident: 10.1016/j.eswa.2024.126050_b45
  article-title: Surrogate-assisted PSO with archive-based neighborhood search for medium-dimensional expensive multi-objective problems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2024.120405
– year: 2020
  ident: 10.1016/j.eswa.2024.126050_b10
– volume: 31
  start-page: 375
  issue: 4
  year: 2023
  ident: 10.1016/j.eswa.2024.126050_b22
  article-title: Treed Gaussian process regression for solving offline data-driven continuous multiobjective optimization problems
  publication-title: Evolutionary Computation
  doi: 10.1162/evco_a_00329
– volume: 274
  year: 2023
  ident: 10.1016/j.eswa.2024.126050_b4
  article-title: Bayesian Co-evolutionary Optimization based entropy search for high-dimensional many-objective optimization
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2023.110630
– year: 2022
  ident: 10.1016/j.eswa.2024.126050_b18
  article-title: A classification surrogate-assisted multi-objective evolutionary algorithm for expensive optimization
  publication-title: Knowledge-Based Systems
– volume: 25
  start-page: 1013
  issue: 6
  year: 2021
  ident: 10.1016/j.eswa.2024.126050_b30
  article-title: A kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2021.3073648
– volume: 13
  start-page: 1167
  issue: 5
  year: 2009
  ident: 10.1016/j.eswa.2024.126050_b48
  article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2009.2021467
– volume: 634
  start-page: 423
  year: 2023
  ident: 10.1016/j.eswa.2024.126050_b19
  article-title: Evolutionary algorithm with individual-distribution search strategy and regression-classification surrogates for expensive optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2023.03.101
– volume: 84
  year: 2024
  ident: 10.1016/j.eswa.2024.126050_b28
  article-title: Improving multi-objective evolutionary algorithms using Grammatical Evolution
  publication-title: Swarm and Evolutionary Computation
– volume: 23
  start-page: 442
  issue: 3
  year: 2018
  ident: 10.1016/j.eswa.2024.126050_b14
  article-title: Data-driven evolutionary optimization: An overview and case studies
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2018.2869001
– start-page: 341
  year: 2014
  ident: 10.1016/j.eswa.2024.126050_b32
  article-title: Efficient identification of the Pareto optimal set
– volume: 49
  start-page: 1012
  issue: 3
  year: 2019
  ident: 10.1016/j.eswa.2024.126050_b11
  article-title: Heterogeneous ensemble-based infill criterion for evolutionary multiobjective optimization of expensive problems
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2794503
– volume: 8
  start-page: 271
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2024.126050_b20
  article-title: Adaptive dropout for high-dimensional expensive multiobjective optimization
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-021-00362-5
– start-page: 525
  year: 2016
  ident: 10.1016/j.eswa.2024.126050_b23
  article-title: Decomposition-based approach for solving large scale multi-objective problems
– volume: 52
  start-page: 2084
  issue: 4
  year: 2022
  ident: 10.1016/j.eswa.2024.126050_b12
  article-title: Evolutionary optimization of high-dimensional multiobjective and many-objective expensive problems assisted by a dropout neural network
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2020.3044418
– year: 2010
  ident: 10.1016/j.eswa.2024.126050_b33
– volume: 10
  start-page: 29
  issue: 1
  year: 2006
  ident: 10.1016/j.eswa.2024.126050_b43
  article-title: A faster algorithm for calculating hypervolume
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.851275
– volume: 72
  year: 2022
  ident: 10.1016/j.eswa.2024.126050_b46
  article-title: A convolutional neural network-based surrogate model for multi-objective optimization evolutionary algorithm based on decomposition
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2022.101081
– volume: 60
  year: 2021
  ident: 10.1016/j.eswa.2024.126050_b17
  article-title: Two infill criteria driven surrogate-assisted multi-objective evolutionary algorithms for computationally expensive problems with medium dimensions
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2020.100774
– volume: 13
  start-page: 27
  issue: 4
  year: 1994
  ident: 10.1016/j.eswa.2024.126050_b3
  article-title: Feed-forward neural networks
  publication-title: IEEE Potentials
  doi: 10.1109/45.329294
– start-page: 468
  year: 2016
  ident: 10.1016/j.eswa.2024.126050_b31
  article-title: A random-based dynamic grouping strategy for large scale multi-objective optimization
– volume: 91
  start-page: 1057
  issue: 9
  year: 2006
  ident: 10.1016/j.eswa.2024.126050_b29
  article-title: Optimization of constrained multiple-objective reliability problems using evolutionary algorithms
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2005.11.040
– volume: 12
  start-page: 73
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2024.126050_b34
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2017.2742868
– volume: 144
  year: 2023
  ident: 10.1016/j.eswa.2024.126050_b44
  article-title: A multi-objective Chaos Game Optimization algorithm based on decomposition and random learning mechanisms for numerical optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2023.110525
– volume: 297
  start-page: 203
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2024.126050_b25
  article-title: Pruning Pareto optimal solutions for multi-objective portfolio asset management
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2021.04.053
– volume: 53
  start-page: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2024.126050_b9
  article-title: Indicator-based multi-objective evolutionary algorithms: A comprehensive survey
  publication-title: ACM Computing Surveys
  doi: 10.1145/3376916
– volume: 10
  start-page: 477
  issue: 5
  year: 2006
  ident: 10.1016/j.eswa.2024.126050_b13
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.861417
– volume: 80
  year: 2023
  ident: 10.1016/j.eswa.2024.126050_b35
  article-title: A pairwise comparison based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2023.101323
– volume: 50
  start-page: 1106
  issue: 3
  year: 2018
  ident: 10.1016/j.eswa.2024.126050_b37
  article-title: Guiding evolutionary multiobjective optimization with generic front modeling
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2883914
– year: 2024
  ident: 10.1016/j.eswa.2024.126050_b42
  article-title: Two-stage stock portfolio optimization based on AI-powered price prediction and mean-CVaR models
  publication-title: Expert Systems with Applications
– year: 2024
  ident: 10.1016/j.eswa.2024.126050_b2
  article-title: Self-organizing surrogate-assisted non-dominated sorting differential evolution
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2024.101703
– ident: 10.1016/j.eswa.2024.126050_b47
  doi: 10.1109/CEC.2015.7257247
– start-page: 825
  year: 2021
  ident: 10.1016/j.eswa.2024.126050_b27
  article-title: A comprehensive review on evolutionary algorithm solving multi-objective problems
– volume: 23
  start-page: 3137
  year: 2019
  ident: 10.1016/j.eswa.2024.126050_b6
  article-title: A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms
  publication-title: Soft Computing
  doi: 10.1007/s00500-017-2965-0
– year: 1999
  ident: 10.1016/j.eswa.2024.126050_b38
– volume: 11
  start-page: 1800
  issue: 8
  year: 2023
  ident: 10.1016/j.eswa.2024.126050_b39
  article-title: An efficient end-to-end obstacle avoidance path planning algorithm for intelligent vehicles based on improved whale optimization algorithm
  publication-title: Mathematics
  doi: 10.3390/math11081800
– start-page: 1
  year: 2024
  ident: 10.1016/j.eswa.2024.126050_b16
  article-title: Solving high-dimensional expensive multiobjective optimization problems by adaptive decision variable grouping
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 23
  start-page: 74
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2024.126050_b24
  article-title: A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2018.2802784
– volume: 2
  start-page: 2229
  year: 2011
  ident: 10.1016/j.eswa.2024.126050_b26
  article-title: Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation
  publication-title: Journal of Machine Learning Technologies
– volume: 623
  start-page: 220
  year: 2023
  ident: 10.1016/j.eswa.2024.126050_b15
  article-title: A novel approach of many-objective particle swarm optimization with cooperative agents based on an inverted generational distance indicator
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2022.12.021
– volume: 139
  year: 2023
  ident: 10.1016/j.eswa.2024.126050_b8
  article-title: Adaptive mating selection based on weighted indicator for Multi/Many-objective evolutionary algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2023.110223
– volume: 49
  start-page: 1708
  issue: 5
  year: 2018
  ident: 10.1016/j.eswa.2024.126050_b21
  article-title: Evolutionary optimization of expensive multiobjective problems with co-sub-Pareto front Gaussian process surrogates
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2811761
SSID ssj0017007
Score 2.494351
Snippet In real-world scenarios where resources for evaluating expensive optimization problems are limited and the reliability of trained models is hard to assess, the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126050
SubjectTerms Classification
Evolutionary algorithms
Expensive multi-objective optimization
Front modeling
Model management
Surrogate-assisted optimization
Title SEAMS: A surrogate-assisted evolutionary algorithm with metric-based dynamic strategy for expensive multi-objective optimization
URI https://dx.doi.org/10.1016/j.eswa.2024.126050
Volume 265
WOSCitedRecordID wos001385688700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb5swFLeydIdd9j21-5IPuyFXYMDAblGVqduhmrROyg0Z26xECVSEZDnuT99zbBOaddV62AVFCB6I3y_vPT-_D4Q-FGkq9QYUAesvCVi8kvAyE6QEbzgSscgyyXfDJpKLi3Q2y76ORltXC7NZJHWdbrfZ9X-FGs4B2Lp09h5w90LhBPwG0OEIsMPxn4D_NoXFuSk4X63bttFxMgIussZTempjH66z5fjiR9NW3dXShGOXerqWINqwSU-aUfXeyrSvNXmdeh6ASXjfJSKSppgbhek1oHqWtqbzRrRft1LubMNoV0o32DTvE4Kq9c4K8qrjzT7KbzTR2VXFyfnaGlkbo6CxTtIyVZp9sDEhUWDm8Ti9S1k80JyBXlj5typ1E1-Yn6rVT90pikan-4tvdtA-sGx9vqFLZZvnWkauZeRGxgN0RJM4S8foaPJ5OvvS70Alvim1d29uC65MbuDhm9zu1Awclcun6LFdYeCJYcYzNFL1c_TETe_AVpm_QL92RPmIJ_hPmuAhTXBPE6zhw0OaYEsT7GiCgSa4pwk-oAke0uQl-v5penl2Tuw8DiJC3-8Il2EScUl9HvplnBWUFz4vAlEqmcnE50zCUs1nUpbgBUpVxCplsohpwRiVerrdKzSum1odI6zSkDERgPNNeaR0zzyegOSQFWksJaMnKHAfNBe2Wb2embLI_w7lCfL6e65Nq5Y7r44dTrl1No0TmQPt7rjv9b2e8gY92v8f3qJx167VO_RQbLpq1b63nPsN3emnQg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SEAMS%3A+A+surrogate-assisted+evolutionary+algorithm+with+metric-based+dynamic+strategy+for+expensive+multi-objective+optimization&rft.jtitle=Expert+systems+with+applications&rft.au=Liu%2C+Haitao&rft.au=Wang%2C+Chia-Hung&rft.date=2025-03-15&rft.issn=0957-4174&rft.volume=265&rft.spage=126050&rft_id=info:doi/10.1016%2Fj.eswa.2024.126050&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2024_126050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon