Quantum-inspired optimization algorithm with adaptive correction of energy position: Methodology and a case study

Efficient and stable global optimizers constitute a noteworthy arena of academic study and real-world applications. Since Multi-scale Quantum Harmonic Oscillator Algorithm inspired by the quantum motion for solving optimization problems was proposed, considerable contributions regarding this algorit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 145; S. 110560
Hauptverfasser: Mu, Lei, Wang, Peng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.09.2023
Schlagworte:
ISSN:1568-4946, 1872-9681
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Efficient and stable global optimizers constitute a noteworthy arena of academic study and real-world applications. Since Multi-scale Quantum Harmonic Oscillator Algorithm inspired by the quantum motion for solving optimization problems was proposed, considerable contributions regarding this algorithm have been achieved in recent years. Nevertheless, issues such as the aggregation effect during sampling as well as recurrence and blindness in random searches hinder the performance of the algorithm. Motivated by this situation, a variant of Multi-scale Quantum Harmonic Oscillator Algorithm is put forward to improve the efficiency of the system convergence while maintaining the solution diversity. The measurement of the solution position through the collapse of the quantum state to the classical state is realized by means of quantum Monte Carlo simulations, and the energy position is established as a metric for energy observation. Then, the adaptive correction of the energy position is explored to improve algorithm performance. The core idea of our mechanism is to adaptively guide the candidate solutions toward convergence to the ground state by means of attractive factors based on the relationship among the energy positions of several reference points. Experimental results obtained on the CEC2013 benchmark functions and a real-world application indicate that the performance of our scheme is competitive and that it achieves prominence among the compared algorithms as the dimensionality increases. •We propose a general framework for a class of quantum-inspired algorithms.•A MQHOA variant with adaptive balance utilizing attractive factors is present.•Our scheme is analyzed in various aspects, such as wave functions•The scheme is validated on CEC2013 benchmark functions and a real-world case study.•The results show prominent scheme performance with increasing dimensionality.
AbstractList Efficient and stable global optimizers constitute a noteworthy arena of academic study and real-world applications. Since Multi-scale Quantum Harmonic Oscillator Algorithm inspired by the quantum motion for solving optimization problems was proposed, considerable contributions regarding this algorithm have been achieved in recent years. Nevertheless, issues such as the aggregation effect during sampling as well as recurrence and blindness in random searches hinder the performance of the algorithm. Motivated by this situation, a variant of Multi-scale Quantum Harmonic Oscillator Algorithm is put forward to improve the efficiency of the system convergence while maintaining the solution diversity. The measurement of the solution position through the collapse of the quantum state to the classical state is realized by means of quantum Monte Carlo simulations, and the energy position is established as a metric for energy observation. Then, the adaptive correction of the energy position is explored to improve algorithm performance. The core idea of our mechanism is to adaptively guide the candidate solutions toward convergence to the ground state by means of attractive factors based on the relationship among the energy positions of several reference points. Experimental results obtained on the CEC2013 benchmark functions and a real-world application indicate that the performance of our scheme is competitive and that it achieves prominence among the compared algorithms as the dimensionality increases. •We propose a general framework for a class of quantum-inspired algorithms.•A MQHOA variant with adaptive balance utilizing attractive factors is present.•Our scheme is analyzed in various aspects, such as wave functions•The scheme is validated on CEC2013 benchmark functions and a real-world case study.•The results show prominent scheme performance with increasing dimensionality.
ArticleNumber 110560
Author Wang, Peng
Mu, Lei
Author_xml – sequence: 1
  givenname: Lei
  surname: Mu
  fullname: Mu, Lei
  email: truemoller@outlook.com
  organization: School of Computer Science and Technology, Southwest Minzu University, Chengdu 610041, China
– sequence: 2
  givenname: Peng
  orcidid: 0000-0001-5876-4650
  surname: Wang
  fullname: Wang, Peng
  email: wp002005@163.com
  organization: School of Computer Science and Technology, Southwest Minzu University, Chengdu 610041, China
BookMark eNp9kM1OwzAMgCM0JLbBC3DKC3QkbZeliAua-JOGEBKcIy9xt0xtU5JsaDw97caJwy62Zfuz5G9EBo1rkJBrziaccXGzmUBwepKyNJtwzqaCnZEhl7M0KYTkg66eCpnkRS4uyCiEDeugIpVD8vW-hSZu68Q2obUeDXVttLX9gWhdQ6FaOW_juqbfXaRgoJvukGrnPerDiispNuhXe9q6YPvWLX3FuHbGVa7rQmMoUA0BaYhbs78k5yVUAa_-8ph8Pj58zJ-TxdvTy_x-keiMsZiAYTor-HTJpCjRsJRpw4yc5ZmWUwQBokAwJc9xmZZSGJFnpYBM8nwG2Qx5NibyeFd7F4LHUmkbD19FD7ZSnKlendqoXp3q1amjug5N_6GttzX4_Wno7ghh99TOoldBW2w0GturUsbZU_gvHiaNUw
CitedBy_id crossref_primary_10_1016_j_cej_2025_168446
crossref_primary_10_1016_j_engappai_2024_109635
crossref_primary_10_1109_TITS_2024_3373510
Cites_doi 10.1016/j.asoc.2018.05.005
10.1126/science.284.5415.779
10.1590/S0103-97332003000100003
10.1109/CEC.2013.6557848
10.1016/j.asoc.2019.105800
10.1109/3477.484436
10.1007/BF01011339
10.1109/4235.585893
10.1162/EVCO_a_00049
10.1007/s12065-014-0110-x
10.1109/ICCA.2017.8003198
10.1016/j.asoc.2017.10.046
10.1119/1.18168
10.1109/TSG.2011.2151888
10.1016/0009-2614(94)00117-0
10.1109/TEVC.2017.2787042
10.1016/j.apenergy.2011.11.088
10.1023/A:1008306431147
10.1007/s00224-004-1177-z
10.1109/CEC.1999.785511
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2023.110560
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2023_110560
S1568494623005781
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-ad0c3915b086fed020cd0d8743c85ea6a69eadf14eb2f86d643f6a38147a37e13
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001055015500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:05:06 EST 2025
Tue Nov 18 21:00:18 EST 2025
Fri Feb 23 02:34:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Quantum Monte Carlo
Energy position
Evolutionary algorithms
Optimization problem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-ad0c3915b086fed020cd0d8743c85ea6a69eadf14eb2f86d643f6a38147a37e13
ORCID 0000-0001-5876-4650
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2023_110560
crossref_primary_10_1016_j_asoc_2023_110560
elsevier_sciencedirect_doi_10_1016_j_asoc_2023_110560
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kosztin, Faber, Schulten (b28) 1996; 64
Su, Chow (b36) 2012; 96
Wang, Huang, Ren, Guo (b13) 2013; 41
Li, Shao, Qian (b6) 2002; 22
Finnila, Gomez, Sebenik, Stenson, Doll (b8) 1994; 219
Das, Chakrabarti (b10) 2005
Hu, Xu, Shi, Xin (b17) 2017; 53
Wang, Huang (b20) 2016; 37
L. Mu, X. Qu, P. Wang, Application of multi-scale quantum harmonic oscillator algorithm for multifactor task allocation problem in WSANs, in: IEEE International Conference on Control & Automation, 2017, pp. 1004–1009.
Cui, Yang, Zhou (b16) 2017; 43
Wang, Huang, Li, Xie (b27) 2016
Liang, Qu, Suganthan, Hernández-Díaz (b32) 2013
Jones, Schonlau, Welch (b1) 1998; 13
Li, Tan (b30) 2018; 62
Shi, Eberhart (b33) 2008
Brooke, Bitko, Aeppli (b9) 1999; 284
Shi, Wu, Shen, Cheng, Chen (b18) 2017; 39
Su, Chow (b37) 2012; 3
Droste, Jansen, Wegener (b2) 2006; 39
Wolpert, Macready (b35) 1997; 1
Doncieux, Mouret (b3) 2014; 7
Wang, Huang (b19) 2015; 9
Wang, Huang, Yuan, Du, An (b21) 2016; 44
.
M. Zambrano-Bigiarini, M. Clerc, R. Rojas, Standard Particle Swarm Optimisation 2011 at CEC-2013: A baseline for future PSO improvements, in: IEEE Congress on Evolutionary Computation, 2013, pp. 2337–2344.
Y. Shi, R.C. Eberhart, Empirical study of particle swarm optimization, in: IEEE Congress on Evolutionary Computation, 1999, pp. 1945–1950
Ye, Wang (b29) 2019; 85
Benioff (b7) 1980; 22
dos Santos (b24) 2003; 33
Wang, Ye, Li, Cheng (b22) 2018; 69
Shankar (b25) 2007
Dorigo, Maniezzo, Colorni (b4) 1996; 26
Li, Tan (b34) 2018; 22
Sun, Xu, Feng (b11) 2004
Wang, Huang, An, Li (b14) 2016; 45
Yan, Wang, Fan, Huang (b15) 2016; 44
Sun, Fang, Wu, Palade, Xu (b12) 2012; 20
Brooke, Bitko, Rosenbaum, Aeppli (b26) 2001; 284
Cui (10.1016/j.asoc.2023.110560_b16) 2017; 43
Brooke (10.1016/j.asoc.2023.110560_b26) 2001; 284
dos Santos (10.1016/j.asoc.2023.110560_b24) 2003; 33
Yan (10.1016/j.asoc.2023.110560_b15) 2016; 44
Wang (10.1016/j.asoc.2023.110560_b20) 2016; 37
Wang (10.1016/j.asoc.2023.110560_b21) 2016; 44
Shankar (10.1016/j.asoc.2023.110560_b25) 2007
10.1016/j.asoc.2023.110560_b31
Doncieux (10.1016/j.asoc.2023.110560_b3) 2014; 7
Wang (10.1016/j.asoc.2023.110560_b22) 2018; 69
Su (10.1016/j.asoc.2023.110560_b36) 2012; 96
Ye (10.1016/j.asoc.2023.110560_b29) 2019; 85
Sun (10.1016/j.asoc.2023.110560_b12) 2012; 20
Shi (10.1016/j.asoc.2023.110560_b18) 2017; 39
Dorigo (10.1016/j.asoc.2023.110560_b4) 1996; 26
Li (10.1016/j.asoc.2023.110560_b6) 2002; 22
Li (10.1016/j.asoc.2023.110560_b34) 2018; 22
Liang (10.1016/j.asoc.2023.110560_b32) 2013
Wang (10.1016/j.asoc.2023.110560_b27) 2016
Kosztin (10.1016/j.asoc.2023.110560_b28) 1996; 64
Benioff (10.1016/j.asoc.2023.110560_b7) 1980; 22
Su (10.1016/j.asoc.2023.110560_b37) 2012; 3
Jones (10.1016/j.asoc.2023.110560_b1) 1998; 13
Hu (10.1016/j.asoc.2023.110560_b17) 2017; 53
Wang (10.1016/j.asoc.2023.110560_b14) 2016; 45
Wang (10.1016/j.asoc.2023.110560_b19) 2015; 9
10.1016/j.asoc.2023.110560_b23
Wolpert (10.1016/j.asoc.2023.110560_b35) 1997; 1
Finnila (10.1016/j.asoc.2023.110560_b8) 1994; 219
Wang (10.1016/j.asoc.2023.110560_b13) 2013; 41
Shi (10.1016/j.asoc.2023.110560_b33) 2008
Brooke (10.1016/j.asoc.2023.110560_b9) 1999; 284
Droste (10.1016/j.asoc.2023.110560_b2) 2006; 39
Das (10.1016/j.asoc.2023.110560_b10) 2005
10.1016/j.asoc.2023.110560_b5
Sun (10.1016/j.asoc.2023.110560_b11) 2004
Li (10.1016/j.asoc.2023.110560_b30) 2018; 62
References_xml – reference: L. Mu, X. Qu, P. Wang, Application of multi-scale quantum harmonic oscillator algorithm for multifactor task allocation problem in WSANs, in: IEEE International Conference on Control & Automation, 2017, pp. 1004–1009.
– volume: 64
  start-page: 633
  year: 1996
  end-page: 644
  ident: b28
  article-title: Introduction to the diffusion Monte Carlo method
  publication-title: Amer. J. Phys.
– volume: 44
  start-page: 405
  year: 2016
  end-page: 412
  ident: b15
  article-title: Clustering center selecting algorithm based on quantum harmonic oscillator model
  publication-title: Acta Electron. Sin.
– volume: 69
  start-page: 655
  year: 2018
  end-page: 670
  ident: b22
  article-title: Multi-scale quantum harmonic oscillator algorithm for global numerical optimization
  publication-title: Appl. Soft Comput.
– volume: 219
  start-page: 343
  year: 1994
  end-page: 348
  ident: b8
  article-title: Quantum annealing: A new method for minimizing multidimensional functions
  publication-title: Chem. Phys. Lett.
– volume: 9
  start-page: 1271
  year: 2015
  end-page: 1280
  ident: b19
  article-title: Physical model of multi-scale quantum harmonic oscillator optimization algorithm
  publication-title: J. Front. Comput. Sci. Technol.
– volume: 26
  start-page: 29
  year: 1996
  end-page: 41
  ident: b4
  article-title: Ant system: optimization by a colony of cooperating agents
  publication-title: IEEE Trans. Syst. Man Cybern. B
– volume: 37
  start-page: 79
  year: 2016
  end-page: 86
  ident: b20
  article-title: MQHOA algorithm with energy level stabilizing process
  publication-title: J. Commun.
– volume: 96
  start-page: 171
  year: 2012
  end-page: 182
  ident: b36
  article-title: Computational intelligence-based energy management for a large-scale PHEV/PEV enabled municipal parking deck
  publication-title: Appl. Energy
– volume: 33
  start-page: 36
  year: 2003
  end-page: 54
  ident: b24
  article-title: Introduction to quantum Monte Carlo simulations for fermionic systems
  publication-title: Braz. J. Phys.
– volume: 284
  start-page: 779
  year: 2001
  end-page: 781
  ident: b26
  article-title: Quantum annealing of a disordered spin system
  publication-title: Science
– volume: 3
  start-page: 308
  year: 2012
  end-page: 315
  ident: b37
  article-title: Performance evaluation of an EDA-based large-scale plug-in hybrid electric vehicle charging algorithm
  publication-title: IEEE Trans. Smart Grid
– volume: 22
  start-page: 563
  year: 1980
  end-page: 591
  ident: b7
  article-title: The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by turing machines
  publication-title: J. Stat. Phys.
– volume: 45
  start-page: 469
  year: 2016
  end-page: 474
  ident: b14
  article-title: Performance analysis of multi-scale quantum harmonic oscillator global optimization algorithm in combinatorial optimization problems
  publication-title: J. Univ. Electron. Sci. Technol. China
– volume: 85
  year: 2019
  ident: b29
  article-title: Impact of migration strategies and individual stabilization on multi-scale quantum harmonic oscillator algorithm for global numerical optimization problems
  publication-title: Appl. Soft Comput.
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b35
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– reference: Y. Shi, R.C. Eberhart, Empirical study of particle swarm optimization, in: IEEE Congress on Evolutionary Computation, 1999, pp. 1945–1950,
– start-page: 39
  year: 2016
  end-page: 44
  ident: b27
  article-title: Multi-Scale Quantum Harmonic Oscillator Algorithm
– volume: 22
  start-page: 679
  year: 2018
  end-page: 691
  ident: b34
  article-title: Loser-out tournament-based fireworks algorithm for multimodal function optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 44
  start-page: 1988
  year: 2016
  end-page: 1993
  ident: b21
  article-title: Convergence characteristics of multi-scale quantum harmonic oscillator algorithm
  publication-title: Acta Electron. Sin.
– volume: 53
  start-page: 252
  year: 2017
  end-page: 256
  ident: b17
  article-title: Optimization of jamming resources distribution decision based on IFS-IMQHOA algorithm
  publication-title: Comput. Eng. Appl.
– year: 2013
  ident: b32
  article-title: Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization
– start-page: 151
  year: 2007
  end-page: 176
  ident: b25
  article-title: Principles of Quantum Mechanics
– volume: 13
  start-page: 455
  year: 1998
  end-page: 492
  ident: b1
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Global Optim.
– volume: 22
  start-page: 32
  year: 2002
  end-page: 38
  ident: b6
  article-title: An optimizing method based on autonomous animats: Fish-swarm algorithm
  publication-title: Syst. Eng. Theory Pract.
– reference: M. Zambrano-Bigiarini, M. Clerc, R. Rojas, Standard Particle Swarm Optimisation 2011 at CEC-2013: A baseline for future PSO improvements, in: IEEE Congress on Evolutionary Computation, 2013, pp. 2337–2344.
– reference: .
– volume: 41
  start-page: 2468
  year: 2013
  end-page: 2473
  ident: b13
  article-title: Multi-scale quantum harmonic oscillator for high-dimensional function global optimization algorithm
  publication-title: Acta Electron. Sin.
– volume: 7
  start-page: 71
  year: 2014
  end-page: 93
  ident: b3
  article-title: Beyond black-box optimization: a review of selective pressures for evolutionary robotics
  publication-title: Evol. Intell.
– volume: 39
  start-page: 6
  year: 2017
  end-page: 10
  ident: b18
  article-title: A method of radar power self-adapting control considering radio frequency stealth
  publication-title: Modern Radar
– volume: 62
  start-page: 454
  year: 2018
  end-page: 462
  ident: b30
  article-title: The bare bones fireworks algorithm: A minimalist global optimizer
  publication-title: Appl. Soft Comput.
– volume: 39
  start-page: 525
  year: 2006
  end-page: 544
  ident: b2
  article-title: Upper and lower bounds for randomized search heuristics in black-box optimization
  publication-title: Theory Comput. Syst.
– volume: 43
  start-page: 276
  year: 2017
  end-page: 282
  ident: b16
  article-title: Simulation and realization of multi-scale quantum harmonic oscillator algorithm based on system identification
  publication-title: J. Southwest Minzu Univ.
– volume: 284
  start-page: 779
  year: 1999
  end-page: 781
  ident: b9
  article-title: Quantum annealing of a disordered magnet
  publication-title: Science
– volume: 20
  start-page: 349
  year: 2012
  end-page: 393
  ident: b12
  article-title: Quantum-behaved particle swarm optimization: Analysis of individual particle behavior and parameter selection
  publication-title: Evol. Comput.
– year: 2005
  ident: b10
  article-title: Quantum Annealing and Related Optimization Methods, Vol. 679
– start-page: 111
  year: 2004
  end-page: 116
  ident: b11
  article-title: A global search strategy of quantum-behaved particle swarm optimization
  publication-title: IEEE Conference on Cybernetics and Intelligent Systems, 2004, Vol. 1
– start-page: 1063
  year: 2008
  end-page: 1067
  ident: b33
  article-title: Population diversity of particle swarms
  publication-title: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)
– volume: 69
  start-page: 655
  year: 2018
  ident: 10.1016/j.asoc.2023.110560_b22
  article-title: Multi-scale quantum harmonic oscillator algorithm for global numerical optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.05.005
– volume: 37
  start-page: 79
  issue: 7
  year: 2016
  ident: 10.1016/j.asoc.2023.110560_b20
  article-title: MQHOA algorithm with energy level stabilizing process
  publication-title: J. Commun.
– volume: 284
  start-page: 779
  issue: 5415
  year: 2001
  ident: 10.1016/j.asoc.2023.110560_b26
  article-title: Quantum annealing of a disordered spin system
  publication-title: Science
  doi: 10.1126/science.284.5415.779
– start-page: 39
  year: 2016
  ident: 10.1016/j.asoc.2023.110560_b27
– volume: 33
  start-page: 36
  issue: 1
  year: 2003
  ident: 10.1016/j.asoc.2023.110560_b24
  article-title: Introduction to quantum Monte Carlo simulations for fermionic systems
  publication-title: Braz. J. Phys.
  doi: 10.1590/S0103-97332003000100003
– ident: 10.1016/j.asoc.2023.110560_b31
  doi: 10.1109/CEC.2013.6557848
– volume: 44
  start-page: 405
  issue: 2
  year: 2016
  ident: 10.1016/j.asoc.2023.110560_b15
  article-title: Clustering center selecting algorithm based on quantum harmonic oscillator model
  publication-title: Acta Electron. Sin.
– year: 2013
  ident: 10.1016/j.asoc.2023.110560_b32
– start-page: 1063
  year: 2008
  ident: 10.1016/j.asoc.2023.110560_b33
  article-title: Population diversity of particle swarms
– volume: 85
  year: 2019
  ident: 10.1016/j.asoc.2023.110560_b29
  article-title: Impact of migration strategies and individual stabilization on multi-scale quantum harmonic oscillator algorithm for global numerical optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105800
– volume: 26
  start-page: 29
  issue: 1
  year: 1996
  ident: 10.1016/j.asoc.2023.110560_b4
  article-title: Ant system: optimization by a colony of cooperating agents
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/3477.484436
– volume: 41
  start-page: 2468
  issue: 12
  year: 2013
  ident: 10.1016/j.asoc.2023.110560_b13
  article-title: Multi-scale quantum harmonic oscillator for high-dimensional function global optimization algorithm
  publication-title: Acta Electron. Sin.
– volume: 22
  start-page: 563
  issue: 5
  year: 1980
  ident: 10.1016/j.asoc.2023.110560_b7
  article-title: The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by turing machines
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01011339
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.asoc.2023.110560_b35
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 20
  start-page: 349
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2023.110560_b12
  article-title: Quantum-behaved particle swarm optimization: Analysis of individual particle behavior and parameter selection
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00049
– start-page: 151
  year: 2007
  ident: 10.1016/j.asoc.2023.110560_b25
– start-page: 111
  year: 2004
  ident: 10.1016/j.asoc.2023.110560_b11
  article-title: A global search strategy of quantum-behaved particle swarm optimization
– volume: 7
  start-page: 71
  issue: 2
  year: 2014
  ident: 10.1016/j.asoc.2023.110560_b3
  article-title: Beyond black-box optimization: a review of selective pressures for evolutionary robotics
  publication-title: Evol. Intell.
  doi: 10.1007/s12065-014-0110-x
– ident: 10.1016/j.asoc.2023.110560_b23
  doi: 10.1109/ICCA.2017.8003198
– volume: 62
  start-page: 454
  year: 2018
  ident: 10.1016/j.asoc.2023.110560_b30
  article-title: The bare bones fireworks algorithm: A minimalist global optimizer
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.10.046
– volume: 44
  start-page: 1988
  issue: 8
  year: 2016
  ident: 10.1016/j.asoc.2023.110560_b21
  article-title: Convergence characteristics of multi-scale quantum harmonic oscillator algorithm
  publication-title: Acta Electron. Sin.
– volume: 45
  start-page: 469
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2023.110560_b14
  article-title: Performance analysis of multi-scale quantum harmonic oscillator global optimization algorithm in combinatorial optimization problems
  publication-title: J. Univ. Electron. Sci. Technol. China
– volume: 43
  start-page: 276
  issue: 3
  year: 2017
  ident: 10.1016/j.asoc.2023.110560_b16
  article-title: Simulation and realization of multi-scale quantum harmonic oscillator algorithm based on system identification
  publication-title: J. Southwest Minzu Univ.
– volume: 64
  start-page: 633
  issue: 5
  year: 1996
  ident: 10.1016/j.asoc.2023.110560_b28
  article-title: Introduction to the diffusion Monte Carlo method
  publication-title: Amer. J. Phys.
  doi: 10.1119/1.18168
– volume: 53
  start-page: 252
  issue: 19
  year: 2017
  ident: 10.1016/j.asoc.2023.110560_b17
  article-title: Optimization of jamming resources distribution decision based on IFS-IMQHOA algorithm
  publication-title: Comput. Eng. Appl.
– volume: 9
  start-page: 1271
  issue: 10
  year: 2015
  ident: 10.1016/j.asoc.2023.110560_b19
  article-title: Physical model of multi-scale quantum harmonic oscillator optimization algorithm
  publication-title: J. Front. Comput. Sci. Technol.
– volume: 284
  start-page: 779
  issue: 5415
  year: 1999
  ident: 10.1016/j.asoc.2023.110560_b9
  article-title: Quantum annealing of a disordered magnet
  publication-title: Science
  doi: 10.1126/science.284.5415.779
– volume: 3
  start-page: 308
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2023.110560_b37
  article-title: Performance evaluation of an EDA-based large-scale plug-in hybrid electric vehicle charging algorithm
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2011.2151888
– volume: 219
  start-page: 343
  issue: 5–6
  year: 1994
  ident: 10.1016/j.asoc.2023.110560_b8
  article-title: Quantum annealing: A new method for minimizing multidimensional functions
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(94)00117-0
– volume: 39
  start-page: 6
  issue: 10
  year: 2017
  ident: 10.1016/j.asoc.2023.110560_b18
  article-title: A method of radar power self-adapting control considering radio frequency stealth
  publication-title: Modern Radar
– volume: 22
  start-page: 32
  issue: 11
  year: 2002
  ident: 10.1016/j.asoc.2023.110560_b6
  article-title: An optimizing method based on autonomous animats: Fish-swarm algorithm
  publication-title: Syst. Eng. Theory Pract.
– volume: 22
  start-page: 679
  issue: 5
  year: 2018
  ident: 10.1016/j.asoc.2023.110560_b34
  article-title: Loser-out tournament-based fireworks algorithm for multimodal function optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2787042
– volume: 96
  start-page: 171
  year: 2012
  ident: 10.1016/j.asoc.2023.110560_b36
  article-title: Computational intelligence-based energy management for a large-scale PHEV/PEV enabled municipal parking deck
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.11.088
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: 10.1016/j.asoc.2023.110560_b1
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008306431147
– volume: 39
  start-page: 525
  issue: 4
  year: 2006
  ident: 10.1016/j.asoc.2023.110560_b2
  article-title: Upper and lower bounds for randomized search heuristics in black-box optimization
  publication-title: Theory Comput. Syst.
  doi: 10.1007/s00224-004-1177-z
– year: 2005
  ident: 10.1016/j.asoc.2023.110560_b10
– ident: 10.1016/j.asoc.2023.110560_b5
  doi: 10.1109/CEC.1999.785511
SSID ssj0016928
Score 2.4043343
Snippet Efficient and stable global optimizers constitute a noteworthy arena of academic study and real-world applications. Since Multi-scale Quantum Harmonic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110560
SubjectTerms Energy position
Evolutionary algorithms
Optimization problem
Quantum Monte Carlo
Title Quantum-inspired optimization algorithm with adaptive correction of energy position: Methodology and a case study
URI https://dx.doi.org/10.1016/j.asoc.2023.110560
Volume 145
WOSCitedRecordID wos001055015500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF6Ck0MvfaQtTduUPeRmFKzVeh-9hZCQFBoSkoJvYrW7ah1i2bXlkp-f2ZdsnBLaQi_CLFqvmW88mhnNzIfQQcEGSpOKZJJbnlENMaskrABd5rmhhGtqtSeb4BcXYjSSl5HuaOHpBHjTiPt7OfuvUMMagO1aZ_8C7u5LYQE-A-hwBdjh-kfAXy1BWMtJNm7cS3TwJ6dgFSax3bKv7r5P5-P2xyR2tRk188VD2rF06OQ-2tARmCq6XNrgq6eaXk1sUn0ND8C18bRplG10axdg333B-rJNT0ePq08E2PEqkR-MzaWNN8UMBCm6EquYFnvUGhMsKRMZlTG_aMOa4KAULHC0dOY3jJN8ZMpDVuH2UIGWHrpjXcfCMJAPbIzIvnaHubOIG77PXSf-NuFDKXpo--j8ZPSle6_EpGfb7X5cbKMKFX-bJ_3eVVlzP25eoucxbsBHAe9XaMs2u-hF4uTA0US_Rj834cfr8OMOfuzgxwl-vIIfT2sc4McJ_s94DXwM4GOFHfjYg_8GfTs9uTk-yyKtRqZBPG2mzEA7WoAKotnaGogXtBkYAa6kFkOrmGISzEudU1uRWjADPmvNFHh2lKuC27x4i3rNtLHvEK4gWM6FriklhhaVrbgw1vKBkcbNKlR7KE8SLHWcOe-oT-7KVFx4Wzqpl07qZZD6Hup3e2Zh4sqTdw8TMGX0GYMvWIIePbHv_T_u-4Cerf4CH1GvnS_tPtrRv9rxYv4pqtsDkGSULA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum-inspired+optimization+algorithm+with+adaptive+correction+of+energy+position%3A+Methodology+and+a+case+study&rft.jtitle=Applied+soft+computing&rft.au=Mu%2C+Lei&rft.au=Wang%2C+Peng&rft.date=2023-09-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=145&rft_id=info:doi/10.1016%2Fj.asoc.2023.110560&rft.externalDocID=S1568494623005781
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon