Hybrid Particle Swarm and Grey Wolf Optimizer and its application to clustering optimization
Grey Wolf Optimizer (GWO) and Particle Swarm Optimization (PSO) algorithm are two popular swarm intelligence optimization algorithms and these two algorithms have their own search mechanisms. Based on their unique search mechanisms and their advantages after the improvements on them, this paper prop...
Saved in:
| Published in: | Applied soft computing Vol. 101; p. 107061 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.03.2021
|
| Subjects: | |
| ISSN: | 1568-4946, 1872-9681 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Grey Wolf Optimizer (GWO) and Particle Swarm Optimization (PSO) algorithm are two popular swarm intelligence optimization algorithms and these two algorithms have their own search mechanisms. Based on their unique search mechanisms and their advantages after the improvements on them, this paper proposes a novel hybrid algorithm based on PSO and GWO (Hybrid GWO with PSO, HGWOP). Firstly, GWO is simplified and a novel differential perturbation strategy is embedded in the search process of the simplified GWO to form a Simplified GWO with Differential Perturbation (SDPGWO) so that it can improve the global search ability while retaining the strong exploitation ability of GWO. Secondly, a stochastic mean example learning strategy is applied to PSO to create a Mean Example Learning PSO (MELPSO) to enhance the global search ability of PSO and prevent the algorithm from falling into local optima. Finally, a poor-for-change strategy is proposed to organically integrate SDPGWO and MELPSO to obtain an efficient hybrid algorithm of GWO and PSO. HGWOP can give full play to the advantages of these two improved algorithms, overcome the shortcomings of GWO and PSO and maximize the whole performance. A large number of experiments on the complex functions from CEC2013 and CEC2015 test sets reveal that HGWOP has better optimization performance and stronger universality compared with quite a few state-of-the-art algorithms. Experimental results on K-means clustering optimization show that HGWOP has obvious advantages over the comparison algorithms.
•A Simplified GWO with a Differential Perturbation strategy (SDPGWO) is formulated.•A PSO with a stochastic Mean Example Learning strategy (MELPSO) is used.•A poor-for-change strategy is presented to combine SDPGWO with MELPSO effectively.•A novel hybrid GWO with PSO (HGWOP) with high-level hybridization is proposed.•HGWOP is more effective on complex function and K-means clustering optimization.
[Display omitted] |
|---|---|
| AbstractList | Grey Wolf Optimizer (GWO) and Particle Swarm Optimization (PSO) algorithm are two popular swarm intelligence optimization algorithms and these two algorithms have their own search mechanisms. Based on their unique search mechanisms and their advantages after the improvements on them, this paper proposes a novel hybrid algorithm based on PSO and GWO (Hybrid GWO with PSO, HGWOP). Firstly, GWO is simplified and a novel differential perturbation strategy is embedded in the search process of the simplified GWO to form a Simplified GWO with Differential Perturbation (SDPGWO) so that it can improve the global search ability while retaining the strong exploitation ability of GWO. Secondly, a stochastic mean example learning strategy is applied to PSO to create a Mean Example Learning PSO (MELPSO) to enhance the global search ability of PSO and prevent the algorithm from falling into local optima. Finally, a poor-for-change strategy is proposed to organically integrate SDPGWO and MELPSO to obtain an efficient hybrid algorithm of GWO and PSO. HGWOP can give full play to the advantages of these two improved algorithms, overcome the shortcomings of GWO and PSO and maximize the whole performance. A large number of experiments on the complex functions from CEC2013 and CEC2015 test sets reveal that HGWOP has better optimization performance and stronger universality compared with quite a few state-of-the-art algorithms. Experimental results on K-means clustering optimization show that HGWOP has obvious advantages over the comparison algorithms.
•A Simplified GWO with a Differential Perturbation strategy (SDPGWO) is formulated.•A PSO with a stochastic Mean Example Learning strategy (MELPSO) is used.•A poor-for-change strategy is presented to combine SDPGWO with MELPSO effectively.•A novel hybrid GWO with PSO (HGWOP) with high-level hybridization is proposed.•HGWOP is more effective on complex function and K-means clustering optimization.
[Display omitted] |
| ArticleNumber | 107061 |
| Author | Liu, Guoqi Lin, Qiuying Dou, Zhi Mao, Wentao Zhang, Xinming Liu, Shangwang |
| Author_xml | – sequence: 1 givenname: Xinming surname: Zhang fullname: Zhang, Xinming email: xinmingzhang@126.com organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang Henan, China – sequence: 2 givenname: Qiuying surname: Lin fullname: Lin, Qiuying organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang Henan, China – sequence: 3 givenname: Wentao surname: Mao fullname: Mao, Wentao organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang Henan, China – sequence: 4 givenname: Shangwang surname: Liu fullname: Liu, Shangwang organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang Henan, China – sequence: 5 givenname: Zhi surname: Dou fullname: Dou, Zhi organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang Henan, China – sequence: 6 givenname: Guoqi surname: Liu fullname: Liu, Guoqi organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang Henan, China |
| BookMark | eNp9kM9KAzEQxoNUsK2-gKe8wNZk_ybgRYq2QqGCihchZLOzMmW7WZKo1Kd3t-vJQ08zfDO_4ZtvRiatbYGQa84WnPH8ZrfQ3ppFzOJBKFjOz8iUiyKOZC74pO-zXESpTPMLMvN-x3pIxmJK3teH0mFFn7QLaBqgz9_a7aluK7pycKBvtqnptgu4xx9wRx2Dp7rrGjQ6oG1psNQ0nz6Aw_aD2nH3OLok57VuPFz91Tl5fbh_Wa6jzXb1uLzbRCZhLETacNN7LZmOU0gzmQidlpUswIiC1WmZg4GK15IbKVOTZ0VdJ0KWmahEoqVOkjkR413jrPcOamUwHB0Ep7FRnKkhJbVTQ0pqSEmNKfVo_A_tHO61O5yGbkcI-qe-EJzyBqHtXaIDE1Rl8RT-C8brhLs |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2021_107504 crossref_primary_10_1007_s11227_022_04883_9 crossref_primary_10_1016_j_ins_2022_06_059 crossref_primary_10_1109_ACCESS_2023_3295242 crossref_primary_10_3390_electricity3030019 crossref_primary_10_1007_s00500_025_10614_y crossref_primary_10_1016_j_yofte_2024_104023 crossref_primary_10_1016_j_eswa_2022_118267 crossref_primary_10_3390_pr13051293 crossref_primary_10_1007_s42235_024_00578_4 crossref_primary_10_1007_s11042_024_20313_9 crossref_primary_10_1007_s10586_025_05280_6 crossref_primary_10_1016_j_infrared_2022_104418 crossref_primary_10_1016_j_ins_2022_01_075 crossref_primary_10_1017_S0263574725000141 crossref_primary_10_1007_s10489_023_04969_8 crossref_primary_10_1007_s40745_024_00525_4 crossref_primary_10_1007_s11831_022_09857_x crossref_primary_10_1016_j_asoc_2022_109530 crossref_primary_10_1007_s10586_025_05287_z crossref_primary_10_1016_j_asoc_2021_107476 crossref_primary_10_1016_j_asoc_2022_109730 crossref_primary_10_3390_drones9030212 crossref_primary_10_3390_rs14133019 crossref_primary_10_1007_s10462_021_10105_0 crossref_primary_10_1016_j_asoc_2022_109838 crossref_primary_10_1109_ACCESS_2022_3203999 crossref_primary_10_1109_TIA_2025_3550143 crossref_primary_10_1016_j_knosys_2021_107139 crossref_primary_10_1016_j_ins_2023_03_012 crossref_primary_10_1016_j_engfailanal_2024_109231 crossref_primary_10_1016_j_jocs_2022_101934 crossref_primary_10_1038_s41598_024_84934_8 crossref_primary_10_1016_j_jmsy_2024_02_007 crossref_primary_10_1016_j_ins_2022_07_131 crossref_primary_10_3390_fractalfract7070547 crossref_primary_10_1371_journal_pone_0328170 crossref_primary_10_3390_drones9040246 crossref_primary_10_3390_wevj16070366 crossref_primary_10_1016_j_asoc_2022_109005 crossref_primary_10_1016_j_knosys_2024_112699 crossref_primary_10_1155_2022_1027518 crossref_primary_10_1109_ACCESS_2023_3263584 crossref_primary_10_3389_fenrg_2024_1476638 crossref_primary_10_3390_s23041752 crossref_primary_10_1371_journal_pone_0288044 crossref_primary_10_1007_s10586_024_04455_x crossref_primary_10_3390_sym16030324 crossref_primary_10_1016_j_knosys_2022_108713 crossref_primary_10_1016_j_engappai_2022_105410 crossref_primary_10_1007_s41870_024_02373_0 crossref_primary_10_1007_s00521_022_08179_0 crossref_primary_10_1080_23249935_2024_2419491 crossref_primary_10_1016_j_procs_2022_09_326 crossref_primary_10_1080_08839514_2023_2166232 crossref_primary_10_1038_s41598_025_95302_5 crossref_primary_10_1155_2022_7675788 crossref_primary_10_1002_oca_70028 crossref_primary_10_1007_s42235_024_00579_3 crossref_primary_10_1016_j_compbiomed_2022_106214 crossref_primary_10_1016_j_energy_2023_126844 crossref_primary_10_3233_JIFS_236577 crossref_primary_10_3390_s24247879 crossref_primary_10_1007_s00202_024_02314_x crossref_primary_10_1016_j_eswa_2023_122349 crossref_primary_10_3390_math12172708 crossref_primary_10_1007_s10489_021_02795_4 crossref_primary_10_1016_j_swevo_2023_101375 crossref_primary_10_1007_s10586_022_03663_7 crossref_primary_10_1038_s41598_022_17076_4 crossref_primary_10_1002_cpe_6341 crossref_primary_10_1007_s12065_024_00909_8 crossref_primary_10_1007_s11831_025_10309_5 crossref_primary_10_32604_cmes_2023_026643 crossref_primary_10_1016_j_engappai_2022_105088 crossref_primary_10_3390_machines11020178 crossref_primary_10_2166_wcc_2024_035 crossref_primary_10_1007_s10586_024_04508_1 crossref_primary_10_1007_s11042_023_15146_x crossref_primary_10_1016_j_measurement_2025_116917 crossref_primary_10_3390_su16177750 crossref_primary_10_3390_sym16060661 crossref_primary_10_1007_s11227_022_04930_5 crossref_primary_10_1016_j_eswa_2022_119327 crossref_primary_10_1016_j_swevo_2022_101207 crossref_primary_10_1038_s41598_024_73473_x crossref_primary_10_1016_j_rser_2023_113748 crossref_primary_10_3233_JIFS_212729 crossref_primary_10_1016_j_eswa_2025_129587 crossref_primary_10_1080_00032719_2022_2155833 crossref_primary_10_1007_s40996_025_01915_1 crossref_primary_10_1016_j_ins_2025_121943 crossref_primary_10_1007_s10846_023_01868_5 crossref_primary_10_1016_j_ipm_2021_102854 crossref_primary_10_1109_ACCESS_2023_3280564 |
| Cites_doi | 10.1016/j.enconman.2018.07.083 10.1016/j.ins.2018.03.042 10.1016/j.swevo.2019.07.001 10.1016/j.ins.2019.07.022 10.1016/j.camwa.2011.11.028 10.1016/j.asoc.2015.06.056 10.1016/j.asoc.2018.02.025 10.1016/j.asoc.2018.02.049 10.1016/j.eswa.2017.04.029 10.1016/j.ins.2018.12.030 10.1007/s00500-014-1502-7 10.1109/ACCESS.2019.2916894 10.1109/ACCESS.2019.2917803 10.1016/j.swevo.2016.10.003 10.1109/TIE.2016.2607698 10.1016/j.asoc.2017.03.048 10.1109/TCYB.2018.2849343 10.1016/j.ins.2014.10.012 10.1016/j.eswa.2019.04.050 10.1016/j.ins.2019.05.094 10.1016/j.asoc.2019.105763 10.1016/j.swevo.2015.05.002 10.1016/j.eswa.2018.10.047 10.1109/ACCESS.2019.2936254 10.1007/s00500-017-2485-y 10.1016/j.asoc.2016.12.022 10.1007/s00170-015-7326-5 10.1109/ACCESS.2019.2934994 10.1016/j.future.2019.07.015 10.1016/j.asoc.2014.11.003 10.1016/j.advengsoft.2013.12.007 10.1007/s00521-015-1962-4 10.1016/j.swevo.2012.12.004 10.1016/j.swevo.2011.02.002 10.1016/j.neucom.2018.11.034 10.1016/j.asoc.2018.11.047 10.1016/j.eswa.2018.04.028 10.1016/j.asoc.2019.02.037 10.1016/j.atmosenv.2016.03.056 10.1007/s00500-018-3310-y 10.1109/TSTE.2017.2714644 10.1016/j.ins.2014.08.039 10.3390/en11123351 10.1016/j.asoc.2016.02.018 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2020.107061 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2020_107061 S1568494620309996 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-ac1c187b0a24e45938a4bd97ec870f4b6eced1f91c994c657ff389b58d83a9a33 |
| ISICitedReferencesCount | 104 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621420400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Sat Nov 29 07:02:32 EST 2025 Tue Nov 18 21:57:21 EST 2025 Fri Feb 23 02:41:49 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Intelligence Optimization Algorithm Grey Wolf Optimizer Hybrid algorithm K-means clustering Particle Swarm Optimization algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-ac1c187b0a24e45938a4bd97ec870f4b6eced1f91c994c657ff389b58d83a9a33 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2020_107061 crossref_primary_10_1016_j_asoc_2020_107061 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_107061 |
| PublicationCentury | 2000 |
| PublicationDate | March 2021 2021-03-00 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Cui, Zhang, Li, Fu, Wen, Lu, Lu (b46) 2018; 22 Xie, Zhang, Lim, Yu, Liu, Liu, Walters (b55) 2019; 84 Zhang, Kang, Cheng, Wang (b19) 2018; 67 Li, Tan (b50) 2016 Wang, Gandomi, Zhao, Chu (b9) 2016; 20 (b39) 2013 Abdelshafy, Hassan, Jurasz (b13) 2018; 173 Assad, Deep (b11) 2018; 450 Sahoo, Chandra (b24) 2017; 52 Sato, Izui, Yamada, Nishiwaki (b52) 2019; 119 Korosec, Silc (b44) 2013 Zhong, Malinen, Miao, Fränti (b54) 2015; 295 Bajer, Zoric (b10) 2019; 504 Mirghasemi, Andreae, Zhang (b4) 2019; 133 Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b2) 2019; 101 Zhang, Fu, Chen, Mao, Liu, Liu (b8) 2019; 7 Zhao, Chen, Liu, Fan (b53) 2019; 7 Elsayed, Sarker, Essam (b49) 2013 Long, Jiao, Liang, Cai, Xu (b34) 2019; 7 Caraffini, Iacca, Neri, Picinali, Mininno (b48) 2013 Aydilek (b38) 2018; 66 El-salam, Beshr, Eteiba (b28) 2018; 11 Liu, Liu, Liu, Wang, Zhou, Zhang (b31) 2015; 81 Zhang, Kang, Wang (b12) 2019; 49 Al-Shalabi, Anbar, Wan, Alqattan (b3) 2019; 500 Baykasoglu, Ozsoydan (b7) 2015; 36 (b40) 2015 Dhabal, Venkateswaran (b45) 2017; 33 Precup, David, Petriu (b21) 2017; 64 Deng, Chen, Gao, Song, Xu (b14) 2012; 63 Niu, Wang, Sun, Li (b23) 2016; 134 Cheng, Jin (b37) 2014; 291 Derrac, Garca, Molina, Herrera (b51) 2011; 1 Kumar, Chhabra, Kumar (b20) 2017; 26 Arani, Mirzabeygi, Panahi (b30) 2013; 11 Tu, Chen, Liu (b42) 2019; 76 Li, Li, Liang, Ouyang (b18) 2019; 330 Mirjalili, Mirjalili, Lewis (b6) 2014; 69 Ibrahim, Elaziz, Lu (b1) 2018; 108 Shieh, Nguyen, Wang, Dao (b22) 2016 Eberhart, Kennedy (b32) 1995 Alomoush, Alsewari, Alamri, Aloufi, Zamli (b16) 2019; 7 Lynn, Suganthan (b41) 2015; 24 Jensi, Jiji (b26) 2016; 43 Rodrguez, Castillo, Soria, Melin, Valdez, Gonzalez, Martinez, Soto (b35) 2017; 57 Draa, Bouzoubia, Boukhalfa (b33) 2014; 27 Teng, Lv, Guo (b15) 2019; 23 Kamboj (b27) 2016; 27 Wang, Zhao, Han, Zhou, Li (b43) 2019; 78 Zhang, Wang, Kang, Cheng (b36) 2019; 480 Khairuzzaman, Chaudhuryc (b25) 2017; 86 Azizivahed, Naderi, Narimani, Fathi, Narimani (b29) 2018; 9 Tang, Wang, Dong (b5) 2019; 49 Xiang, Ma, An (b17) 2014; 238 Tvrdk, Polakova (b47) 2013 Elsayed (10.1016/j.asoc.2020.107061_b49) 2013 Tang (10.1016/j.asoc.2020.107061_b5) 2019; 49 Aydilek (10.1016/j.asoc.2020.107061_b38) 2018; 66 Zhang (10.1016/j.asoc.2020.107061_b19) 2018; 67 El-salam (10.1016/j.asoc.2020.107061_b28) 2018; 11 Teng (10.1016/j.asoc.2020.107061_b15) 2019; 23 Kumar (10.1016/j.asoc.2020.107061_b20) 2017; 26 Dhabal (10.1016/j.asoc.2020.107061_b45) 2017; 33 Deng (10.1016/j.asoc.2020.107061_b14) 2012; 63 Wang (10.1016/j.asoc.2020.107061_b43) 2019; 78 Ibrahim (10.1016/j.asoc.2020.107061_b1) 2018; 108 Cui (10.1016/j.asoc.2020.107061_b46) 2018; 22 Korosec (10.1016/j.asoc.2020.107061_b44) 2013 Draa (10.1016/j.asoc.2020.107061_b33) 2014; 27 Hashim (10.1016/j.asoc.2020.107061_b2) 2019; 101 Azizivahed (10.1016/j.asoc.2020.107061_b29) 2018; 9 Wang (10.1016/j.asoc.2020.107061_b9) 2016; 20 Sato (10.1016/j.asoc.2020.107061_b52) 2019; 119 Sahoo (10.1016/j.asoc.2020.107061_b24) 2017; 52 Lynn (10.1016/j.asoc.2020.107061_b41) 2015; 24 Eberhart (10.1016/j.asoc.2020.107061_b32) 1995 Zhang (10.1016/j.asoc.2020.107061_b36) 2019; 480 Zhong (10.1016/j.asoc.2020.107061_b54) 2015; 295 Alomoush (10.1016/j.asoc.2020.107061_b16) 2019; 7 Kamboj (10.1016/j.asoc.2020.107061_b27) 2016; 27 Al-Shalabi (10.1016/j.asoc.2020.107061_b3) 2019; 500 Assad (10.1016/j.asoc.2020.107061_b11) 2018; 450 Xie (10.1016/j.asoc.2020.107061_b55) 2019; 84 Long (10.1016/j.asoc.2020.107061_b34) 2019; 7 Zhang (10.1016/j.asoc.2020.107061_b8) 2019; 7 Zhang (10.1016/j.asoc.2020.107061_b12) 2019; 49 Mirjalili (10.1016/j.asoc.2020.107061_b6) 2014; 69 Zhao (10.1016/j.asoc.2020.107061_b53) 2019; 7 Jensi (10.1016/j.asoc.2020.107061_b26) 2016; 43 Caraffini (10.1016/j.asoc.2020.107061_b48) 2013 Baykasoglu (10.1016/j.asoc.2020.107061_b7) 2015; 36 Khairuzzaman (10.1016/j.asoc.2020.107061_b25) 2017; 86 Niu (10.1016/j.asoc.2020.107061_b23) 2016; 134 Derrac (10.1016/j.asoc.2020.107061_b51) 2011; 1 (10.1016/j.asoc.2020.107061_b40) 2015 Mirghasemi (10.1016/j.asoc.2020.107061_b4) 2019; 133 Liu (10.1016/j.asoc.2020.107061_b31) 2015; 81 Li (10.1016/j.asoc.2020.107061_b18) 2019; 330 Abdelshafy (10.1016/j.asoc.2020.107061_b13) 2018; 173 Shieh (10.1016/j.asoc.2020.107061_b22) 2016 Tvrdk (10.1016/j.asoc.2020.107061_b47) 2013 Arani (10.1016/j.asoc.2020.107061_b30) 2013; 11 Cheng (10.1016/j.asoc.2020.107061_b37) 2014; 291 Rodrguez (10.1016/j.asoc.2020.107061_b35) 2017; 57 Tu (10.1016/j.asoc.2020.107061_b42) 2019; 76 Precup (10.1016/j.asoc.2020.107061_b21) 2017; 64 Bajer (10.1016/j.asoc.2020.107061_b10) 2019; 504 (10.1016/j.asoc.2020.107061_b39) 2013 Xiang (10.1016/j.asoc.2020.107061_b17) 2014; 238 Li (10.1016/j.asoc.2020.107061_b50) 2016 |
| References_xml | – volume: 330 start-page: 380 year: 2019 end-page: 393 ident: b18 article-title: A hybrid particle swarm optimization algorithm for load balancing of MDS on heterogeneous computing systems publication-title: Neurocomputing – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b6 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – volume: 450 start-page: 246 year: 2018 end-page: 266 ident: b11 article-title: A hybrid harmony search and simulated annealing algorithm for continuous optimization publication-title: Inform. Sci. – volume: 43 start-page: 248 year: 2016 end-page: 261 ident: b26 article-title: An enhanced particle swarm optimization with levy flight for global optimization publication-title: Appl. Soft Comput. – volume: 84 year: 2019 ident: b55 article-title: Improving K-means clustering with enhanced firefly algorithms publication-title: Appl. Soft Comput. – volume: 81 start-page: 1817 year: 2015 end-page: 1829 ident: b31 article-title: Research and application of multiple constrained hot strip mill scheduling problem based on HPSA publication-title: Int. J. Adv. Manuf. Technol. – volume: 11 start-page: 3351 year: 2018 ident: b28 article-title: A new hybrid technique for minimizing power losses in a distribution system by optimal sizing and siting of distributed generators with network reconfiguration publication-title: Energies – volume: 295 start-page: 1 year: 2015 end-page: 17 ident: b54 article-title: A fast minimum spanning tree algorithm based on K-means publication-title: Inform. Sci. – start-page: 6 year: 2013 ident: b49 article-title: A genetic algorithm for solving the CEC2013 competition problems on real-parameter optimization publication-title: 2013 IEEE Congress on Evolutionary Computation – volume: 78 start-page: 240 year: 2019 end-page: 260 ident: b43 article-title: A grey wolf optimizer using gaussian estimation of distribution and its application in the multi-UAV multi-target urban tracking problem publication-title: Appl. Soft Comput. – start-page: 1123 year: 2013 end-page: 1130 ident: b48 article-title: A CMA-ES super-fit scheme for the re-sampled inheritance search publication-title: 2013 IEEE Congress on Evolutionary Computation – start-page: 7 year: 2013 ident: b47 article-title: Competitive differential evolution applied to CEC2013 problems publication-title: 2013 IEEE Congress on Evolutionary Computation – volume: 238 start-page: 370 year: 2014 end-page: 386 ident: b17 article-title: hABCDE: A hybrid evolutionary algorithm based on artificial bee colony algorithm and differential evolution publication-title: Appl. Math. Comput. – volume: 49 start-page: 245 year: 2019 end-page: 265 ident: b12 article-title: Hybrid biogeography-based optimization with shuffled frog leaping algorithm and its application to minimum spanning tree problems publication-title: Swarm Evol. Comput. – volume: 480 start-page: 109 year: 2019 end-page: 129 ident: b36 article-title: Differential mutation and novel social learning particle swarm optimization algorithm publication-title: Inform. Sci. – volume: 33 start-page: 68 year: 2017 end-page: 84 ident: b45 article-title: An efficient gbest-guided cuckoo search algorithm for higher order two channel filter bank design publication-title: Swarm Evol. Comput. – volume: 22 start-page: 2217 year: 2018 end-page: 2243 ident: b46 article-title: Modified gbest-guided artificial bee colony algorithm with new probability model publication-title: Soft Comput. – year: 2013 ident: b39 article-title: Problem definitions and evaluation criteria for the CEC2013 special session on real-parameter optimization publication-title: Computational Intelligence Laboratory – start-page: 7 year: 2013 ident: b44 article-title: The continuous differential ant-stigmergy algorithm applied on real-parameter single objective optimization problems publication-title: 2013 IEEE Congress on Evolutionary Computation – volume: 86 start-page: 64 year: 2017 end-page: 76 ident: b25 article-title: Multilevel thresholding using grey wolf optimizer for image segmentation publication-title: Expert Syst. Appl. – volume: 173 start-page: 331 year: 2018 end-page: 347 ident: b13 article-title: Optimal design of a grid-connected desalination plant powered by renewable energy resources using a hybrid PSO-GWO approach publication-title: Energy Convers. Manage. – volume: 23 start-page: 6617 year: 2019 end-page: 6631 ident: b15 article-title: An improved hybrid grey wolf optimization algorithm publication-title: Soft Comput. – volume: 64 start-page: 527 year: 2017 end-page: 534 ident: b21 article-title: Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity publication-title: IEEE Trans. Ind. Electron. – volume: 49 start-page: 3571 year: 2019 end-page: 3585 ident: b5 article-title: Adaptive multiobjective differential evolution with reference axis vicinity mechanism publication-title: IEEE Trans. Cybern. – volume: 7 start-page: 68764 year: 2019 end-page: 68785 ident: b16 article-title: Hybrid harmony search algorithm with grey wolf optimizer and modified opposition-based learning publication-title: IEEE Access – volume: 291 start-page: 43 year: 2014 end-page: 60 ident: b37 article-title: A social learning particle swarm optimization algorithm for scalable optimization publication-title: Inform. Sci. – volume: 134 start-page: 168 year: 2016 end-page: 180 ident: b23 article-title: A novel hybrid decomposition-and-ensemble model based on ceemd and gwo for short-term PM2.5 concentration forecasting publication-title: Atmos. Environ. – volume: 36 start-page: 152 year: 2015 end-page: 164 ident: b7 article-title: Adaptive firefly algorithm with chaos for mechanical design optimization problems publication-title: Appl. Soft Comput. – volume: 504 start-page: 221 year: 2019 end-page: 275 ident: b10 article-title: An effective refined artificial bee colony algorithm for numerical optimization publication-title: Inform. Sci. – volume: 76 start-page: 16 year: 2019 end-page: 30 ident: b42 article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection publication-title: Appl. Soft Comput. – volume: 7 start-page: 116078 year: 2019 end-page: 116093 ident: b8 article-title: Levy flight shuffle frog leaping algorithm based on differential perturbation and quasi-Newton search publication-title: IEEE Access – volume: 67 start-page: 197 year: 2018 end-page: 214 ident: b19 article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer publication-title: Appl. Soft Comput. – volume: 119 start-page: 247 year: 2019 end-page: 261 ident: b52 article-title: Data mining based on clustering and association rule analysis for knowledge discovery in multiobjective topology optimization publication-title: Expert Syst. Appl. – volume: 27 start-page: 1643 year: 2016 end-page: 1655 ident: b27 article-title: A novel hybrid PSO-GWO approach for unit commitment problem publication-title: Neural Comput. Appl. – volume: 9 start-page: 56 year: 2018 end-page: 64 ident: b29 article-title: A new bi-objective approach to energy management in distribution networks with energy storage systems publication-title: IEEE Trans. Sustain. Energy – volume: 108 start-page: 1 year: 2018 end-page: 27 ident: b1 article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization publication-title: Expert Syst. Appl. – volume: 20 start-page: 273 year: 2016 end-page: 285 ident: b9 article-title: Hybridizing harmony search algorithm with cuckoo search for global numerical optimization publication-title: Soft Comput. – start-page: 1942 year: 1995 end-page: 1948 ident: b32 article-title: Particle swarm optimization publication-title: Proceedings of the IEEE International Conference on Neural Networks – volume: 66 start-page: 232 year: 2018 end-page: 249 ident: b38 article-title: A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems publication-title: Appl. Soft Comput. – volume: 63 start-page: 325 year: 2012 end-page: 336 ident: b14 article-title: A novel parallel hybrid intelligence optimization algorithm for a function approximation problem publication-title: Comput. Math. Appl. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b51 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – volume: 101 start-page: 646 year: 2019 end-page: 667 ident: b2 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Gener. Comput. Syst. – volume: 500 start-page: 259 year: 2019 end-page: 273 ident: b3 article-title: Energy efficient multi-hop path in wireless sensor networks using an enhanced genetic algorithm publication-title: Inform. Sci. – year: 2015 ident: b40 article-title: Problem definitions and evaluation criteria for the CEC2015 competition on learning-based real-parameter single objective optimization publication-title: Computational Intelligence Laboratory – volume: 52 start-page: 64 year: 2017 end-page: 80 ident: b24 article-title: Multi-objective grey wolf optimizer for improved cervix lesion classification publication-title: Appl. Soft Comput. – start-page: 174 year: 2016 end-page: 182 ident: b22 article-title: Enhanced diversity herds grey wolf optimizer for optimal area coverage in wireless sensor networks publication-title: Genet. Evol. Comput. – volume: 133 start-page: 126 year: 2019 end-page: 150 ident: b4 article-title: Domain-independent severely noisy image segmentation via adaptive wavelet shrinkage using particle swarm optimization and fuzzy C-means publication-title: Expert Syst. Appl. – volume: 11 start-page: 1 year: 2013 end-page: 15 ident: b30 article-title: An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration-exploitation balance publication-title: Swarm Evol. Comput. – volume: 24 start-page: 11 year: 2015 end-page: 24 ident: b41 article-title: Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation publication-title: Swarm Evol. Comput. – volume: 57 start-page: 315 year: 2017 end-page: 328 ident: b35 article-title: A fuzzy hierarchical operator in the grey wolf optimizer algorithm publication-title: Appl. Soft Comput. – start-page: 11 year: 2016 ident: b50 article-title: Enhancing interaction in the fireworks algorithm by dynamic resource allocation and fitness-based crowdedness-avoiding strategy publication-title: 2016 IEEE Congress on Evolutionary Computation – volume: 27 start-page: 99 year: 2014 end-page: 126 ident: b33 article-title: A sinusoidal differential evolution algorithm for numerical optimization publication-title: Appl. Soft Comput. – volume: 7 start-page: 113810 year: 2019 end-page: 113825 ident: b34 article-title: A random opposition-based learning grey wolf optimizer publication-title: IEEE Access – volume: 7 start-page: 64028 year: 2019 end-page: 64039 ident: b53 article-title: Alternate PSO-based adaptive interval Type-2 intuitionistic fuzzy C-means clustering algorithm for color image segmentation publication-title: IEEE Access – volume: 26 start-page: 153 year: 2017 end-page: 168 ident: b20 article-title: Grey wolf algorithm-based clustering technique publication-title: J. Intell. Syst. – volume: 173 start-page: 331 year: 2018 ident: 10.1016/j.asoc.2020.107061_b13 article-title: Optimal design of a grid-connected desalination plant powered by renewable energy resources using a hybrid PSO-GWO approach publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.07.083 – volume: 450 start-page: 246 year: 2018 ident: 10.1016/j.asoc.2020.107061_b11 article-title: A hybrid harmony search and simulated annealing algorithm for continuous optimization publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.03.042 – volume: 49 start-page: 245 year: 2019 ident: 10.1016/j.asoc.2020.107061_b12 article-title: Hybrid biogeography-based optimization with shuffled frog leaping algorithm and its application to minimum spanning tree problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.07.001 – volume: 504 start-page: 221 year: 2019 ident: 10.1016/j.asoc.2020.107061_b10 article-title: An effective refined artificial bee colony algorithm for numerical optimization publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.07.022 – volume: 63 start-page: 325 issue: 1 year: 2012 ident: 10.1016/j.asoc.2020.107061_b14 article-title: A novel parallel hybrid intelligence optimization algorithm for a function approximation problem publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.11.028 – start-page: 1123 year: 2013 ident: 10.1016/j.asoc.2020.107061_b48 article-title: A CMA-ES super-fit scheme for the re-sampled inheritance search – volume: 36 start-page: 152 year: 2015 ident: 10.1016/j.asoc.2020.107061_b7 article-title: Adaptive firefly algorithm with chaos for mechanical design optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.06.056 – volume: 66 start-page: 232 year: 2018 ident: 10.1016/j.asoc.2020.107061_b38 article-title: A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.02.025 – volume: 67 start-page: 197 year: 2018 ident: 10.1016/j.asoc.2020.107061_b19 article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.02.049 – volume: 86 start-page: 64 year: 2017 ident: 10.1016/j.asoc.2020.107061_b25 article-title: Multilevel thresholding using grey wolf optimizer for image segmentation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.04.029 – start-page: 174 year: 2016 ident: 10.1016/j.asoc.2020.107061_b22 article-title: Enhanced diversity herds grey wolf optimizer for optimal area coverage in wireless sensor networks publication-title: Genet. Evol. Comput. – volume: 480 start-page: 109 year: 2019 ident: 10.1016/j.asoc.2020.107061_b36 article-title: Differential mutation and novel social learning particle swarm optimization algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.12.030 – year: 2015 ident: 10.1016/j.asoc.2020.107061_b40 article-title: Problem definitions and evaluation criteria for the CEC2015 competition on learning-based real-parameter single objective optimization – volume: 20 start-page: 273 issue: 1 year: 2016 ident: 10.1016/j.asoc.2020.107061_b9 article-title: Hybridizing harmony search algorithm with cuckoo search for global numerical optimization publication-title: Soft Comput. doi: 10.1007/s00500-014-1502-7 – volume: 7 start-page: 64028 year: 2019 ident: 10.1016/j.asoc.2020.107061_b53 article-title: Alternate PSO-based adaptive interval Type-2 intuitionistic fuzzy C-means clustering algorithm for color image segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2916894 – volume: 7 start-page: 68764 year: 2019 ident: 10.1016/j.asoc.2020.107061_b16 article-title: Hybrid harmony search algorithm with grey wolf optimizer and modified opposition-based learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2917803 – volume: 33 start-page: 68 year: 2017 ident: 10.1016/j.asoc.2020.107061_b45 article-title: An efficient gbest-guided cuckoo search algorithm for higher order two channel filter bank design publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2016.10.003 – volume: 64 start-page: 527 issue: 1 year: 2017 ident: 10.1016/j.asoc.2020.107061_b21 article-title: Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2607698 – volume: 57 start-page: 315 year: 2017 ident: 10.1016/j.asoc.2020.107061_b35 article-title: A fuzzy hierarchical operator in the grey wolf optimizer algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.03.048 – start-page: 1942 year: 1995 ident: 10.1016/j.asoc.2020.107061_b32 article-title: Particle swarm optimization – volume: 238 start-page: 370 year: 2014 ident: 10.1016/j.asoc.2020.107061_b17 article-title: hABCDE: A hybrid evolutionary algorithm based on artificial bee colony algorithm and differential evolution publication-title: Appl. Math. Comput. – volume: 49 start-page: 3571 issue: 9 year: 2019 ident: 10.1016/j.asoc.2020.107061_b5 article-title: Adaptive multiobjective differential evolution with reference axis vicinity mechanism publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2849343 – volume: 295 start-page: 1 year: 2015 ident: 10.1016/j.asoc.2020.107061_b54 article-title: A fast minimum spanning tree algorithm based on K-means publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.10.012 – volume: 133 start-page: 126 year: 2019 ident: 10.1016/j.asoc.2020.107061_b4 article-title: Domain-independent severely noisy image segmentation via adaptive wavelet shrinkage using particle swarm optimization and fuzzy C-means publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.04.050 – volume: 500 start-page: 259 year: 2019 ident: 10.1016/j.asoc.2020.107061_b3 article-title: Energy efficient multi-hop path in wireless sensor networks using an enhanced genetic algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.05.094 – start-page: 7 year: 2013 ident: 10.1016/j.asoc.2020.107061_b44 article-title: The continuous differential ant-stigmergy algorithm applied on real-parameter single objective optimization problems – volume: 84 year: 2019 ident: 10.1016/j.asoc.2020.107061_b55 article-title: Improving K-means clustering with enhanced firefly algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105763 – volume: 24 start-page: 11 year: 2015 ident: 10.1016/j.asoc.2020.107061_b41 article-title: Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2015.05.002 – volume: 119 start-page: 247 year: 2019 ident: 10.1016/j.asoc.2020.107061_b52 article-title: Data mining based on clustering and association rule analysis for knowledge discovery in multiobjective topology optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.10.047 – start-page: 11 year: 2016 ident: 10.1016/j.asoc.2020.107061_b50 article-title: Enhancing interaction in the fireworks algorithm by dynamic resource allocation and fitness-based crowdedness-avoiding strategy – volume: 7 start-page: 116078 year: 2019 ident: 10.1016/j.asoc.2020.107061_b8 article-title: Levy flight shuffle frog leaping algorithm based on differential perturbation and quasi-Newton search publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2936254 – volume: 22 start-page: 2217 issue: 7 year: 2018 ident: 10.1016/j.asoc.2020.107061_b46 article-title: Modified gbest-guided artificial bee colony algorithm with new probability model publication-title: Soft Comput. doi: 10.1007/s00500-017-2485-y – volume: 52 start-page: 64 year: 2017 ident: 10.1016/j.asoc.2020.107061_b24 article-title: Multi-objective grey wolf optimizer for improved cervix lesion classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.12.022 – volume: 81 start-page: 1817 issue: 9–12 year: 2015 ident: 10.1016/j.asoc.2020.107061_b31 article-title: Research and application of multiple constrained hot strip mill scheduling problem based on HPSA publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-015-7326-5 – volume: 7 start-page: 113810 year: 2019 ident: 10.1016/j.asoc.2020.107061_b34 article-title: A random opposition-based learning grey wolf optimizer publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2934994 – volume: 101 start-page: 646 year: 2019 ident: 10.1016/j.asoc.2020.107061_b2 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.07.015 – volume: 27 start-page: 99 year: 2014 ident: 10.1016/j.asoc.2020.107061_b33 article-title: A sinusoidal differential evolution algorithm for numerical optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.11.003 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.asoc.2020.107061_b6 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 27 start-page: 1643 issue: 6 year: 2016 ident: 10.1016/j.asoc.2020.107061_b27 article-title: A novel hybrid PSO-GWO approach for unit commitment problem publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1962-4 – volume: 11 start-page: 1 year: 2013 ident: 10.1016/j.asoc.2020.107061_b30 article-title: An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration-exploitation balance publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2012.12.004 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.asoc.2020.107061_b51 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 330 start-page: 380 year: 2019 ident: 10.1016/j.asoc.2020.107061_b18 article-title: A hybrid particle swarm optimization algorithm for load balancing of MDS on heterogeneous computing systems publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.11.034 – volume: 76 start-page: 16 year: 2019 ident: 10.1016/j.asoc.2020.107061_b42 article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.11.047 – volume: 108 start-page: 1 year: 2018 ident: 10.1016/j.asoc.2020.107061_b1 article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.04.028 – volume: 78 start-page: 240 year: 2019 ident: 10.1016/j.asoc.2020.107061_b43 article-title: A grey wolf optimizer using gaussian estimation of distribution and its application in the multi-UAV multi-target urban tracking problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.02.037 – volume: 26 start-page: 153 issue: 1 year: 2017 ident: 10.1016/j.asoc.2020.107061_b20 article-title: Grey wolf algorithm-based clustering technique publication-title: J. Intell. Syst. – volume: 134 start-page: 168 year: 2016 ident: 10.1016/j.asoc.2020.107061_b23 article-title: A novel hybrid decomposition-and-ensemble model based on ceemd and gwo for short-term PM2.5 concentration forecasting publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.03.056 – volume: 23 start-page: 6617 issue: 15 year: 2019 ident: 10.1016/j.asoc.2020.107061_b15 article-title: An improved hybrid grey wolf optimization algorithm publication-title: Soft Comput. doi: 10.1007/s00500-018-3310-y – volume: 9 start-page: 56 issue: 1 year: 2018 ident: 10.1016/j.asoc.2020.107061_b29 article-title: A new bi-objective approach to energy management in distribution networks with energy storage systems publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2017.2714644 – volume: 291 start-page: 43 year: 2014 ident: 10.1016/j.asoc.2020.107061_b37 article-title: A social learning particle swarm optimization algorithm for scalable optimization publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.08.039 – start-page: 6 year: 2013 ident: 10.1016/j.asoc.2020.107061_b49 article-title: A genetic algorithm for solving the CEC2013 competition problems on real-parameter optimization – year: 2013 ident: 10.1016/j.asoc.2020.107061_b39 article-title: Problem definitions and evaluation criteria for the CEC2013 special session on real-parameter optimization – volume: 11 start-page: 3351 issue: 12 year: 2018 ident: 10.1016/j.asoc.2020.107061_b28 article-title: A new hybrid technique for minimizing power losses in a distribution system by optimal sizing and siting of distributed generators with network reconfiguration publication-title: Energies doi: 10.3390/en11123351 – start-page: 7 year: 2013 ident: 10.1016/j.asoc.2020.107061_b47 article-title: Competitive differential evolution applied to CEC2013 problems – volume: 43 start-page: 248 year: 2016 ident: 10.1016/j.asoc.2020.107061_b26 article-title: An enhanced particle swarm optimization with levy flight for global optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.02.018 |
| SSID | ssj0016928 |
| Score | 2.5914528 |
| Snippet | Grey Wolf Optimizer (GWO) and Particle Swarm Optimization (PSO) algorithm are two popular swarm intelligence optimization algorithms and these two algorithms... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107061 |
| SubjectTerms | Grey Wolf Optimizer Hybrid algorithm Intelligence Optimization Algorithm K-means clustering Particle Swarm Optimization algorithm |
| Title | Hybrid Particle Swarm and Grey Wolf Optimizer and its application to clustering optimization |
| URI | https://dx.doi.org/10.1016/j.asoc.2020.107061 |
| Volume | 101 |
| WOSCitedRecordID | wos000621420400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADB5By4ELb0R5aQ7cVkFJ5n2sUKGgUkAtdA9I0WQykbbaZqvdhLb8ejyPZKMWVYDEJVp55xHZnxzb47ERepURToys0iQlQoCDwnmihNIJfC2YqDgvK1_x5tue2N-X06n6HI9iVr6dgGgaeX6uTv-rqIEGwnZXZ_9C3MOiQIDfIHR4gtjh-UeC371wl7DANAx_TQ7O9DL0wXgHYpscLeb15BMoipPZT7sczg5GB9nOHDXzzlVQ8CnRYexagn3N2mi_rkCR-8z0ru0_g-NA9HTWnIzoe6FmwZdZdzGiftQ-YnvkEtkX66Gdj826lc50HBwDFPkoQytEza7cnAmKlsuEqhh-tIEmRZ4oHlq4DNo5LHVF04egw_FrDSAGNz93JJGGwu6XKmgfuM3cXrk7TwIH7ybazAVToAQ3t9_vTD8Mx05c-Wa8w8vFW1YhIfDyTr-3ZEbWyeE9dCe6FXg7yPw-umGbB-hu37IDRw3-EH0P6MA9OrBHBwYUYIcO7NCBB3R4OqADj9CB2wVeowOP0fEIfX27c_hmN4kNNhJD0rRNtMkMML1MdU4tZYpITctKCWtAi9e05NbYKqtVZpSihjNR12DflkxWkmilCXmMNppFY58gLLgRxGpGawoOPWUl55JkumRCl6RSegtlPbMKE6vPuyYo86JPMzwuHIMLx-AiMHgLTYY5p6H2yrWjWS-DIlqPwSosADLXzHv6j_OeodtrtD9HG-2ysy_QLfOjna2WLyOyfgE1ipTi |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Particle+Swarm+and+Grey+Wolf+Optimizer+and+its+application+to+clustering+optimization&rft.jtitle=Applied+soft+computing&rft.au=Zhang%2C+Xinming&rft.au=Lin%2C+Qiuying&rft.au=Mao%2C+Wentao&rft.au=Liu%2C+Shangwang&rft.date=2021-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=101&rft_id=info:doi/10.1016%2Fj.asoc.2020.107061&rft.externalDocID=S1568494620309996 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |