Hybrid Particle Swarm and Grey Wolf Optimizer and its application to clustering optimization

Grey Wolf Optimizer (GWO) and Particle Swarm Optimization (PSO) algorithm are two popular swarm intelligence optimization algorithms and these two algorithms have their own search mechanisms. Based on their unique search mechanisms and their advantages after the improvements on them, this paper prop...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 101; s. 107061
Hlavní autoři: Zhang, Xinming, Lin, Qiuying, Mao, Wentao, Liu, Shangwang, Dou, Zhi, Liu, Guoqi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.03.2021
Témata:
ISSN:1568-4946, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Grey Wolf Optimizer (GWO) and Particle Swarm Optimization (PSO) algorithm are two popular swarm intelligence optimization algorithms and these two algorithms have their own search mechanisms. Based on their unique search mechanisms and their advantages after the improvements on them, this paper proposes a novel hybrid algorithm based on PSO and GWO (Hybrid GWO with PSO, HGWOP). Firstly, GWO is simplified and a novel differential perturbation strategy is embedded in the search process of the simplified GWO to form a Simplified GWO with Differential Perturbation (SDPGWO) so that it can improve the global search ability while retaining the strong exploitation ability of GWO. Secondly, a stochastic mean example learning strategy is applied to PSO to create a Mean Example Learning PSO (MELPSO) to enhance the global search ability of PSO and prevent the algorithm from falling into local optima. Finally, a poor-for-change strategy is proposed to organically integrate SDPGWO and MELPSO to obtain an efficient hybrid algorithm of GWO and PSO. HGWOP can give full play to the advantages of these two improved algorithms, overcome the shortcomings of GWO and PSO and maximize the whole performance. A large number of experiments on the complex functions from CEC2013 and CEC2015 test sets reveal that HGWOP has better optimization performance and stronger universality compared with quite a few state-of-the-art algorithms. Experimental results on K-means clustering optimization show that HGWOP has obvious advantages over the comparison algorithms. •A Simplified GWO with a Differential Perturbation strategy (SDPGWO) is formulated.•A PSO with a stochastic Mean Example Learning strategy (MELPSO) is used.•A poor-for-change strategy is presented to combine SDPGWO with MELPSO effectively.•A novel hybrid GWO with PSO (HGWOP) with high-level hybridization is proposed.•HGWOP is more effective on complex function and K-means clustering optimization. [Display omitted]
AbstractList Grey Wolf Optimizer (GWO) and Particle Swarm Optimization (PSO) algorithm are two popular swarm intelligence optimization algorithms and these two algorithms have their own search mechanisms. Based on their unique search mechanisms and their advantages after the improvements on them, this paper proposes a novel hybrid algorithm based on PSO and GWO (Hybrid GWO with PSO, HGWOP). Firstly, GWO is simplified and a novel differential perturbation strategy is embedded in the search process of the simplified GWO to form a Simplified GWO with Differential Perturbation (SDPGWO) so that it can improve the global search ability while retaining the strong exploitation ability of GWO. Secondly, a stochastic mean example learning strategy is applied to PSO to create a Mean Example Learning PSO (MELPSO) to enhance the global search ability of PSO and prevent the algorithm from falling into local optima. Finally, a poor-for-change strategy is proposed to organically integrate SDPGWO and MELPSO to obtain an efficient hybrid algorithm of GWO and PSO. HGWOP can give full play to the advantages of these two improved algorithms, overcome the shortcomings of GWO and PSO and maximize the whole performance. A large number of experiments on the complex functions from CEC2013 and CEC2015 test sets reveal that HGWOP has better optimization performance and stronger universality compared with quite a few state-of-the-art algorithms. Experimental results on K-means clustering optimization show that HGWOP has obvious advantages over the comparison algorithms. •A Simplified GWO with a Differential Perturbation strategy (SDPGWO) is formulated.•A PSO with a stochastic Mean Example Learning strategy (MELPSO) is used.•A poor-for-change strategy is presented to combine SDPGWO with MELPSO effectively.•A novel hybrid GWO with PSO (HGWOP) with high-level hybridization is proposed.•HGWOP is more effective on complex function and K-means clustering optimization. [Display omitted]
ArticleNumber 107061
Author Liu, Guoqi
Lin, Qiuying
Dou, Zhi
Mao, Wentao
Zhang, Xinming
Liu, Shangwang
Author_xml – sequence: 1
  givenname: Xinming
  surname: Zhang
  fullname: Zhang, Xinming
  email: xinmingzhang@126.com
  organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang Henan, China
– sequence: 2
  givenname: Qiuying
  surname: Lin
  fullname: Lin, Qiuying
  organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang Henan, China
– sequence: 3
  givenname: Wentao
  surname: Mao
  fullname: Mao, Wentao
  organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang Henan, China
– sequence: 4
  givenname: Shangwang
  surname: Liu
  fullname: Liu, Shangwang
  organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang Henan, China
– sequence: 5
  givenname: Zhi
  surname: Dou
  fullname: Dou, Zhi
  organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang Henan, China
– sequence: 6
  givenname: Guoqi
  surname: Liu
  fullname: Liu, Guoqi
  organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang Henan, China
BookMark eNp9kM9KAzEQxoNUsK2-gKe8wNZk_ybgRYq2QqGCihchZLOzMmW7WZKo1Kd3t-vJQ08zfDO_4ZtvRiatbYGQa84WnPH8ZrfQ3ppFzOJBKFjOz8iUiyKOZC74pO-zXESpTPMLMvN-x3pIxmJK3teH0mFFn7QLaBqgz9_a7aluK7pycKBvtqnptgu4xx9wRx2Dp7rrGjQ6oG1psNQ0nz6Aw_aD2nH3OLok57VuPFz91Tl5fbh_Wa6jzXb1uLzbRCZhLETacNN7LZmOU0gzmQidlpUswIiC1WmZg4GK15IbKVOTZ0VdJ0KWmahEoqVOkjkR413jrPcOamUwHB0Ep7FRnKkhJbVTQ0pqSEmNKfVo_A_tHO61O5yGbkcI-qe-EJzyBqHtXaIDE1Rl8RT-C8brhLs
CitedBy_id crossref_primary_10_1016_j_asoc_2021_107504
crossref_primary_10_1007_s11227_022_04883_9
crossref_primary_10_1016_j_ins_2022_06_059
crossref_primary_10_1109_ACCESS_2023_3295242
crossref_primary_10_3390_electricity3030019
crossref_primary_10_1007_s00500_025_10614_y
crossref_primary_10_1016_j_yofte_2024_104023
crossref_primary_10_1016_j_eswa_2022_118267
crossref_primary_10_3390_pr13051293
crossref_primary_10_1007_s42235_024_00578_4
crossref_primary_10_1007_s11042_024_20313_9
crossref_primary_10_1007_s10586_025_05280_6
crossref_primary_10_1016_j_infrared_2022_104418
crossref_primary_10_1016_j_ins_2022_01_075
crossref_primary_10_1017_S0263574725000141
crossref_primary_10_1007_s10489_023_04969_8
crossref_primary_10_1007_s40745_024_00525_4
crossref_primary_10_1007_s11831_022_09857_x
crossref_primary_10_1016_j_asoc_2022_109530
crossref_primary_10_1007_s10586_025_05287_z
crossref_primary_10_1016_j_asoc_2021_107476
crossref_primary_10_1016_j_asoc_2022_109730
crossref_primary_10_3390_drones9030212
crossref_primary_10_3390_rs14133019
crossref_primary_10_1007_s10462_021_10105_0
crossref_primary_10_1016_j_asoc_2022_109838
crossref_primary_10_1109_ACCESS_2022_3203999
crossref_primary_10_1109_TIA_2025_3550143
crossref_primary_10_1016_j_knosys_2021_107139
crossref_primary_10_1016_j_ins_2023_03_012
crossref_primary_10_1016_j_engfailanal_2024_109231
crossref_primary_10_1016_j_jocs_2022_101934
crossref_primary_10_1038_s41598_024_84934_8
crossref_primary_10_1016_j_jmsy_2024_02_007
crossref_primary_10_1016_j_ins_2022_07_131
crossref_primary_10_3390_fractalfract7070547
crossref_primary_10_1371_journal_pone_0328170
crossref_primary_10_3390_drones9040246
crossref_primary_10_3390_wevj16070366
crossref_primary_10_1016_j_asoc_2022_109005
crossref_primary_10_1016_j_knosys_2024_112699
crossref_primary_10_1155_2022_1027518
crossref_primary_10_1109_ACCESS_2023_3263584
crossref_primary_10_3389_fenrg_2024_1476638
crossref_primary_10_3390_s23041752
crossref_primary_10_1371_journal_pone_0288044
crossref_primary_10_1007_s10586_024_04455_x
crossref_primary_10_3390_sym16030324
crossref_primary_10_1016_j_knosys_2022_108713
crossref_primary_10_1016_j_engappai_2022_105410
crossref_primary_10_1007_s41870_024_02373_0
crossref_primary_10_1007_s00521_022_08179_0
crossref_primary_10_1080_23249935_2024_2419491
crossref_primary_10_1016_j_procs_2022_09_326
crossref_primary_10_1080_08839514_2023_2166232
crossref_primary_10_1038_s41598_025_95302_5
crossref_primary_10_1155_2022_7675788
crossref_primary_10_1002_oca_70028
crossref_primary_10_1007_s42235_024_00579_3
crossref_primary_10_1016_j_compbiomed_2022_106214
crossref_primary_10_1016_j_energy_2023_126844
crossref_primary_10_3233_JIFS_236577
crossref_primary_10_3390_s24247879
crossref_primary_10_1007_s00202_024_02314_x
crossref_primary_10_1016_j_eswa_2023_122349
crossref_primary_10_3390_math12172708
crossref_primary_10_1007_s10489_021_02795_4
crossref_primary_10_1016_j_swevo_2023_101375
crossref_primary_10_1007_s10586_022_03663_7
crossref_primary_10_1038_s41598_022_17076_4
crossref_primary_10_1002_cpe_6341
crossref_primary_10_1007_s12065_024_00909_8
crossref_primary_10_1007_s11831_025_10309_5
crossref_primary_10_32604_cmes_2023_026643
crossref_primary_10_1016_j_engappai_2022_105088
crossref_primary_10_3390_machines11020178
crossref_primary_10_2166_wcc_2024_035
crossref_primary_10_1007_s10586_024_04508_1
crossref_primary_10_1007_s11042_023_15146_x
crossref_primary_10_1016_j_measurement_2025_116917
crossref_primary_10_3390_su16177750
crossref_primary_10_3390_sym16060661
crossref_primary_10_1007_s11227_022_04930_5
crossref_primary_10_1016_j_eswa_2022_119327
crossref_primary_10_1016_j_swevo_2022_101207
crossref_primary_10_1038_s41598_024_73473_x
crossref_primary_10_1016_j_rser_2023_113748
crossref_primary_10_3233_JIFS_212729
crossref_primary_10_1016_j_eswa_2025_129587
crossref_primary_10_1080_00032719_2022_2155833
crossref_primary_10_1007_s40996_025_01915_1
crossref_primary_10_1016_j_ins_2025_121943
crossref_primary_10_1007_s10846_023_01868_5
crossref_primary_10_1016_j_ipm_2021_102854
crossref_primary_10_1109_ACCESS_2023_3280564
Cites_doi 10.1016/j.enconman.2018.07.083
10.1016/j.ins.2018.03.042
10.1016/j.swevo.2019.07.001
10.1016/j.ins.2019.07.022
10.1016/j.camwa.2011.11.028
10.1016/j.asoc.2015.06.056
10.1016/j.asoc.2018.02.025
10.1016/j.asoc.2018.02.049
10.1016/j.eswa.2017.04.029
10.1016/j.ins.2018.12.030
10.1007/s00500-014-1502-7
10.1109/ACCESS.2019.2916894
10.1109/ACCESS.2019.2917803
10.1016/j.swevo.2016.10.003
10.1109/TIE.2016.2607698
10.1016/j.asoc.2017.03.048
10.1109/TCYB.2018.2849343
10.1016/j.ins.2014.10.012
10.1016/j.eswa.2019.04.050
10.1016/j.ins.2019.05.094
10.1016/j.asoc.2019.105763
10.1016/j.swevo.2015.05.002
10.1016/j.eswa.2018.10.047
10.1109/ACCESS.2019.2936254
10.1007/s00500-017-2485-y
10.1016/j.asoc.2016.12.022
10.1007/s00170-015-7326-5
10.1109/ACCESS.2019.2934994
10.1016/j.future.2019.07.015
10.1016/j.asoc.2014.11.003
10.1016/j.advengsoft.2013.12.007
10.1007/s00521-015-1962-4
10.1016/j.swevo.2012.12.004
10.1016/j.swevo.2011.02.002
10.1016/j.neucom.2018.11.034
10.1016/j.asoc.2018.11.047
10.1016/j.eswa.2018.04.028
10.1016/j.asoc.2019.02.037
10.1016/j.atmosenv.2016.03.056
10.1007/s00500-018-3310-y
10.1109/TSTE.2017.2714644
10.1016/j.ins.2014.08.039
10.3390/en11123351
10.1016/j.asoc.2016.02.018
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.107061
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_107061
S1568494620309996
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-ac1c187b0a24e45938a4bd97ec870f4b6eced1f91c994c657ff389b58d83a9a33
ISICitedReferencesCount 104
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621420400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:02:32 EST 2025
Tue Nov 18 21:57:21 EST 2025
Fri Feb 23 02:41:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Intelligence Optimization Algorithm
Grey Wolf Optimizer
Hybrid algorithm
K-means clustering
Particle Swarm Optimization algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-ac1c187b0a24e45938a4bd97ec870f4b6eced1f91c994c657ff389b58d83a9a33
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2020_107061
crossref_primary_10_1016_j_asoc_2020_107061
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_107061
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cui, Zhang, Li, Fu, Wen, Lu, Lu (b46) 2018; 22
Xie, Zhang, Lim, Yu, Liu, Liu, Walters (b55) 2019; 84
Zhang, Kang, Cheng, Wang (b19) 2018; 67
Li, Tan (b50) 2016
Wang, Gandomi, Zhao, Chu (b9) 2016; 20
(b39) 2013
Abdelshafy, Hassan, Jurasz (b13) 2018; 173
Assad, Deep (b11) 2018; 450
Sahoo, Chandra (b24) 2017; 52
Sato, Izui, Yamada, Nishiwaki (b52) 2019; 119
Korosec, Silc (b44) 2013
Zhong, Malinen, Miao, Fränti (b54) 2015; 295
Bajer, Zoric (b10) 2019; 504
Mirghasemi, Andreae, Zhang (b4) 2019; 133
Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b2) 2019; 101
Zhang, Fu, Chen, Mao, Liu, Liu (b8) 2019; 7
Zhao, Chen, Liu, Fan (b53) 2019; 7
Elsayed, Sarker, Essam (b49) 2013
Long, Jiao, Liang, Cai, Xu (b34) 2019; 7
Caraffini, Iacca, Neri, Picinali, Mininno (b48) 2013
Aydilek (b38) 2018; 66
El-salam, Beshr, Eteiba (b28) 2018; 11
Liu, Liu, Liu, Wang, Zhou, Zhang (b31) 2015; 81
Zhang, Kang, Wang (b12) 2019; 49
Al-Shalabi, Anbar, Wan, Alqattan (b3) 2019; 500
Baykasoglu, Ozsoydan (b7) 2015; 36
(b40) 2015
Dhabal, Venkateswaran (b45) 2017; 33
Precup, David, Petriu (b21) 2017; 64
Deng, Chen, Gao, Song, Xu (b14) 2012; 63
Niu, Wang, Sun, Li (b23) 2016; 134
Cheng, Jin (b37) 2014; 291
Derrac, Garca, Molina, Herrera (b51) 2011; 1
Kumar, Chhabra, Kumar (b20) 2017; 26
Arani, Mirzabeygi, Panahi (b30) 2013; 11
Tu, Chen, Liu (b42) 2019; 76
Li, Li, Liang, Ouyang (b18) 2019; 330
Mirjalili, Mirjalili, Lewis (b6) 2014; 69
Ibrahim, Elaziz, Lu (b1) 2018; 108
Shieh, Nguyen, Wang, Dao (b22) 2016
Eberhart, Kennedy (b32) 1995
Alomoush, Alsewari, Alamri, Aloufi, Zamli (b16) 2019; 7
Lynn, Suganthan (b41) 2015; 24
Jensi, Jiji (b26) 2016; 43
Rodrguez, Castillo, Soria, Melin, Valdez, Gonzalez, Martinez, Soto (b35) 2017; 57
Draa, Bouzoubia, Boukhalfa (b33) 2014; 27
Teng, Lv, Guo (b15) 2019; 23
Kamboj (b27) 2016; 27
Wang, Zhao, Han, Zhou, Li (b43) 2019; 78
Zhang, Wang, Kang, Cheng (b36) 2019; 480
Khairuzzaman, Chaudhuryc (b25) 2017; 86
Azizivahed, Naderi, Narimani, Fathi, Narimani (b29) 2018; 9
Tang, Wang, Dong (b5) 2019; 49
Xiang, Ma, An (b17) 2014; 238
Tvrdk, Polakova (b47) 2013
Elsayed (10.1016/j.asoc.2020.107061_b49) 2013
Tang (10.1016/j.asoc.2020.107061_b5) 2019; 49
Aydilek (10.1016/j.asoc.2020.107061_b38) 2018; 66
Zhang (10.1016/j.asoc.2020.107061_b19) 2018; 67
El-salam (10.1016/j.asoc.2020.107061_b28) 2018; 11
Teng (10.1016/j.asoc.2020.107061_b15) 2019; 23
Kumar (10.1016/j.asoc.2020.107061_b20) 2017; 26
Dhabal (10.1016/j.asoc.2020.107061_b45) 2017; 33
Deng (10.1016/j.asoc.2020.107061_b14) 2012; 63
Wang (10.1016/j.asoc.2020.107061_b43) 2019; 78
Ibrahim (10.1016/j.asoc.2020.107061_b1) 2018; 108
Cui (10.1016/j.asoc.2020.107061_b46) 2018; 22
Korosec (10.1016/j.asoc.2020.107061_b44) 2013
Draa (10.1016/j.asoc.2020.107061_b33) 2014; 27
Hashim (10.1016/j.asoc.2020.107061_b2) 2019; 101
Azizivahed (10.1016/j.asoc.2020.107061_b29) 2018; 9
Wang (10.1016/j.asoc.2020.107061_b9) 2016; 20
Sato (10.1016/j.asoc.2020.107061_b52) 2019; 119
Sahoo (10.1016/j.asoc.2020.107061_b24) 2017; 52
Lynn (10.1016/j.asoc.2020.107061_b41) 2015; 24
Eberhart (10.1016/j.asoc.2020.107061_b32) 1995
Zhang (10.1016/j.asoc.2020.107061_b36) 2019; 480
Zhong (10.1016/j.asoc.2020.107061_b54) 2015; 295
Alomoush (10.1016/j.asoc.2020.107061_b16) 2019; 7
Kamboj (10.1016/j.asoc.2020.107061_b27) 2016; 27
Al-Shalabi (10.1016/j.asoc.2020.107061_b3) 2019; 500
Assad (10.1016/j.asoc.2020.107061_b11) 2018; 450
Xie (10.1016/j.asoc.2020.107061_b55) 2019; 84
Long (10.1016/j.asoc.2020.107061_b34) 2019; 7
Zhang (10.1016/j.asoc.2020.107061_b8) 2019; 7
Zhang (10.1016/j.asoc.2020.107061_b12) 2019; 49
Mirjalili (10.1016/j.asoc.2020.107061_b6) 2014; 69
Zhao (10.1016/j.asoc.2020.107061_b53) 2019; 7
Jensi (10.1016/j.asoc.2020.107061_b26) 2016; 43
Caraffini (10.1016/j.asoc.2020.107061_b48) 2013
Baykasoglu (10.1016/j.asoc.2020.107061_b7) 2015; 36
Khairuzzaman (10.1016/j.asoc.2020.107061_b25) 2017; 86
Niu (10.1016/j.asoc.2020.107061_b23) 2016; 134
Derrac (10.1016/j.asoc.2020.107061_b51) 2011; 1
(10.1016/j.asoc.2020.107061_b40) 2015
Mirghasemi (10.1016/j.asoc.2020.107061_b4) 2019; 133
Liu (10.1016/j.asoc.2020.107061_b31) 2015; 81
Li (10.1016/j.asoc.2020.107061_b18) 2019; 330
Abdelshafy (10.1016/j.asoc.2020.107061_b13) 2018; 173
Shieh (10.1016/j.asoc.2020.107061_b22) 2016
Tvrdk (10.1016/j.asoc.2020.107061_b47) 2013
Arani (10.1016/j.asoc.2020.107061_b30) 2013; 11
Cheng (10.1016/j.asoc.2020.107061_b37) 2014; 291
Rodrguez (10.1016/j.asoc.2020.107061_b35) 2017; 57
Tu (10.1016/j.asoc.2020.107061_b42) 2019; 76
Precup (10.1016/j.asoc.2020.107061_b21) 2017; 64
Bajer (10.1016/j.asoc.2020.107061_b10) 2019; 504
(10.1016/j.asoc.2020.107061_b39) 2013
Xiang (10.1016/j.asoc.2020.107061_b17) 2014; 238
Li (10.1016/j.asoc.2020.107061_b50) 2016
References_xml – volume: 330
  start-page: 380
  year: 2019
  end-page: 393
  ident: b18
  article-title: A hybrid particle swarm optimization algorithm for load balancing of MDS on heterogeneous computing systems
  publication-title: Neurocomputing
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b6
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 450
  start-page: 246
  year: 2018
  end-page: 266
  ident: b11
  article-title: A hybrid harmony search and simulated annealing algorithm for continuous optimization
  publication-title: Inform. Sci.
– volume: 43
  start-page: 248
  year: 2016
  end-page: 261
  ident: b26
  article-title: An enhanced particle swarm optimization with levy flight for global optimization
  publication-title: Appl. Soft Comput.
– volume: 84
  year: 2019
  ident: b55
  article-title: Improving K-means clustering with enhanced firefly algorithms
  publication-title: Appl. Soft Comput.
– volume: 81
  start-page: 1817
  year: 2015
  end-page: 1829
  ident: b31
  article-title: Research and application of multiple constrained hot strip mill scheduling problem based on HPSA
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 11
  start-page: 3351
  year: 2018
  ident: b28
  article-title: A new hybrid technique for minimizing power losses in a distribution system by optimal sizing and siting of distributed generators with network reconfiguration
  publication-title: Energies
– volume: 295
  start-page: 1
  year: 2015
  end-page: 17
  ident: b54
  article-title: A fast minimum spanning tree algorithm based on K-means
  publication-title: Inform. Sci.
– start-page: 6
  year: 2013
  ident: b49
  article-title: A genetic algorithm for solving the CEC2013 competition problems on real-parameter optimization
  publication-title: 2013 IEEE Congress on Evolutionary Computation
– volume: 78
  start-page: 240
  year: 2019
  end-page: 260
  ident: b43
  article-title: A grey wolf optimizer using gaussian estimation of distribution and its application in the multi-UAV multi-target urban tracking problem
  publication-title: Appl. Soft Comput.
– start-page: 1123
  year: 2013
  end-page: 1130
  ident: b48
  article-title: A CMA-ES super-fit scheme for the re-sampled inheritance search
  publication-title: 2013 IEEE Congress on Evolutionary Computation
– start-page: 7
  year: 2013
  ident: b47
  article-title: Competitive differential evolution applied to CEC2013 problems
  publication-title: 2013 IEEE Congress on Evolutionary Computation
– volume: 238
  start-page: 370
  year: 2014
  end-page: 386
  ident: b17
  article-title: hABCDE: A hybrid evolutionary algorithm based on artificial bee colony algorithm and differential evolution
  publication-title: Appl. Math. Comput.
– volume: 49
  start-page: 245
  year: 2019
  end-page: 265
  ident: b12
  article-title: Hybrid biogeography-based optimization with shuffled frog leaping algorithm and its application to minimum spanning tree problems
  publication-title: Swarm Evol. Comput.
– volume: 480
  start-page: 109
  year: 2019
  end-page: 129
  ident: b36
  article-title: Differential mutation and novel social learning particle swarm optimization algorithm
  publication-title: Inform. Sci.
– volume: 33
  start-page: 68
  year: 2017
  end-page: 84
  ident: b45
  article-title: An efficient gbest-guided cuckoo search algorithm for higher order two channel filter bank design
  publication-title: Swarm Evol. Comput.
– volume: 22
  start-page: 2217
  year: 2018
  end-page: 2243
  ident: b46
  article-title: Modified gbest-guided artificial bee colony algorithm with new probability model
  publication-title: Soft Comput.
– year: 2013
  ident: b39
  article-title: Problem definitions and evaluation criteria for the CEC2013 special session on real-parameter optimization
  publication-title: Computational Intelligence Laboratory
– start-page: 7
  year: 2013
  ident: b44
  article-title: The continuous differential ant-stigmergy algorithm applied on real-parameter single objective optimization problems
  publication-title: 2013 IEEE Congress on Evolutionary Computation
– volume: 86
  start-page: 64
  year: 2017
  end-page: 76
  ident: b25
  article-title: Multilevel thresholding using grey wolf optimizer for image segmentation
  publication-title: Expert Syst. Appl.
– volume: 173
  start-page: 331
  year: 2018
  end-page: 347
  ident: b13
  article-title: Optimal design of a grid-connected desalination plant powered by renewable energy resources using a hybrid PSO-GWO approach
  publication-title: Energy Convers. Manage.
– volume: 23
  start-page: 6617
  year: 2019
  end-page: 6631
  ident: b15
  article-title: An improved hybrid grey wolf optimization algorithm
  publication-title: Soft Comput.
– volume: 64
  start-page: 527
  year: 2017
  end-page: 534
  ident: b21
  article-title: Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity
  publication-title: IEEE Trans. Ind. Electron.
– volume: 49
  start-page: 3571
  year: 2019
  end-page: 3585
  ident: b5
  article-title: Adaptive multiobjective differential evolution with reference axis vicinity mechanism
  publication-title: IEEE Trans. Cybern.
– volume: 7
  start-page: 68764
  year: 2019
  end-page: 68785
  ident: b16
  article-title: Hybrid harmony search algorithm with grey wolf optimizer and modified opposition-based learning
  publication-title: IEEE Access
– volume: 291
  start-page: 43
  year: 2014
  end-page: 60
  ident: b37
  article-title: A social learning particle swarm optimization algorithm for scalable optimization
  publication-title: Inform. Sci.
– volume: 134
  start-page: 168
  year: 2016
  end-page: 180
  ident: b23
  article-title: A novel hybrid decomposition-and-ensemble model based on ceemd and gwo for short-term PM2.5 concentration forecasting
  publication-title: Atmos. Environ.
– volume: 36
  start-page: 152
  year: 2015
  end-page: 164
  ident: b7
  article-title: Adaptive firefly algorithm with chaos for mechanical design optimization problems
  publication-title: Appl. Soft Comput.
– volume: 504
  start-page: 221
  year: 2019
  end-page: 275
  ident: b10
  article-title: An effective refined artificial bee colony algorithm for numerical optimization
  publication-title: Inform. Sci.
– volume: 76
  start-page: 16
  year: 2019
  end-page: 30
  ident: b42
  article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection
  publication-title: Appl. Soft Comput.
– volume: 7
  start-page: 116078
  year: 2019
  end-page: 116093
  ident: b8
  article-title: Levy flight shuffle frog leaping algorithm based on differential perturbation and quasi-Newton search
  publication-title: IEEE Access
– volume: 67
  start-page: 197
  year: 2018
  end-page: 214
  ident: b19
  article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer
  publication-title: Appl. Soft Comput.
– volume: 119
  start-page: 247
  year: 2019
  end-page: 261
  ident: b52
  article-title: Data mining based on clustering and association rule analysis for knowledge discovery in multiobjective topology optimization
  publication-title: Expert Syst. Appl.
– volume: 27
  start-page: 1643
  year: 2016
  end-page: 1655
  ident: b27
  article-title: A novel hybrid PSO-GWO approach for unit commitment problem
  publication-title: Neural Comput. Appl.
– volume: 9
  start-page: 56
  year: 2018
  end-page: 64
  ident: b29
  article-title: A new bi-objective approach to energy management in distribution networks with energy storage systems
  publication-title: IEEE Trans. Sustain. Energy
– volume: 108
  start-page: 1
  year: 2018
  end-page: 27
  ident: b1
  article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization
  publication-title: Expert Syst. Appl.
– volume: 20
  start-page: 273
  year: 2016
  end-page: 285
  ident: b9
  article-title: Hybridizing harmony search algorithm with cuckoo search for global numerical optimization
  publication-title: Soft Comput.
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: b32
  article-title: Particle swarm optimization
  publication-title: Proceedings of the IEEE International Conference on Neural Networks
– volume: 66
  start-page: 232
  year: 2018
  end-page: 249
  ident: b38
  article-title: A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems
  publication-title: Appl. Soft Comput.
– volume: 63
  start-page: 325
  year: 2012
  end-page: 336
  ident: b14
  article-title: A novel parallel hybrid intelligence optimization algorithm for a function approximation problem
  publication-title: Comput. Math. Appl.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b51
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– volume: 101
  start-page: 646
  year: 2019
  end-page: 667
  ident: b2
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Gener. Comput. Syst.
– volume: 500
  start-page: 259
  year: 2019
  end-page: 273
  ident: b3
  article-title: Energy efficient multi-hop path in wireless sensor networks using an enhanced genetic algorithm
  publication-title: Inform. Sci.
– year: 2015
  ident: b40
  article-title: Problem definitions and evaluation criteria for the CEC2015 competition on learning-based real-parameter single objective optimization
  publication-title: Computational Intelligence Laboratory
– volume: 52
  start-page: 64
  year: 2017
  end-page: 80
  ident: b24
  article-title: Multi-objective grey wolf optimizer for improved cervix lesion classification
  publication-title: Appl. Soft Comput.
– start-page: 174
  year: 2016
  end-page: 182
  ident: b22
  article-title: Enhanced diversity herds grey wolf optimizer for optimal area coverage in wireless sensor networks
  publication-title: Genet. Evol. Comput.
– volume: 133
  start-page: 126
  year: 2019
  end-page: 150
  ident: b4
  article-title: Domain-independent severely noisy image segmentation via adaptive wavelet shrinkage using particle swarm optimization and fuzzy C-means
  publication-title: Expert Syst. Appl.
– volume: 11
  start-page: 1
  year: 2013
  end-page: 15
  ident: b30
  article-title: An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration-exploitation balance
  publication-title: Swarm Evol. Comput.
– volume: 24
  start-page: 11
  year: 2015
  end-page: 24
  ident: b41
  article-title: Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation
  publication-title: Swarm Evol. Comput.
– volume: 57
  start-page: 315
  year: 2017
  end-page: 328
  ident: b35
  article-title: A fuzzy hierarchical operator in the grey wolf optimizer algorithm
  publication-title: Appl. Soft Comput.
– start-page: 11
  year: 2016
  ident: b50
  article-title: Enhancing interaction in the fireworks algorithm by dynamic resource allocation and fitness-based crowdedness-avoiding strategy
  publication-title: 2016 IEEE Congress on Evolutionary Computation
– volume: 27
  start-page: 99
  year: 2014
  end-page: 126
  ident: b33
  article-title: A sinusoidal differential evolution algorithm for numerical optimization
  publication-title: Appl. Soft Comput.
– volume: 7
  start-page: 113810
  year: 2019
  end-page: 113825
  ident: b34
  article-title: A random opposition-based learning grey wolf optimizer
  publication-title: IEEE Access
– volume: 7
  start-page: 64028
  year: 2019
  end-page: 64039
  ident: b53
  article-title: Alternate PSO-based adaptive interval Type-2 intuitionistic fuzzy C-means clustering algorithm for color image segmentation
  publication-title: IEEE Access
– volume: 26
  start-page: 153
  year: 2017
  end-page: 168
  ident: b20
  article-title: Grey wolf algorithm-based clustering technique
  publication-title: J. Intell. Syst.
– volume: 173
  start-page: 331
  year: 2018
  ident: 10.1016/j.asoc.2020.107061_b13
  article-title: Optimal design of a grid-connected desalination plant powered by renewable energy resources using a hybrid PSO-GWO approach
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.07.083
– volume: 450
  start-page: 246
  year: 2018
  ident: 10.1016/j.asoc.2020.107061_b11
  article-title: A hybrid harmony search and simulated annealing algorithm for continuous optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.03.042
– volume: 49
  start-page: 245
  year: 2019
  ident: 10.1016/j.asoc.2020.107061_b12
  article-title: Hybrid biogeography-based optimization with shuffled frog leaping algorithm and its application to minimum spanning tree problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.07.001
– volume: 504
  start-page: 221
  year: 2019
  ident: 10.1016/j.asoc.2020.107061_b10
  article-title: An effective refined artificial bee colony algorithm for numerical optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.07.022
– volume: 63
  start-page: 325
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2020.107061_b14
  article-title: A novel parallel hybrid intelligence optimization algorithm for a function approximation problem
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.11.028
– start-page: 1123
  year: 2013
  ident: 10.1016/j.asoc.2020.107061_b48
  article-title: A CMA-ES super-fit scheme for the re-sampled inheritance search
– volume: 36
  start-page: 152
  year: 2015
  ident: 10.1016/j.asoc.2020.107061_b7
  article-title: Adaptive firefly algorithm with chaos for mechanical design optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.06.056
– volume: 66
  start-page: 232
  year: 2018
  ident: 10.1016/j.asoc.2020.107061_b38
  article-title: A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.02.025
– volume: 67
  start-page: 197
  year: 2018
  ident: 10.1016/j.asoc.2020.107061_b19
  article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.02.049
– volume: 86
  start-page: 64
  year: 2017
  ident: 10.1016/j.asoc.2020.107061_b25
  article-title: Multilevel thresholding using grey wolf optimizer for image segmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.04.029
– start-page: 174
  year: 2016
  ident: 10.1016/j.asoc.2020.107061_b22
  article-title: Enhanced diversity herds grey wolf optimizer for optimal area coverage in wireless sensor networks
  publication-title: Genet. Evol. Comput.
– volume: 480
  start-page: 109
  year: 2019
  ident: 10.1016/j.asoc.2020.107061_b36
  article-title: Differential mutation and novel social learning particle swarm optimization algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.12.030
– year: 2015
  ident: 10.1016/j.asoc.2020.107061_b40
  article-title: Problem definitions and evaluation criteria for the CEC2015 competition on learning-based real-parameter single objective optimization
– volume: 20
  start-page: 273
  issue: 1
  year: 2016
  ident: 10.1016/j.asoc.2020.107061_b9
  article-title: Hybridizing harmony search algorithm with cuckoo search for global numerical optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1502-7
– volume: 7
  start-page: 64028
  year: 2019
  ident: 10.1016/j.asoc.2020.107061_b53
  article-title: Alternate PSO-based adaptive interval Type-2 intuitionistic fuzzy C-means clustering algorithm for color image segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916894
– volume: 7
  start-page: 68764
  year: 2019
  ident: 10.1016/j.asoc.2020.107061_b16
  article-title: Hybrid harmony search algorithm with grey wolf optimizer and modified opposition-based learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917803
– volume: 33
  start-page: 68
  year: 2017
  ident: 10.1016/j.asoc.2020.107061_b45
  article-title: An efficient gbest-guided cuckoo search algorithm for higher order two channel filter bank design
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2016.10.003
– volume: 64
  start-page: 527
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2020.107061_b21
  article-title: Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2607698
– volume: 57
  start-page: 315
  year: 2017
  ident: 10.1016/j.asoc.2020.107061_b35
  article-title: A fuzzy hierarchical operator in the grey wolf optimizer algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.03.048
– start-page: 1942
  year: 1995
  ident: 10.1016/j.asoc.2020.107061_b32
  article-title: Particle swarm optimization
– volume: 238
  start-page: 370
  year: 2014
  ident: 10.1016/j.asoc.2020.107061_b17
  article-title: hABCDE: A hybrid evolutionary algorithm based on artificial bee colony algorithm and differential evolution
  publication-title: Appl. Math. Comput.
– volume: 49
  start-page: 3571
  issue: 9
  year: 2019
  ident: 10.1016/j.asoc.2020.107061_b5
  article-title: Adaptive multiobjective differential evolution with reference axis vicinity mechanism
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2849343
– volume: 295
  start-page: 1
  year: 2015
  ident: 10.1016/j.asoc.2020.107061_b54
  article-title: A fast minimum spanning tree algorithm based on K-means
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.10.012
– volume: 133
  start-page: 126
  year: 2019
  ident: 10.1016/j.asoc.2020.107061_b4
  article-title: Domain-independent severely noisy image segmentation via adaptive wavelet shrinkage using particle swarm optimization and fuzzy C-means
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.04.050
– volume: 500
  start-page: 259
  year: 2019
  ident: 10.1016/j.asoc.2020.107061_b3
  article-title: Energy efficient multi-hop path in wireless sensor networks using an enhanced genetic algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.05.094
– start-page: 7
  year: 2013
  ident: 10.1016/j.asoc.2020.107061_b44
  article-title: The continuous differential ant-stigmergy algorithm applied on real-parameter single objective optimization problems
– volume: 84
  year: 2019
  ident: 10.1016/j.asoc.2020.107061_b55
  article-title: Improving K-means clustering with enhanced firefly algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105763
– volume: 24
  start-page: 11
  year: 2015
  ident: 10.1016/j.asoc.2020.107061_b41
  article-title: Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2015.05.002
– volume: 119
  start-page: 247
  year: 2019
  ident: 10.1016/j.asoc.2020.107061_b52
  article-title: Data mining based on clustering and association rule analysis for knowledge discovery in multiobjective topology optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.10.047
– start-page: 11
  year: 2016
  ident: 10.1016/j.asoc.2020.107061_b50
  article-title: Enhancing interaction in the fireworks algorithm by dynamic resource allocation and fitness-based crowdedness-avoiding strategy
– volume: 7
  start-page: 116078
  year: 2019
  ident: 10.1016/j.asoc.2020.107061_b8
  article-title: Levy flight shuffle frog leaping algorithm based on differential perturbation and quasi-Newton search
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936254
– volume: 22
  start-page: 2217
  issue: 7
  year: 2018
  ident: 10.1016/j.asoc.2020.107061_b46
  article-title: Modified gbest-guided artificial bee colony algorithm with new probability model
  publication-title: Soft Comput.
  doi: 10.1007/s00500-017-2485-y
– volume: 52
  start-page: 64
  year: 2017
  ident: 10.1016/j.asoc.2020.107061_b24
  article-title: Multi-objective grey wolf optimizer for improved cervix lesion classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.12.022
– volume: 81
  start-page: 1817
  issue: 9–12
  year: 2015
  ident: 10.1016/j.asoc.2020.107061_b31
  article-title: Research and application of multiple constrained hot strip mill scheduling problem based on HPSA
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-015-7326-5
– volume: 7
  start-page: 113810
  year: 2019
  ident: 10.1016/j.asoc.2020.107061_b34
  article-title: A random opposition-based learning grey wolf optimizer
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2934994
– volume: 101
  start-page: 646
  year: 2019
  ident: 10.1016/j.asoc.2020.107061_b2
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.07.015
– volume: 27
  start-page: 99
  year: 2014
  ident: 10.1016/j.asoc.2020.107061_b33
  article-title: A sinusoidal differential evolution algorithm for numerical optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.11.003
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.asoc.2020.107061_b6
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 27
  start-page: 1643
  issue: 6
  year: 2016
  ident: 10.1016/j.asoc.2020.107061_b27
  article-title: A novel hybrid PSO-GWO approach for unit commitment problem
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1962-4
– volume: 11
  start-page: 1
  year: 2013
  ident: 10.1016/j.asoc.2020.107061_b30
  article-title: An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration-exploitation balance
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2012.12.004
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2020.107061_b51
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 330
  start-page: 380
  year: 2019
  ident: 10.1016/j.asoc.2020.107061_b18
  article-title: A hybrid particle swarm optimization algorithm for load balancing of MDS on heterogeneous computing systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.11.034
– volume: 76
  start-page: 16
  year: 2019
  ident: 10.1016/j.asoc.2020.107061_b42
  article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.11.047
– volume: 108
  start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.107061_b1
  article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.04.028
– volume: 78
  start-page: 240
  year: 2019
  ident: 10.1016/j.asoc.2020.107061_b43
  article-title: A grey wolf optimizer using gaussian estimation of distribution and its application in the multi-UAV multi-target urban tracking problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.02.037
– volume: 26
  start-page: 153
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2020.107061_b20
  article-title: Grey wolf algorithm-based clustering technique
  publication-title: J. Intell. Syst.
– volume: 134
  start-page: 168
  year: 2016
  ident: 10.1016/j.asoc.2020.107061_b23
  article-title: A novel hybrid decomposition-and-ensemble model based on ceemd and gwo for short-term PM2.5 concentration forecasting
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.03.056
– volume: 23
  start-page: 6617
  issue: 15
  year: 2019
  ident: 10.1016/j.asoc.2020.107061_b15
  article-title: An improved hybrid grey wolf optimization algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3310-y
– volume: 9
  start-page: 56
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.107061_b29
  article-title: A new bi-objective approach to energy management in distribution networks with energy storage systems
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2017.2714644
– volume: 291
  start-page: 43
  year: 2014
  ident: 10.1016/j.asoc.2020.107061_b37
  article-title: A social learning particle swarm optimization algorithm for scalable optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.08.039
– start-page: 6
  year: 2013
  ident: 10.1016/j.asoc.2020.107061_b49
  article-title: A genetic algorithm for solving the CEC2013 competition problems on real-parameter optimization
– year: 2013
  ident: 10.1016/j.asoc.2020.107061_b39
  article-title: Problem definitions and evaluation criteria for the CEC2013 special session on real-parameter optimization
– volume: 11
  start-page: 3351
  issue: 12
  year: 2018
  ident: 10.1016/j.asoc.2020.107061_b28
  article-title: A new hybrid technique for minimizing power losses in a distribution system by optimal sizing and siting of distributed generators with network reconfiguration
  publication-title: Energies
  doi: 10.3390/en11123351
– start-page: 7
  year: 2013
  ident: 10.1016/j.asoc.2020.107061_b47
  article-title: Competitive differential evolution applied to CEC2013 problems
– volume: 43
  start-page: 248
  year: 2016
  ident: 10.1016/j.asoc.2020.107061_b26
  article-title: An enhanced particle swarm optimization with levy flight for global optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.02.018
SSID ssj0016928
Score 2.5914528
Snippet Grey Wolf Optimizer (GWO) and Particle Swarm Optimization (PSO) algorithm are two popular swarm intelligence optimization algorithms and these two algorithms...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107061
SubjectTerms Grey Wolf Optimizer
Hybrid algorithm
Intelligence Optimization Algorithm
K-means clustering
Particle Swarm Optimization algorithm
Title Hybrid Particle Swarm and Grey Wolf Optimizer and its application to clustering optimization
URI https://dx.doi.org/10.1016/j.asoc.2020.107061
Volume 101
WOSCitedRecordID wos000621420400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYW6KEXoC9BKZUP3FapNonj2EdUUaCiPFQee6gUOV5H2tWSXe0mPPrrO35lU9qicuASRbMTb5Tv03g8Hs8gtCMjphhMHUEhOCxQaEQCWDbHgUo04lQwbk65Xh6lx8es3-ennU7tz8LcjNOyZHd3fPqsUIMMwNZHZ58AdzMoCOAeQIcrwA7X_wL-4F4fwgLX0P7U_X4rZrYPxj7A1r2ajIvuCRiK6-FPNWv2Dlob2dodleNaV1AwKdFWd4Ggr1nr_Nc5GHKTmV5XfhpsB6L7w_K6JT-yNQvOhvV9S_pNmIjtlU5knyxUaxOb1SPdCqfsAhRRK0PL21TKAsJdpNEbXadhzSasQXu2JvsfFt0GF0afBJAVlvORFnnl38tnP5jWmmRDn8c2yvQYmR4js2MsoZUoTTgYw5Xdw73-12b7iXLTlLd5c3fayiYGPnyTv3s0LS_lfB2tuuUF3rXYv0IdVb5Ga751B3aW_A36YVmCPUuwYQkGNmDNEqxZghuWGDmwBLdYgqsJXrAEt1nyFl182Tv_fBC4RhuBjHu9KhAylCFL856IiCIJj5kg-YCnSoI1L0hOlVSDsOCh5JxImqRFAX5unrABiwUXcfwOLZeTUm0grHiak0jXlaOUqMQ0dkkVLfKQKRUmbBOF_mNl0lWh181Qxtm_YdpE3eaZqa3B8qh24jHInBdpvcMMKPXIc--f9C9b6OWC6x_QcjWr1TZ6IW-q4Xz20fHpF_lbk5Y
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Particle+Swarm+and+Grey+Wolf+Optimizer+and+its+application+to+clustering+optimization&rft.jtitle=Applied+soft+computing&rft.au=Zhang%2C+Xinming&rft.au=Lin%2C+Qiuying&rft.au=Mao%2C+Wentao&rft.au=Liu%2C+Shangwang&rft.date=2021-03-01&rft.issn=1568-4946&rft.volume=101&rft.spage=107061&rft_id=info:doi/10.1016%2Fj.asoc.2020.107061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2020_107061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon