A Survey on Causal Discovery: Theory and Practice

Understanding the laws that govern a phenomenon is the core of scientific progress. This is especially true when the goal is to model the interplay between different aspects in a causal fashion. Indeed, causal inference itself is specifically designed to quantify the underlying relationships that co...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of approximate reasoning Ročník 151; s. 101 - 129
Hlavní autoři: Zanga, Alessio, Ozkirimli, Elif, Stella, Fabio
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.12.2022
Témata:
ISSN:0888-613X, 1873-4731
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Understanding the laws that govern a phenomenon is the core of scientific progress. This is especially true when the goal is to model the interplay between different aspects in a causal fashion. Indeed, causal inference itself is specifically designed to quantify the underlying relationships that connect a cause to its effect. Causal discovery is a branch of the broader field of causality in which causal graphs are recovered from data (whenever possible), enabling the identification and estimation of causal effects. In this paper, we explore recent advancements in causal discovery in a unified manner, provide a consistent overview of existing algorithms developed under different settings, report useful tools and data, present real-world applications to understand why and how these methods can be fruitfully exploited.
AbstractList Understanding the laws that govern a phenomenon is the core of scientific progress. This is especially true when the goal is to model the interplay between different aspects in a causal fashion. Indeed, causal inference itself is specifically designed to quantify the underlying relationships that connect a cause to its effect. Causal discovery is a branch of the broader field of causality in which causal graphs are recovered from data (whenever possible), enabling the identification and estimation of causal effects. In this paper, we explore recent advancements in causal discovery in a unified manner, provide a consistent overview of existing algorithms developed under different settings, report useful tools and data, present real-world applications to understand why and how these methods can be fruitfully exploited.
Author Zanga, Alessio
Stella, Fabio
Ozkirimli, Elif
Author_xml – sequence: 1
  givenname: Alessio
  orcidid: 0000-0003-4423-2121
  surname: Zanga
  fullname: Zanga, Alessio
  email: alessio.zanga@unimib.it
  organization: Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale Sarca, 336, 20126 Milano, Italy
– sequence: 2
  givenname: Elif
  surname: Ozkirimli
  fullname: Ozkirimli, Elif
  email: elif.ozkirimli@roche.com
  organization: Data and Analytics Chapter, F. Hoffmann - La Roche Ltd, Basel, Switzerland
– sequence: 3
  givenname: Fabio
  surname: Stella
  fullname: Stella, Fabio
  email: fabio.stella@unimib.it
  organization: Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale Sarca, 336, 20126 Milano, Italy
BookMark eNp9z09LwzAYx_EgE9ymb8BT30Drk6RLUvEy5l8YKDjBW3iaPsWU2UrSDfru7ZgnDzv9Tp8ffGds0nYtMXbNIePA1U2T-QZDJkCIDIoMID9jU260THMt-YRNwRiTKi4_L9gsxgYAlM7NlPFl8r4LexqSrk1WuIu4Te59dN2ewnCbbL6oC0OCbZW8BXS9d3TJzmvcRrr62zn7eHzYrJ7T9evTy2q5Tp0E6FMsJfFcKKN0qQmUEGWNuSTDq6LQupClwRx5rZWrylwKUo67AhaIi8rUIOWcmeOvC12MgWrrfI-979o-oN9aDvaQbht7SLeHdAuFHdNHKv7Rn-C_MQyn0d0R0Ri19xRsdJ5aR5UP5Hpbdf4U_wXxqHO9
CitedBy_id crossref_primary_10_1186_s12911_024_02837_0
crossref_primary_10_1186_s12911_025_02981_1
crossref_primary_10_1016_j_jbi_2025_104877
crossref_primary_10_1093_bib_bbae521
crossref_primary_10_3390_s24123728
crossref_primary_10_1109_TVCG_2024_3456346
crossref_primary_10_1103_PhysRevE_112_014204
crossref_primary_10_1016_j_neucom_2024_128701
crossref_primary_10_1016_j_scitotenv_2025_180121
crossref_primary_10_1109_ACCESS_2024_3451626
crossref_primary_10_3390_e27050531
crossref_primary_10_1016_j_ins_2025_122240
crossref_primary_10_3389_fpubh_2024_1305746
crossref_primary_10_1016_j_compchemeng_2025_109345
crossref_primary_10_1007_s13748_024_00348_7
crossref_primary_10_1186_s12967_025_06755_1
crossref_primary_10_1016_j_dajour_2025_100639
crossref_primary_10_1145_3629169
crossref_primary_10_1016_j_eswa_2024_126120
crossref_primary_10_1016_j_ipm_2025_104202
crossref_primary_10_3390_e26100867
crossref_primary_10_1109_TFUZZ_2024_3471187
crossref_primary_10_1007_s10462_022_10351_w
crossref_primary_10_1016_j_eswa_2023_122690
crossref_primary_10_1145_3687467
crossref_primary_10_3390_e26020108
crossref_primary_10_1016_j_engappai_2024_108258
crossref_primary_10_3390_cancers16213643
crossref_primary_10_1016_j_dajour_2023_100291
crossref_primary_10_3390_e26110946
crossref_primary_10_1016_j_tre_2025_104244
crossref_primary_10_1145_3705297
crossref_primary_10_1109_TAI_2023_3329786
crossref_primary_10_1109_ACCESS_2025_3596680
crossref_primary_10_1016_j_dt_2024_04_007
crossref_primary_10_1080_10643389_2025_2557306
Cites_doi 10.2333/bhmk.41.65
10.1093/nar/gkx1013
10.1016/j.ijar.2012.09.004
10.1016/j.egyr.2021.09.026
10.1109/TAC.1974.1100705
10.1109/JPROC.2021.3058954
10.3934/jdg.2021008
10.1016/j.ijar.2019.10.003
10.18637/jss.v035.i03
10.1089/cmb.2008.09TT
10.18637/jss.v047.i11
10.1111/phc3.12470
10.1162/NECO_a_00708
10.1162/003465304323023651
10.1016/0005-1098(78)90005-5
10.1016/0165-1684(94)90029-9
10.1016/j.cell.2016.11.038
10.1016/j.ijar.2019.10.009
10.1016/S0140-6736(12)62129-1
10.1214/aos/1031689015
10.1214/17-AOS1654
10.1016/j.spl.2016.11.010
10.1198/jcgs.2010.08162
10.1186/1471-2105-7-43
10.1016/j.cell.2015.04.044
10.1007/s41060-017-0094-6
10.1111/acer.13914
10.3389/fgene.2019.00524
10.1109/TCBB.2016.2591526
10.1126/science.1105809
10.1214/aos/1031833662
10.1007/s10994-006-6889-7
10.1007/s41060-016-0032-z
10.1214/11-AOS940
10.1016/j.artint.2008.08.001
10.18637/jss.v077.i02
10.1007/s41060-018-0097-y
10.1109/TIT.2010.2060095
10.1214/14-AOS1260
10.1093/biomet/82.4.669
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ijar.2022.09.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-4731
EndPage 129
ExternalDocumentID 10_1016_j_ijar_2022_09_004
S0888613X22001402
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
UHS
WUQ
XPP
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-ab3e1426867b7e0622bfa43e81d997793b8a4a1f76cdb432e6c1c905aa5d8f033
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000876728600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-613X
IngestDate Tue Nov 18 20:50:48 EST 2025
Sat Nov 29 07:13:11 EST 2025
Fri Feb 23 02:42:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Causality
Structural learning
Causal models
Causal discovery
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-ab3e1426867b7e0622bfa43e81d997793b8a4a1f76cdb432e6c1c905aa5d8f033
ORCID 0000-0003-4423-2121
PageCount 29
ParticipantIDs crossref_citationtrail_10_1016_j_ijar_2022_09_004
crossref_primary_10_1016_j_ijar_2022_09_004
elsevier_sciencedirect_doi_10_1016_j_ijar_2022_09_004
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle International journal of approximate reasoning
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Rubenstein, Bongers, Mooij, Schölkopf (br0210) 2018
Scutari, Graafland, Gutiérrez (br0800) 2019; 115
Spirtes (br1150) 2001
Massmann, Gentine, Runge (br0180) 2021
Hoyer, Shimizu, Kerminen (br0460) 2006
Mooij, Magliacane, Claassen (br0280) 2020; 21
Dixit, Parnas, Li, Chen, Fulco, Jerby-Arnon, Marjanovic, Dionne, Burks, Raychowdhury (br1000) 2016; 167
Strobl, Visweswaran, Spirtes (br1220) 2018; 6
Ramsey, Zhang, Glymour, Romero, Huang, Ebert-Uphoff, Samarasinghe, Barnes, Glymour (br1160) 2018
Malinsky, Danks (br0130) 2018; 13
Eberhardt, Glymour, Scheines (br0920) 2012
Han, Cho, Lee, Yun, Kim, Bae, Yang, Kim, Lee, Kim (br0990) 2018; 46
Peters, Bühlmann (br1050) 2015; 27
Lacerda, Spirtes, Ramsey, Hoyer (br0490) 2008
Brouillard, Lachapelle, Lacoste, Lacoste-Julien, Drouin (br0580) 2020
Nagase, Kano (br0830) 2017; 122
Meek (br0310) 2013
Ogarrio, Spirtes, Ramsey (br0430) 2016
Colombo, Maathuis, Kalisch, Richardson (br1140) 2012; 40
Liu, Roeder, Wasserman (br1060) 2010; 24
Tsamardinos, Aliferis, Statnikov, Statnikov (br1110) 2003
Kalisch, Mächler, Colombo, Maathuis, Bühlmann (br1130) 2012; 47
Squires, Wang, Uhler (br0540) 2020
Nogueira, Gama, Ferreira (br0150) 2021; 8
Hu, Li, Vetta (br0930) 2014
Bongers, Mooij (br0200) 2018
Shen, Ma, Vemuri, Simon (br1190) 2020; 10
Forré, Mooij (br0330) 2017
Guo, Cheng, Li, Hahn, Liu (br0110) 2021; 53
Koller, Friedman (br0600) 2009
Richardson, Spirtes (br0350) 2002; 30
Chickering (br0670) 2002; 3
Andrews, Ramsey, Cooper (br0610) 2019
Shimizu (br0230) 2014; 41
Peters, Janzing, Schölkopf (br0370) 2017
Bühlmann, Peters, Ernest (br1090) 2014; 42
Spirtes, Zhang (br0190) 2016
Shannon (br1020) 2021
Spirtes, Meek, Richardson (br0650) 2013
Richardson (br0480) 2013
Verma, Pearl (br0270) 1990
Drton, Richardson (br0360) 2004
Tagasovska, Chavez-Demoulin, Vatter (br0450) 2020
Rantanen, Hyttinen, Järvisalo (br0570) 2020
Witte, Foraita, Didelez (br1230) 2021
Klein, Mazutis, Akartuna, Tallapragada, Veres, Li, Peshkin, Weitz, Kirschner (br0980) 2015; 161
Pearl (br0170) 2018
Spirtes (br0810) 2010; 11
Solus, Wang, Uhler (br0940) 2021
Pearl (br0260) 1995; 82
Bareinboim, Correa, Ibeling, Icard (br0080) 2022
Yu, Wu, Wang, Ding (br1260) 2010
Glymour, Pearl, Jewell (br0090) 2016
Marbach, Schaffter, Mattiussi, Floreano (br1030) 2009; 16
Hyttinen, Saikko, Järvisalo (br0500) 2017
Nogueira, Pugnana, Ruggieri, Pedreschi, Gama (br0100) 2022
Magliacane, Claassen, Mooij (br0860) 2017
Rissanen (br0730) 1978; 14
Meek (br0720) 1997
Addo, Manibialoa, McIsaac (br1180) 2021; 7
Tian, Pearl (br0900) 2013
Sachs, Perez, Pe'er, Lauffenburger, Nolan (br0970) 2005; 308
Anker, Kummerfeld, Rix, Burwell, Kushner (br1210) 2019; 43
Van den Bulcke, Van Leemput, Naudts, van Remortel, Ma, Verschoren, De Moor, Marchal (br1010) 2006; 7
Li, Fan (br0640) 2020; 12
Ahmed, Träuble, Goyal, Neitz, Bengio, Schölkopf, Wüthrich, Bauer (br0960) 2020
Scheines, Ramsey (br1040) 2016; vol. 1792
Zhang (br0340) 2008; 172
Rothenhäusler, Heinze, Peters, Meinshausen (br0560) 2015
Stegle, Janzing, Zhang, Mooij, Schölkopf (br0750) 2010; 23
Yang, Katcoff, Uhler (br0290) 2018
Comon (br0760) 1994; 36
Shahbazinia, Salehkaleybar, Hashemi (br0220) 2021
Kocaoglu, Jaber, Shanmugam, Bareinboim (br0910) 2019
Spirtes (br0840) 2013
Miley, Meyer-Kalos, Ma, Bond, Kummerfeld, Vinogradov (br1200) 2021
Shpitser, Pearl (br0880) 2008; 9
Triantafillou, Tsamardinos (br1250) 2015; 16
Geiger, Heckerman (br0700) 1994
Vowels, Camgoz, Bowden (br0140) 2021
Schwarz (br0690) 1978
Natori, Uto, Nishiyama, Kawano, Ueno (br0790) 2015
Scutari (br1120) 2017; 77
Cai, Qiao, Zhang, Zhang, Hao (br0440) 2018; 32
Alonso-Barba, Gámez, Puerta (br0400) 2013; 54
Pearl, Mackenzie (br0870) 2018
Scutari (br1100) 2010; 35
Spirtes, Glymour, Scheines, Heckerman (br0070) 2000
Hernán, Robins (br0060) 2020
Glymour, Zhang, Spirtes (br0050) 2019; 10
Bongers, Forré, Peters, Mooij (br0240) 2021
Mooij, Claassen (br0250) 2020
Nandy, Hauser, Maathuis (br0420) 2018
Psychiatric Genomics Consortium (br0020) 2013; 381
Le, Hoang, Li, Liu, Liu, Hu (br0630) 2019; 16
Gao, Chen, Shen, Liu, Gong, Bondell (br1270) 2021
Berry (br0820) 1984
Jabbari, Ramsey, Spirtes, Cooper (br1170) 2017
Tsamardinos, Brown, Aliferis (br0770) 2006; 65
Kocaoglu, Shanmugam, Bareinboim (br0320) 2017
Hauser, Bühlmann (br0530) 2012; 13
Castillo, Gutierrez, Hadi (br0590) 2012
Jaber, Kocaoglu, Shanmugam, Bareinboim (br0550) 2020
Ramsey, Glymour, Sanchez-Romero, Glymour (br0410) 2017; 3
Colombo, Maathuis (br0390) 2013
Akaike (br0680) 1974; 19
Andersson, Madigan, Perlman (br0300) 1997; 25
Hyttinen, Eberhardt, Järvisalo (br0850) 2014
Tsagris, Borboudakis, Lagani, Tsamardinos (br0620) 2018; 6
Schölkopf, Locatello, Bauer, Ke, Kalchbrenner, Goyal, Bengio (br0160) 2021; 109
Niinimaki, Parviainen (br0780) 2012
Janzing, Schölkopf (br0740) 2010; 56
Biza, Tsamardinos, Triantafillou (br1070) 2020; vol. 138
Hill (br0030) 2011; 20
Kalainathan, Goudet (br1080) 2019
Rantanen, Hyttinen, Järvisalo (br0510) 2020; 117
Scutari (br0710) 2016
Moraffah, Sheth, Karami, Bhattacharya, Wang, Tahir, Raglin, Liu (br0120) 2021
Shimizu, Blöbaum (br0380) 2020
Markowetz, Grossmann, Spang (br0890) 2005; vol. R5
Lee, Correa, Bareinboim (br0660) 2020
Forré, Mooij (br0520) 2018
Huang, Zhang, Zhang, Ramsey, Sanchez-Romero, Glymour, Schölkopf (br1240) 2020; 21
Pearl (br0040) 2018
Mooij, Peters, Janzing, Zscheischler, Schölkopf (br0950) 2016; 17
Imbens (br0010) 2004; 86
Zheng, Aragam, Ravikumar, Xing (br0470) 2018
Alonso-Barba (10.1016/j.ijar.2022.09.004_br0400) 2013; 54
Bareinboim (10.1016/j.ijar.2022.09.004_br0080) 2022
Pearl (10.1016/j.ijar.2022.09.004_br0170) 2018
Dixit (10.1016/j.ijar.2022.09.004_br1000) 2016; 167
Lee (10.1016/j.ijar.2022.09.004_br0660) 2020
Biza (10.1016/j.ijar.2022.09.004_br1070) 2020; vol. 138
Rantanen (10.1016/j.ijar.2022.09.004_br0510) 2020; 117
Spirtes (10.1016/j.ijar.2022.09.004_br0070) 2000
Zheng (10.1016/j.ijar.2022.09.004_br0470)
Shimizu (10.1016/j.ijar.2022.09.004_br0230) 2014; 41
Mooij (10.1016/j.ijar.2022.09.004_br0950) 2016; 17
Shimizu (10.1016/j.ijar.2022.09.004_br0380) 2020
Jabbari (10.1016/j.ijar.2022.09.004_br1170) 2017
Massmann (10.1016/j.ijar.2022.09.004_br0180)
Niinimaki (10.1016/j.ijar.2022.09.004_br0780) 2012
Scheines (10.1016/j.ijar.2022.09.004_br1040) 2016; vol. 1792
Forré (10.1016/j.ijar.2022.09.004_br0520)
Akaike (10.1016/j.ijar.2022.09.004_br0680) 1974; 19
Verma (10.1016/j.ijar.2022.09.004_br0270) 1990
Pearl (10.1016/j.ijar.2022.09.004_br0870) 2018
Forré (10.1016/j.ijar.2022.09.004_br0330)
Spirtes (10.1016/j.ijar.2022.09.004_br0190) 2016
Lacerda (10.1016/j.ijar.2022.09.004_br0490) 2008
Jaber (10.1016/j.ijar.2022.09.004_br0550) 2020
Bühlmann (10.1016/j.ijar.2022.09.004_br1090) 2014; 42
Malinsky (10.1016/j.ijar.2022.09.004_br0130) 2018; 13
Richardson (10.1016/j.ijar.2022.09.004_br0350) 2002; 30
Le (10.1016/j.ijar.2022.09.004_br0630) 2019; 16
Richardson (10.1016/j.ijar.2022.09.004_br0480)
Spirtes (10.1016/j.ijar.2022.09.004_br0810) 2010; 11
Glymour (10.1016/j.ijar.2022.09.004_br0090) 2016
Squires (10.1016/j.ijar.2022.09.004_br0540)
Chickering (10.1016/j.ijar.2022.09.004_br0670) 2002; 3
Sachs (10.1016/j.ijar.2022.09.004_br0970) 2005; 308
Bongers (10.1016/j.ijar.2022.09.004_br0200)
Hyttinen (10.1016/j.ijar.2022.09.004_br0500) 2017
Bongers (10.1016/j.ijar.2022.09.004_br0240)
Scutari (10.1016/j.ijar.2022.09.004_br1100) 2010; 35
Scutari (10.1016/j.ijar.2022.09.004_br0800) 2019; 115
Liu (10.1016/j.ijar.2022.09.004_br1060) 2010; 24
Ogarrio (10.1016/j.ijar.2022.09.004_br0430) 2016
Magliacane (10.1016/j.ijar.2022.09.004_br0860)
Rothenhäusler (10.1016/j.ijar.2022.09.004_br0560) 2015
Natori (10.1016/j.ijar.2022.09.004_br0790) 2015
Shannon (10.1016/j.ijar.2022.09.004_br1020) 2021
Scutari (10.1016/j.ijar.2022.09.004_br0710) 2016
Cai (10.1016/j.ijar.2022.09.004_br0440) 2018; 32
Imbens (10.1016/j.ijar.2022.09.004_br0010) 2004; 86
Tagasovska (10.1016/j.ijar.2022.09.004_br0450) 2020
Tsagris (10.1016/j.ijar.2022.09.004_br0620) 2018; 6
Kalisch (10.1016/j.ijar.2022.09.004_br1130) 2012; 47
Ramsey (10.1016/j.ijar.2022.09.004_br1160) 2018
Li (10.1016/j.ijar.2022.09.004_br0640) 2020; 12
Schwarz (10.1016/j.ijar.2022.09.004_br0690) 1978
Zhang (10.1016/j.ijar.2022.09.004_br0340) 2008; 172
Witte (10.1016/j.ijar.2022.09.004_br1230)
Rissanen (10.1016/j.ijar.2022.09.004_br0730) 1978; 14
Mooij (10.1016/j.ijar.2022.09.004_br0280) 2020; 21
Hernán (10.1016/j.ijar.2022.09.004_br0060) 2020
Hauser (10.1016/j.ijar.2022.09.004_br0530) 2012; 13
Meek (10.1016/j.ijar.2022.09.004_br0310)
Schölkopf (10.1016/j.ijar.2022.09.004_br0160) 2021; 109
Mooij (10.1016/j.ijar.2022.09.004_br0250) 2020
Tian (10.1016/j.ijar.2022.09.004_br0900)
Markowetz (10.1016/j.ijar.2022.09.004_br0890) 2005; vol. R5
Ahmed (10.1016/j.ijar.2022.09.004_br0960)
Triantafillou (10.1016/j.ijar.2022.09.004_br1250) 2015; 16
Ramsey (10.1016/j.ijar.2022.09.004_br0410) 2017; 3
Spirtes (10.1016/j.ijar.2022.09.004_br0650)
Pearl (10.1016/j.ijar.2022.09.004_br0260) 1995; 82
Andersson (10.1016/j.ijar.2022.09.004_br0300) 1997; 25
Spirtes (10.1016/j.ijar.2022.09.004_br0840)
Huang (10.1016/j.ijar.2022.09.004_br1240) 2020; 21
Psychiatric Genomics Consortium (10.1016/j.ijar.2022.09.004_br0020) 2013; 381
Nagase (10.1016/j.ijar.2022.09.004_br0830) 2017; 122
Drton (10.1016/j.ijar.2022.09.004_br0360) 2004
Hyttinen (10.1016/j.ijar.2022.09.004_br0850) 2014
Nogueira (10.1016/j.ijar.2022.09.004_br0100) 2022
Guo (10.1016/j.ijar.2022.09.004_br0110) 2021; 53
Berry (10.1016/j.ijar.2022.09.004_br0820) 1984
Shpitser (10.1016/j.ijar.2022.09.004_br0880) 2008; 9
Kocaoglu (10.1016/j.ijar.2022.09.004_br0910) 2019
Yu (10.1016/j.ijar.2022.09.004_br1260) 2010
Shen (10.1016/j.ijar.2022.09.004_br1190) 2020; 10
Colombo (10.1016/j.ijar.2022.09.004_br0390)
Hoyer (10.1016/j.ijar.2022.09.004_br0460) 2006
Klein (10.1016/j.ijar.2022.09.004_br0980) 2015; 161
Anker (10.1016/j.ijar.2022.09.004_br1210) 2019; 43
Nandy (10.1016/j.ijar.2022.09.004_br0420) 2018
Glymour (10.1016/j.ijar.2022.09.004_br0050) 2019; 10
Yang (10.1016/j.ijar.2022.09.004_br0290) 2018
Solus (10.1016/j.ijar.2022.09.004_br0940)
Andrews (10.1016/j.ijar.2022.09.004_br0610) 2019
Moraffah (10.1016/j.ijar.2022.09.004_br0120) 2021
Tsamardinos (10.1016/j.ijar.2022.09.004_br0770) 2006; 65
Geiger (10.1016/j.ijar.2022.09.004_br0700) 1994
Hu (10.1016/j.ijar.2022.09.004_br0930) 2014
Gao (10.1016/j.ijar.2022.09.004_br1270)
Janzing (10.1016/j.ijar.2022.09.004_br0740) 2010; 56
Eberhardt (10.1016/j.ijar.2022.09.004_br0920)
Rubenstein (10.1016/j.ijar.2022.09.004_br0210) 2018
Han (10.1016/j.ijar.2022.09.004_br0990) 2018; 46
Colombo (10.1016/j.ijar.2022.09.004_br1140) 2012; 40
Kalainathan (10.1016/j.ijar.2022.09.004_br1080)
Kocaoglu (10.1016/j.ijar.2022.09.004_br0320) 2017
Hill (10.1016/j.ijar.2022.09.004_br0030) 2011; 20
Marbach (10.1016/j.ijar.2022.09.004_br1030) 2009; 16
Peters (10.1016/j.ijar.2022.09.004_br1050) 2015; 27
Pearl (10.1016/j.ijar.2022.09.004_br0040) 2018
Comon (10.1016/j.ijar.2022.09.004_br0760) 1994; 36
Castillo (10.1016/j.ijar.2022.09.004_br0590) 2012
Tsamardinos (10.1016/j.ijar.2022.09.004_br1110) 2003
Peters (10.1016/j.ijar.2022.09.004_br0370) 2017
Van den Bulcke (10.1016/j.ijar.2022.09.004_br1010) 2006; 7
Brouillard (10.1016/j.ijar.2022.09.004_br0580)
Scutari (10.1016/j.ijar.2022.09.004_br1120) 2017; 77
Stegle (10.1016/j.ijar.2022.09.004_br0750) 2010; 23
Koller (10.1016/j.ijar.2022.09.004_br0600) 2009
Vowels (10.1016/j.ijar.2022.09.004_br0140) 2021
Shahbazinia (10.1016/j.ijar.2022.09.004_br0220)
Strobl (10.1016/j.ijar.2022.09.004_br1220) 2018; 6
Nogueira (10.1016/j.ijar.2022.09.004_br0150) 2021; 8
Rantanen (10.1016/j.ijar.2022.09.004_br0570) 2020
Spirtes (10.1016/j.ijar.2022.09.004_br1150) 2001
Meek (10.1016/j.ijar.2022.09.004_br0720) 1997
Miley (10.1016/j.ijar.2022.09.004_br1200) 2021
Addo (10.1016/j.ijar.2022.09.004_br1180) 2021; 7
References_xml – year: 1984
  ident: br0820
  article-title: Nonrecursive Causal Models, vol. 37
– year: 2019
  ident: br1080
  article-title: Causal discovery toolbox: uncover causal relationships in Python
– year: 2018
  ident: br0040
  article-title: Theoretical impediments to machine learning with seven sparks from the causal revolution
  publication-title: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining
– year: 2008
  ident: br0490
  article-title: Discovering cyclic causal models by independent components analysis
  publication-title: UAI
– volume: 36
  start-page: 287
  year: 1994
  end-page: 314
  ident: br0760
  article-title: Independent component analysis, a new concept?
  publication-title: Signal Process.
– start-page: 9551
  year: 2020
  end-page: 9561
  ident: br0550
  article-title: Causal discovery from soft interventions with unknown targets: characterization and learning
  publication-title: Advances in Neural Information Processing Systems, vol. 33
– volume: 65
  start-page: 31
  year: 2006
  end-page: 78
  ident: br0770
  article-title: The max-min hill-climbing Bayesian network structure learning algorithm
  publication-title: Mach. Learn.
– year: 2018
  ident: br0200
  article-title: From random differential equations to structural causal models: the stochastic case
– year: 2006
  ident: br0460
  article-title: Estimation of linear, non-Gaussian causal models in the presence of confounding latent variables
  publication-title: Probabilistic Graphical Models
– year: 2018
  ident: br0420
  article-title: High-dimensional consistency in score-based and hybrid structure learning
  publication-title: Ann. Stat.
– year: 2013
  ident: br0390
  article-title: Order-independent constraint-based causal structure learning
– volume: 12
  year: 2020
  ident: br0640
  article-title: On nonparametric conditional independence tests for continuous variables
  publication-title: Wiley Interdiscip. Rev.: Comput. Stat.
– start-page: 340
  year: 2014
  end-page: 349
  ident: br0850
  article-title: Constraint-based causal discovery: conflict resolution with answer set programming
  publication-title: Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence, UAI'14
– volume: 381
  start-page: 1371
  year: 2013
  end-page: 1379
  ident: br0020
  article-title: Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis
  publication-title: Lancet
– start-page: 255
  year: 1990
  end-page: 270
  ident: br0270
  article-title: Equivalence and synthesis of causal models
  publication-title: Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence, UAI '90
– volume: 14
  start-page: 465
  year: 1978
  end-page: 471
  ident: br0730
  article-title: Modeling by shortest data description
  publication-title: Automatica
– year: 2018
  ident: br0470
  article-title: DAGs with no tears: continuous optimization for structure learning
– volume: 42
  start-page: 2526
  year: 2014
  end-page: 2556
  ident: br1090
  article-title: CAM: causal additive models, high-dimensional order search and penalized regression
  publication-title: Ann. Stat.
– volume: 115
  start-page: 235
  year: 2019
  end-page: 253
  ident: br0800
  article-title: Who learns better Bayesian network structures: accuracy and speed of structure learning algorithms
  publication-title: Int. J. Approx. Reason.
– volume: 7
  start-page: 1
  year: 2006
  end-page: 12
  ident: br1010
  article-title: SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms
  publication-title: BMC Bioinform.
– year: 2009
  ident: br0600
  article-title: Probabilistic Graphical Models: Principles and Techniques
– start-page: 1
  year: 2021
  end-page: 45
  ident: br0120
  article-title: Causal inference for time series analysis: problems, methods and evaluation
  publication-title: Knowl. Inf. Syst.
– year: 2012
  ident: br0590
  article-title: Expert Systems and Probabilistic Network Models
– volume: 32
  start-page: 2671
  year: 2018
  end-page: 2679
  ident: br0440
  article-title: Causal discovery from discrete data using hidden compact representation
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: br0580
  article-title: Differentiable causal discovery from interventional data
– volume: 41
  start-page: 65
  year: 2014
  end-page: 98
  ident: br0230
  article-title: Lingam: non-Gaussian methods for estimating causal structures
  publication-title: Behaviormetrika
– volume: 25
  start-page: 505
  year: 1997
  end-page: 541
  ident: br0300
  article-title: A characterization of Markov equivalence classes for acyclic digraphs
  publication-title: Ann. Stat.
– volume: 23
  start-page: 1687
  year: 2010
  end-page: 1695
  ident: br0750
  article-title: Probabilistic latent variable models for distinguishing between cause and effect
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 172
  start-page: 1873
  year: 2008
  end-page: 1896
  ident: br0340
  article-title: On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias
  publication-title: Artif. Intell.
– year: 2018
  ident: br0210
  article-title: From deterministic odes to dynamic structural causal models
  publication-title: UAI
– year: 2019
  ident: br0910
  article-title: Characterization and learning of causal graphs with latent variables from soft interventions
  publication-title: Advances in Neural Information Processing Systems, vol. 32
– volume: 16
  start-page: 1483
  year: 2019
  end-page: 1495
  ident: br0630
  article-title: A fast PC algorithm for high dimensional causal discovery with multi-core pcs
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 3
  start-page: 507
  year: 2002
  end-page: 554
  ident: br0670
  article-title: Optimal structure identification with greedy search
  publication-title: J. Mach. Learn. Res.
– year: 2004
  ident: br0360
  article-title: Iterative conditional fitting for Gaussian ancestral graph models
  publication-title: UAI
– year: 2022
  ident: br0080
  article-title: On pearl's hierarchy and the foundations of causal inference
  publication-title: Probabilistic and Causal Inference
– volume: vol. 1792
  start-page: 1
  year: 2016
  ident: br1040
  article-title: Measurement Error and Causal Discovery
  publication-title: CEUR Workshop Proceedings
– year: 2020
  ident: br0060
  article-title: Causal Inference: What If
– volume: 56
  start-page: 5168
  year: 2010
  end-page: 5194
  ident: br0740
  article-title: Causal inference using the algorithmic Markov condition
  publication-title: IEEE Trans. Inf. Theory
– year: 2013
  ident: br0900
  article-title: Causal discovery from changes
– year: 2013
  ident: br0650
  article-title: Causal inference in the presence of latent variables and selection bias
– volume: 117
  start-page: 29
  year: 2020
  end-page: 49
  ident: br0510
  article-title: Discovering causal graphs with cycles and latent confounders: an exact branch-and-bound approach
  publication-title: Int. J. Approx. Reason.
– start-page: 15
  year: 2015
  end-page: 31
  ident: br0790
  article-title: Constraint-based learning Bayesian networks using Bayes factor
  publication-title: Workshop on Advanced Methodologies for Bayesian Networks
– volume: 167
  start-page: 1853
  year: 2016
  end-page: 1866
  ident: br1000
  article-title: Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens
  publication-title: Cell
– start-page: 5541
  year: 2018
  end-page: 5550
  ident: br0290
  article-title: Characterizing and learning equivalence classes of causal DAGs under interventions
  publication-title: International Conference on Machine Learning
– volume: 82
  start-page: 669
  year: 1995
  end-page: 688
  ident: br0260
  article-title: Causal diagrams for empirical research
  publication-title: Biometrika
– volume: 53
  start-page: 1
  year: 2021
  end-page: 37
  ident: br0110
  article-title: A survey of learning causality with data: problems and methods
  publication-title: ACM Comput. Surv.
– volume: 40
  year: 2012
  ident: br1140
  article-title: Learning high-dimensional directed acyclic graphs with latent and selection variables
  publication-title: Ann. Stat.
– start-page: 7021
  year: 2017
  end-page: 7031
  ident: br0320
  article-title: Experimental design for learning causal graphs with latent variables
  publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS'17
– volume: 8
  start-page: 203
  year: 2021
  end-page: 231
  ident: br0150
  article-title: Causal discovery in machine learning: theories and applications
  publication-title: J. Dyn. Games
– volume: 11
  start-page: 1643
  year: 2010
  end-page: 1662
  ident: br0810
  article-title: Introduction to causal inference
  publication-title: J. Mach. Learn. Res.
– start-page: 368
  year: 2016
  end-page: 379
  ident: br0430
  article-title: A hybrid causal search algorithm for latent variable models
  publication-title: Conference on Probabilistic Graphical Models
– volume: 21
  year: 2020
  ident: br0280
  article-title: Joint causal inference from multiple contexts
  publication-title: J. Mach. Learn. Res.
– start-page: 9311
  year: 2020
  end-page: 9323
  ident: br0450
  article-title: Distinguishing cause from effect using quantiles: bivariate quantile causal discovery
  publication-title: International Conference on Machine Learning
– volume: 47
  start-page: 1
  year: 2012
  end-page: 26
  ident: br1130
  article-title: Causal inference using graphical models with the R package pcalg
  publication-title: J. Stat. Softw.
– volume: 27
  start-page: 771
  year: 2015
  end-page: 799
  ident: br1050
  article-title: Structural intervention distance for evaluating causal graphs
  publication-title: Neural Comput.
– start-page: 111
  year: 2020
  end-page: 130
  ident: br0380
  article-title: Recent Advances in Semi-Parametric Methods for Causal Discovery
– volume: 19
  start-page: 716
  year: 1974
  end-page: 723
  ident: br0680
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Autom. Control
– volume: 20
  start-page: 217
  year: 2011
  end-page: 240
  ident: br0030
  article-title: Bayesian nonparametric modeling for causal inference
  publication-title: J. Comput. Graph. Stat.
– volume: vol. 138
  start-page: 17
  year: 2020
  end-page: 28
  ident: br1070
  article-title: Tuning causal discovery algorithms
  publication-title: Proceedings of the 10th International Conference on Probabilistic Graphical Models
– year: 2018
  ident: br0870
  article-title: The Book of Why: The New Science of Cause and Effect
– volume: 46
  start-page: D380
  year: 2018
  end-page: D386
  ident: br0990
  article-title: TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions
  publication-title: Nucleic Acids Res.
– year: 2014
  ident: br0930
  article-title: Randomized experimental design for causal graph discovery
  publication-title: Advances in Neural Information Processing Systems, vol. 27
– volume: 17
  start-page: 1103
  year: 2016
  end-page: 1204
  ident: br0950
  article-title: Distinguishing cause from effect using observational data: methods and benchmarks
  publication-title: J. Mach. Learn. Res.
– start-page: 1159
  year: 2020
  end-page: 1168
  ident: br0250
  article-title: Constraint-based causal discovery using partial ancestral graphs in the presence of cycles
  publication-title: Conference on Uncertainty in Artificial Intelligence
– year: 2021
  ident: br0240
  article-title: Foundations of structural causal models with cycles and latent variables
– volume: 6
  start-page: 19
  year: 2018
  end-page: 30
  ident: br0620
  article-title: Constraint-based causal discovery with mixed data
  publication-title: Int. J. Data Sci. Anal.
– year: 2021
  ident: br1020
  article-title: Dream4: Synthetic Expression Data for Gene Regulatory Network Inference from the 2009 DREAM4 Challenge
– year: 2013
  ident: br0480
  article-title: A discovery algorithm for directed cyclic graphs
– volume: 122
  start-page: 109
  year: 2017
  end-page: 117
  ident: br0830
  article-title: Identifiability of nonrecursive structural equation models
  publication-title: Stat. Probab. Lett.
– year: 2017
  ident: br0370
  article-title: Elements of Causal Inference: Foundations and Learning Algorithms
– volume: 24
  start-page: 1432
  year: 2010
  end-page: 1440
  ident: br1060
  article-title: Stability approach to regularization selection (stars) for high dimensional graphical models
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 30
  start-page: 962
  year: 2002
  end-page: 1030
  ident: br0350
  article-title: Ancestral graph Markov models
  publication-title: Ann. Stat.
– start-page: 1
  year: 2016
  end-page: 28
  ident: br0190
  article-title: Causal discovery and inference: concepts and recent methodological advances
  publication-title: Applied Informatics, vol. 3
– start-page: 235
  year: 1994
  end-page: 243
  ident: br0700
  article-title: Learning Gaussian networks
  publication-title: Uncertainty Proceedings 1994
– start-page: 376
  year: 2003
  end-page: 380
  ident: br1110
  article-title: Algorithms for large scale Markov blanket discovery
  publication-title: FLAIRS Conference, vol. 2
– volume: 7
  start-page: 6196
  year: 2021
  end-page: 6204
  ident: br1180
  article-title: Exploring nonlinearity on the CO2 emissions, economic production and energy use nexus: a causal discovery approach
  publication-title: Energy Rep.
– volume: 54
  start-page: 429
  year: 2013
  end-page: 451
  ident: br0400
  article-title: Scaling up the greedy equivalence search algorithm by constraining the search space of equivalence classes
  publication-title: Int. J. Approx. Reason.
– volume: vol. R5
  start-page: 214
  year: 2005
  end-page: 221
  ident: br0890
  article-title: Probabilistic soft interventions in conditional Gaussian networks
  publication-title: Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics
– volume: 9
  year: 2008
  ident: br0880
  article-title: Complete identification methods for the causal hierarchy
  publication-title: J. Mach. Learn. Res.
– volume: 308
  start-page: 523
  year: 2005
  end-page: 529
  ident: br0970
  article-title: Causal protein-signaling networks derived from multiparameter single-cell data
  publication-title: Science
– volume: 77
  start-page: 1
  year: 2017
  end-page: 20
  ident: br1120
  article-title: Bayesian network constraint-based structure learning algorithms: parallel and optimized implementations in the bnlearn R package
  publication-title: J. Stat. Softw.
– volume: 16
  start-page: 2147
  year: 2015
  end-page: 2205
  ident: br1250
  article-title: Constraint-based causal discovery from multiple interventions over overlapping variable sets
  publication-title: J. Mach. Learn. Res.
– year: 2021
  ident: br1270
  article-title: Federated causal discovery
– year: 2013
  ident: br0840
  article-title: Directed cyclic graphical representations of feedback models
– year: 2020
  ident: br0540
  article-title: Permutation-based causal structure learning with unknown intervention targets
– start-page: 461
  year: 1978
  end-page: 464
  ident: br0690
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
– volume: 161
  start-page: 1187
  year: 2015
  end-page: 1201
  ident: br0980
  article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
  publication-title: Cell
– year: 2020
  ident: br0960
  article-title: CausalWorld: a robotic manipulation benchmark for causal structure and transfer learning
– start-page: e1449
  year: 2022
  ident: br0100
  article-title: Methods and Tools for Causal Discovery and Causal Inference
– year: 2015
  ident: br0560
  article-title: Backshift: learning causal cyclic graphs from unknown shift interventions
  publication-title: Advances in Neural Information Processing Systems, vol. 28
– volume: 35
  start-page: 1
  year: 2010
  end-page: 22
  ident: br1100
  article-title: Learning Bayesian networks with the bnlearn R package
  publication-title: J. Stat. Softw.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 12
  ident: br1190
  article-title: Challenges and opportunities with causal discovery algorithms: application to Alzheimer's pathophysiology
  publication-title: Sci. Rep.
– year: 2021
  ident: br1230
  article-title: Multiple imputation and test-wise deletion for causal discovery with incomplete cohort data
– year: 2017
  ident: br0330
  article-title: Markov properties for graphical models with cycles and latent variables
– volume: 109
  start-page: 612
  year: 2021
  end-page: 634
  ident: br0160
  article-title: Toward causal representation learning
  publication-title: Proc. IEEE
– start-page: 278
  year: 2001
  end-page: 285
  ident: br1150
  article-title: An anytime algorithm for causal inference
  publication-title: International Workshop on Artificial Intelligence and Statistics
– volume: 10
  start-page: 1
  year: 2019
  end-page: 15
  ident: br0050
  article-title: Review of causal discovery methods based on graphical models
  publication-title: Front. Genet.
– year: 1997
  ident: br0720
  article-title: Graphical Models: Selecting causal and statistical models
– year: 2021
  ident: br0940
  article-title: Consistency guarantees for greedy permutation-based causal inference algorithms
– volume: 13
  year: 2018
  ident: br0130
  article-title: Causal discovery algorithms: a practical guide
  publication-title: Philos. Compass
– year: 2016
  ident: br0090
  article-title: Causal Inference in Statistics: A Primer
– year: 2020
  ident: br0660
  article-title: Generalized transportability: synthesis of experiments from heterogeneous domains
  publication-title: Proceedings of the 34th AAAI Conference on Artificial Intelligence
– volume: 13
  start-page: 2409
  year: 2012
  end-page: 2464
  ident: br0530
  article-title: Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs
  publication-title: J. Mach. Learn. Res.
– year: 2017
  ident: br0860
  article-title: Ancestral causal inference
– year: 2018
  ident: br1160
  article-title: TETRAD—a toolbox for causal discovery
  publication-title: 8th International Workshop on Climate Informatics
– year: 2018
  ident: br0170
  article-title: Bayesian networks
  publication-title: Encyclopedia of Social Network Analysis and Mining
– start-page: 142
  year: 2017
  end-page: 157
  ident: br1170
  article-title: Discovery of causal models that contain latent variables through Bayesian scoring of independence constraints
  publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases
– year: 2021
  ident: br0220
  article-title: Paralingam: parallel causal structure learning for linear non-Gaussian acyclic models
– start-page: 365
  year: 2020
  end-page: 376
  ident: br0570
  article-title: Learning optimal cyclic causal graphs from interventional data
  publication-title: International Conference on Probabilistic Graphical Models
– year: 2021
  ident: br0140
  article-title: D'ya like DAGs? A survey on structure learning and causal discovery
  publication-title: ACM Comput. Surv.
– start-page: 438
  year: 2016
  end-page: 448
  ident: br0710
  article-title: An empirical-Bayes score for discrete Bayesian networks
  publication-title: Conference on Probabilistic Graphical Models
– year: 2013
  ident: br0310
  article-title: Causal inference and causal explanation with background knowledge
– volume: 3
  start-page: 121
  year: 2017
  end-page: 129
  ident: br0410
  article-title: A million variables and more: the fast greedy equivalence search algorithm for learning high-dimensional graphical causal models, with an application to functional magnetic resonance images
  publication-title: Int. J. Data Sci. Anal.
– volume: 86
  start-page: 4
  year: 2004
  end-page: 29
  ident: br0010
  article-title: Nonparametric estimation of average treatment effects under exogeneity: a review
  publication-title: Rev. Econ. Stat.
– year: 2021
  ident: br0180
  article-title: Causal inference for process understanding in Earth sciences
– year: 2018
  ident: br0520
  article-title: Constraint-based causal discovery for non-linear structural causal models with cycles and latent confounders
– year: 2012
  ident: br0920
  article-title: On the number of experiments sufficient and in the worst case necessary to identify all causal relations among n variables
– volume: 6
  start-page: 47
  year: 2018
  end-page: 62
  ident: br1220
  article-title: Fast causal inference with non-random missingness by test-wise deletion
  publication-title: Int. J. Data Sci. Anal.
– year: 2017
  ident: br0500
  article-title: A core-guided approach to learning optimal causal graphs
  publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI 2017), International Joint Conferences on Artificial Intelligence
– start-page: 1163
  year: 2010
  end-page: 1168
  ident: br1260
  article-title: Causal discovery from streaming features
  publication-title: 2010 IEEE International Conference on Data Mining
– volume: 21
  start-page: 1
  year: 2020
  end-page: 53
  ident: br1240
  article-title: Causal discovery from heterogeneous/nonstationary data
  publication-title: J. Mach. Learn. Res.
– start-page: 4
  year: 2019
  end-page: 21
  ident: br0610
  article-title: Learning high-dimensional directed acyclic graphs with mixed data-types
  publication-title: The 2019 ACM SIGKDD Workshop on Causal Discovery
– volume: 16
  start-page: 229
  year: 2009
  end-page: 239
  ident: br1030
  article-title: Generating realistic in silico gene networks for performance assessment of reverse engineering methods
  publication-title: J. Comput. Biol.
– year: 2000
  ident: br0070
  article-title: Causation, Prediction, and Search
– year: 2012
  ident: br0780
  article-title: Local structure discovery in Bayesian networks
  publication-title: UAI
– volume: 43
  start-page: 91
  year: 2019
  end-page: 97
  ident: br1210
  article-title: Causal network modeling of the determinants of drinking behavior in comorbid alcohol use and anxiety disorder
  publication-title: Alcohol. Clin. Exp. Res.
– start-page: 1
  year: 2021
  end-page: 9
  ident: br1200
  article-title: Causal pathways to social and occupational functioning in the first episode of schizophrenia: uncovering unmet treatment needs
  publication-title: Psychol. Med.
– ident: 10.1016/j.ijar.2022.09.004_br0840
– year: 2018
  ident: 10.1016/j.ijar.2022.09.004_br0870
– ident: 10.1016/j.ijar.2022.09.004_br0470
– year: 2015
  ident: 10.1016/j.ijar.2022.09.004_br0560
  article-title: Backshift: learning causal cyclic graphs from unknown shift interventions
– volume: 41
  start-page: 65
  year: 2014
  ident: 10.1016/j.ijar.2022.09.004_br0230
  article-title: Lingam: non-Gaussian methods for estimating causal structures
  publication-title: Behaviormetrika
  doi: 10.2333/bhmk.41.65
– year: 2006
  ident: 10.1016/j.ijar.2022.09.004_br0460
  article-title: Estimation of linear, non-Gaussian causal models in the presence of confounding latent variables
– volume: 46
  start-page: D380
  year: 2018
  ident: 10.1016/j.ijar.2022.09.004_br0990
  article-title: TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1013
– start-page: e1449
  year: 2022
  ident: 10.1016/j.ijar.2022.09.004_br0100
– year: 2012
  ident: 10.1016/j.ijar.2022.09.004_br0590
– start-page: 4
  year: 2019
  ident: 10.1016/j.ijar.2022.09.004_br0610
  article-title: Learning high-dimensional directed acyclic graphs with mixed data-types
– start-page: 461
  year: 1978
  ident: 10.1016/j.ijar.2022.09.004_br0690
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
– start-page: 5541
  year: 2018
  ident: 10.1016/j.ijar.2022.09.004_br0290
  article-title: Characterizing and learning equivalence classes of causal DAGs under interventions
– year: 2020
  ident: 10.1016/j.ijar.2022.09.004_br0060
– start-page: 9311
  year: 2020
  ident: 10.1016/j.ijar.2022.09.004_br0450
  article-title: Distinguishing cause from effect using quantiles: bivariate quantile causal discovery
– year: 2008
  ident: 10.1016/j.ijar.2022.09.004_br0490
  article-title: Discovering cyclic causal models by independent components analysis
– volume: 21
  year: 2020
  ident: 10.1016/j.ijar.2022.09.004_br0280
  article-title: Joint causal inference from multiple contexts
  publication-title: J. Mach. Learn. Res.
– year: 1997
  ident: 10.1016/j.ijar.2022.09.004_br0720
– volume: 54
  start-page: 429
  year: 2013
  ident: 10.1016/j.ijar.2022.09.004_br0400
  article-title: Scaling up the greedy equivalence search algorithm by constraining the search space of equivalence classes
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2012.09.004
– start-page: 1
  year: 2016
  ident: 10.1016/j.ijar.2022.09.004_br0190
  article-title: Causal discovery and inference: concepts and recent methodological advances
– start-page: 365
  year: 2020
  ident: 10.1016/j.ijar.2022.09.004_br0570
  article-title: Learning optimal cyclic causal graphs from interventional data
– start-page: 255
  year: 1990
  ident: 10.1016/j.ijar.2022.09.004_br0270
  article-title: Equivalence and synthesis of causal models
– year: 2004
  ident: 10.1016/j.ijar.2022.09.004_br0360
  article-title: Iterative conditional fitting for Gaussian ancestral graph models
– ident: 10.1016/j.ijar.2022.09.004_br0960
– volume: 53
  start-page: 1
  year: 2021
  ident: 10.1016/j.ijar.2022.09.004_br0110
  article-title: A survey of learning causality with data: problems and methods
  publication-title: ACM Comput. Surv.
– volume: 7
  start-page: 6196
  year: 2021
  ident: 10.1016/j.ijar.2022.09.004_br1180
  article-title: Exploring nonlinearity on the CO2 emissions, economic production and energy use nexus: a causal discovery approach
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.09.026
– year: 2018
  ident: 10.1016/j.ijar.2022.09.004_br0210
  article-title: From deterministic odes to dynamic structural causal models
– volume: 19
  start-page: 716
  year: 1974
  ident: 10.1016/j.ijar.2022.09.004_br0680
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1974.1100705
– start-page: 9551
  year: 2020
  ident: 10.1016/j.ijar.2022.09.004_br0550
  article-title: Causal discovery from soft interventions with unknown targets: characterization and learning
– volume: 17
  start-page: 1103
  year: 2016
  ident: 10.1016/j.ijar.2022.09.004_br0950
  article-title: Distinguishing cause from effect using observational data: methods and benchmarks
  publication-title: J. Mach. Learn. Res.
– volume: 109
  start-page: 612
  year: 2021
  ident: 10.1016/j.ijar.2022.09.004_br0160
  article-title: Toward causal representation learning
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2021.3058954
– ident: 10.1016/j.ijar.2022.09.004_br0180
– start-page: 1
  year: 2021
  ident: 10.1016/j.ijar.2022.09.004_br1200
  article-title: Causal pathways to social and occupational functioning in the first episode of schizophrenia: uncovering unmet treatment needs
  publication-title: Psychol. Med.
– start-page: 340
  year: 2014
  ident: 10.1016/j.ijar.2022.09.004_br0850
  article-title: Constraint-based causal discovery: conflict resolution with answer set programming
– volume: 13
  start-page: 2409
  year: 2012
  ident: 10.1016/j.ijar.2022.09.004_br0530
  article-title: Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 203
  year: 2021
  ident: 10.1016/j.ijar.2022.09.004_br0150
  article-title: Causal discovery in machine learning: theories and applications
  publication-title: J. Dyn. Games
  doi: 10.3934/jdg.2021008
– start-page: 278
  year: 2001
  ident: 10.1016/j.ijar.2022.09.004_br1150
  article-title: An anytime algorithm for causal inference
– ident: 10.1016/j.ijar.2022.09.004_br0900
– year: 2018
  ident: 10.1016/j.ijar.2022.09.004_br0170
  article-title: Bayesian networks
– ident: 10.1016/j.ijar.2022.09.004_br0330
– volume: 23
  start-page: 1687
  year: 2010
  ident: 10.1016/j.ijar.2022.09.004_br0750
  article-title: Probabilistic latent variable models for distinguishing between cause and effect
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1159
  year: 2020
  ident: 10.1016/j.ijar.2022.09.004_br0250
  article-title: Constraint-based causal discovery using partial ancestral graphs in the presence of cycles
– ident: 10.1016/j.ijar.2022.09.004_br0220
– volume: 11
  start-page: 1643
  year: 2010
  ident: 10.1016/j.ijar.2022.09.004_br0810
  article-title: Introduction to causal inference
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.ijar.2022.09.004_br0310
– volume: 115
  start-page: 235
  year: 2019
  ident: 10.1016/j.ijar.2022.09.004_br0800
  article-title: Who learns better Bayesian network structures: accuracy and speed of structure learning algorithms
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2019.10.003
– volume: vol. R5
  start-page: 214
  year: 2005
  ident: 10.1016/j.ijar.2022.09.004_br0890
  article-title: Probabilistic soft interventions in conditional Gaussian networks
– volume: vol. 1792
  start-page: 1
  year: 2016
  ident: 10.1016/j.ijar.2022.09.004_br1040
  article-title: Measurement Error and Causal Discovery
– volume: 3
  start-page: 507
  year: 2002
  ident: 10.1016/j.ijar.2022.09.004_br0670
  article-title: Optimal structure identification with greedy search
  publication-title: J. Mach. Learn. Res.
– start-page: 376
  year: 2003
  ident: 10.1016/j.ijar.2022.09.004_br1110
  article-title: Algorithms for large scale Markov blanket discovery
– volume: 35
  start-page: 1
  year: 2010
  ident: 10.1016/j.ijar.2022.09.004_br1100
  article-title: Learning Bayesian networks with the bnlearn R package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v035.i03
– start-page: 438
  year: 2016
  ident: 10.1016/j.ijar.2022.09.004_br0710
  article-title: An empirical-Bayes score for discrete Bayesian networks
– year: 2012
  ident: 10.1016/j.ijar.2022.09.004_br0780
  article-title: Local structure discovery in Bayesian networks
– volume: 16
  start-page: 229
  year: 2009
  ident: 10.1016/j.ijar.2022.09.004_br1030
  article-title: Generating realistic in silico gene networks for performance assessment of reverse engineering methods
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2008.09TT
– start-page: 235
  year: 1994
  ident: 10.1016/j.ijar.2022.09.004_br0700
  article-title: Learning Gaussian networks
– ident: 10.1016/j.ijar.2022.09.004_br0940
– volume: 47
  start-page: 1
  year: 2012
  ident: 10.1016/j.ijar.2022.09.004_br1130
  article-title: Causal inference using graphical models with the R package pcalg
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v047.i11
– year: 2022
  ident: 10.1016/j.ijar.2022.09.004_br0080
  article-title: On pearl's hierarchy and the foundations of causal inference
– volume: 13
  year: 2018
  ident: 10.1016/j.ijar.2022.09.004_br0130
  article-title: Causal discovery algorithms: a practical guide
  publication-title: Philos. Compass
  doi: 10.1111/phc3.12470
– volume: 27
  start-page: 771
  year: 2015
  ident: 10.1016/j.ijar.2022.09.004_br1050
  article-title: Structural intervention distance for evaluating causal graphs
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00708
– volume: 86
  start-page: 4
  year: 2004
  ident: 10.1016/j.ijar.2022.09.004_br0010
  article-title: Nonparametric estimation of average treatment effects under exogeneity: a review
  publication-title: Rev. Econ. Stat.
  doi: 10.1162/003465304323023651
– volume: 14
  start-page: 465
  year: 1978
  ident: 10.1016/j.ijar.2022.09.004_br0730
  article-title: Modeling by shortest data description
  publication-title: Automatica
  doi: 10.1016/0005-1098(78)90005-5
– volume: 36
  start-page: 287
  year: 1994
  ident: 10.1016/j.ijar.2022.09.004_br0760
  article-title: Independent component analysis, a new concept?
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(94)90029-9
– ident: 10.1016/j.ijar.2022.09.004_br1230
– year: 2017
  ident: 10.1016/j.ijar.2022.09.004_br0500
  article-title: A core-guided approach to learning optimal causal graphs
– year: 2009
  ident: 10.1016/j.ijar.2022.09.004_br0600
– start-page: 1
  year: 2021
  ident: 10.1016/j.ijar.2022.09.004_br0120
  article-title: Causal inference for time series analysis: problems, methods and evaluation
  publication-title: Knowl. Inf. Syst.
– volume: 167
  start-page: 1853
  year: 2016
  ident: 10.1016/j.ijar.2022.09.004_br1000
  article-title: Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.038
– year: 2000
  ident: 10.1016/j.ijar.2022.09.004_br0070
– ident: 10.1016/j.ijar.2022.09.004_br0390
– volume: 117
  start-page: 29
  year: 2020
  ident: 10.1016/j.ijar.2022.09.004_br0510
  article-title: Discovering causal graphs with cycles and latent confounders: an exact branch-and-bound approach
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2019.10.009
– volume: 381
  start-page: 1371
  year: 2013
  ident: 10.1016/j.ijar.2022.09.004_br0020
  article-title: Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)62129-1
– ident: 10.1016/j.ijar.2022.09.004_br0200
– volume: 30
  start-page: 962
  year: 2002
  ident: 10.1016/j.ijar.2022.09.004_br0350
  article-title: Ancestral graph Markov models
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1031689015
– year: 2018
  ident: 10.1016/j.ijar.2022.09.004_br0420
  article-title: High-dimensional consistency in score-based and hybrid structure learning
  publication-title: Ann. Stat.
  doi: 10.1214/17-AOS1654
– volume: 122
  start-page: 109
  year: 2017
  ident: 10.1016/j.ijar.2022.09.004_br0830
  article-title: Identifiability of nonrecursive structural equation models
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/j.spl.2016.11.010
– volume: 20
  start-page: 217
  year: 2011
  ident: 10.1016/j.ijar.2022.09.004_br0030
  article-title: Bayesian nonparametric modeling for causal inference
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/jcgs.2010.08162
– year: 2017
  ident: 10.1016/j.ijar.2022.09.004_br0370
– ident: 10.1016/j.ijar.2022.09.004_br0480
– ident: 10.1016/j.ijar.2022.09.004_br0920
– ident: 10.1016/j.ijar.2022.09.004_br0240
– start-page: 1163
  year: 2010
  ident: 10.1016/j.ijar.2022.09.004_br1260
  article-title: Causal discovery from streaming features
– volume: 12
  year: 2020
  ident: 10.1016/j.ijar.2022.09.004_br0640
  article-title: On nonparametric conditional independence tests for continuous variables
  publication-title: Wiley Interdiscip. Rev.: Comput. Stat.
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.ijar.2022.09.004_br1010
  article-title: SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-7-43
– volume: 161
  start-page: 1187
  year: 2015
  ident: 10.1016/j.ijar.2022.09.004_br0980
  article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.044
– start-page: 368
  year: 2016
  ident: 10.1016/j.ijar.2022.09.004_br0430
  article-title: A hybrid causal search algorithm for latent variable models
– year: 1984
  ident: 10.1016/j.ijar.2022.09.004_br0820
– volume: 6
  start-page: 47
  year: 2018
  ident: 10.1016/j.ijar.2022.09.004_br1220
  article-title: Fast causal inference with non-random missingness by test-wise deletion
  publication-title: Int. J. Data Sci. Anal.
  doi: 10.1007/s41060-017-0094-6
– ident: 10.1016/j.ijar.2022.09.004_br0540
– year: 2018
  ident: 10.1016/j.ijar.2022.09.004_br0040
  article-title: Theoretical impediments to machine learning with seven sparks from the causal revolution
– volume: vol. 138
  start-page: 17
  year: 2020
  ident: 10.1016/j.ijar.2022.09.004_br1070
  article-title: Tuning causal discovery algorithms
– ident: 10.1016/j.ijar.2022.09.004_br1270
– year: 2016
  ident: 10.1016/j.ijar.2022.09.004_br0090
– volume: 16
  start-page: 2147
  year: 2015
  ident: 10.1016/j.ijar.2022.09.004_br1250
  article-title: Constraint-based causal discovery from multiple interventions over overlapping variable sets
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.ijar.2022.09.004_br1080
– volume: 43
  start-page: 91
  year: 2019
  ident: 10.1016/j.ijar.2022.09.004_br1210
  article-title: Causal network modeling of the determinants of drinking behavior in comorbid alcohol use and anxiety disorder
  publication-title: Alcohol. Clin. Exp. Res.
  doi: 10.1111/acer.13914
– start-page: 111
  year: 2020
  ident: 10.1016/j.ijar.2022.09.004_br0380
– volume: 24
  start-page: 1432
  issue: 2
  year: 2010
  ident: 10.1016/j.ijar.2022.09.004_br1060
  article-title: Stability approach to regularization selection (stars) for high dimensional graphical models
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.ijar.2022.09.004_br0050
  article-title: Review of causal discovery methods based on graphical models
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.00524
– volume: 16
  start-page: 1483
  year: 2019
  ident: 10.1016/j.ijar.2022.09.004_br0630
  article-title: A fast PC algorithm for high dimensional causal discovery with multi-core pcs
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2016.2591526
– year: 2018
  ident: 10.1016/j.ijar.2022.09.004_br1160
  article-title: TETRAD—a toolbox for causal discovery
– ident: 10.1016/j.ijar.2022.09.004_br0520
– start-page: 7021
  year: 2017
  ident: 10.1016/j.ijar.2022.09.004_br0320
  article-title: Experimental design for learning causal graphs with latent variables
– volume: 308
  start-page: 523
  year: 2005
  ident: 10.1016/j.ijar.2022.09.004_br0970
  article-title: Causal protein-signaling networks derived from multiparameter single-cell data
  publication-title: Science
  doi: 10.1126/science.1105809
– volume: 25
  start-page: 505
  year: 1997
  ident: 10.1016/j.ijar.2022.09.004_br0300
  article-title: A characterization of Markov equivalence classes for acyclic digraphs
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1031833662
– volume: 65
  start-page: 31
  year: 2006
  ident: 10.1016/j.ijar.2022.09.004_br0770
  article-title: The max-min hill-climbing Bayesian network structure learning algorithm
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-6889-7
– volume: 3
  start-page: 121
  year: 2017
  ident: 10.1016/j.ijar.2022.09.004_br0410
  article-title: A million variables and more: the fast greedy equivalence search algorithm for learning high-dimensional graphical causal models, with an application to functional magnetic resonance images
  publication-title: Int. J. Data Sci. Anal.
  doi: 10.1007/s41060-016-0032-z
– year: 2014
  ident: 10.1016/j.ijar.2022.09.004_br0930
  article-title: Randomized experimental design for causal graph discovery
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.ijar.2022.09.004_br1190
  article-title: Challenges and opportunities with causal discovery algorithms: application to Alzheimer's pathophysiology
  publication-title: Sci. Rep.
– volume: 21
  start-page: 1
  year: 2020
  ident: 10.1016/j.ijar.2022.09.004_br1240
  article-title: Causal discovery from heterogeneous/nonstationary data
  publication-title: J. Mach. Learn. Res.
– year: 2019
  ident: 10.1016/j.ijar.2022.09.004_br0910
  article-title: Characterization and learning of causal graphs with latent variables from soft interventions
– ident: 10.1016/j.ijar.2022.09.004_br0580
– volume: 40
  year: 2012
  ident: 10.1016/j.ijar.2022.09.004_br1140
  article-title: Learning high-dimensional directed acyclic graphs with latent and selection variables
  publication-title: Ann. Stat.
  doi: 10.1214/11-AOS940
– year: 2020
  ident: 10.1016/j.ijar.2022.09.004_br0660
  article-title: Generalized transportability: synthesis of experiments from heterogeneous domains
– volume: 172
  start-page: 1873
  year: 2008
  ident: 10.1016/j.ijar.2022.09.004_br0340
  article-title: On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2008.08.001
– ident: 10.1016/j.ijar.2022.09.004_br0860
– volume: 77
  start-page: 1
  year: 2017
  ident: 10.1016/j.ijar.2022.09.004_br1120
  article-title: Bayesian network constraint-based structure learning algorithms: parallel and optimized implementations in the bnlearn R package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v077.i02
– volume: 9
  year: 2008
  ident: 10.1016/j.ijar.2022.09.004_br0880
  article-title: Complete identification methods for the causal hierarchy
  publication-title: J. Mach. Learn. Res.
– volume: 6
  start-page: 19
  year: 2018
  ident: 10.1016/j.ijar.2022.09.004_br0620
  article-title: Constraint-based causal discovery with mixed data
  publication-title: Int. J. Data Sci. Anal.
  doi: 10.1007/s41060-018-0097-y
– volume: 56
  start-page: 5168
  year: 2010
  ident: 10.1016/j.ijar.2022.09.004_br0740
  article-title: Causal inference using the algorithmic Markov condition
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2010.2060095
– year: 2021
  ident: 10.1016/j.ijar.2022.09.004_br1020
– year: 2021
  ident: 10.1016/j.ijar.2022.09.004_br0140
  article-title: D'ya like DAGs? A survey on structure learning and causal discovery
  publication-title: ACM Comput. Surv.
– volume: 42
  start-page: 2526
  year: 2014
  ident: 10.1016/j.ijar.2022.09.004_br1090
  article-title: CAM: causal additive models, high-dimensional order search and penalized regression
  publication-title: Ann. Stat.
  doi: 10.1214/14-AOS1260
– start-page: 15
  year: 2015
  ident: 10.1016/j.ijar.2022.09.004_br0790
  article-title: Constraint-based learning Bayesian networks using Bayes factor
– volume: 82
  start-page: 669
  year: 1995
  ident: 10.1016/j.ijar.2022.09.004_br0260
  article-title: Causal diagrams for empirical research
  publication-title: Biometrika
  doi: 10.1093/biomet/82.4.669
– ident: 10.1016/j.ijar.2022.09.004_br0650
– start-page: 142
  year: 2017
  ident: 10.1016/j.ijar.2022.09.004_br1170
  article-title: Discovery of causal models that contain latent variables through Bayesian scoring of independence constraints
– volume: 32
  start-page: 2671
  year: 2018
  ident: 10.1016/j.ijar.2022.09.004_br0440
  article-title: Causal discovery from discrete data using hidden compact representation
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0006748
Score 2.6225572
Snippet Understanding the laws that govern a phenomenon is the core of scientific progress. This is especially true when the goal is to model the interplay between...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101
SubjectTerms Causal discovery
Causal models
Causality
Structural learning
Title A Survey on Causal Discovery: Theory and Practice
URI https://dx.doi.org/10.1016/j.ijar.2022.09.004
Volume 151
WOSCitedRecordID wos000876728600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4731
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006748
  issn: 0888-613X
  databaseCode: AIEXJ
  dateStart: 20211207
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbQxgMvMNgQYxvyA28ok2Pnh723auoECE08DNS3yHYdKaVkU9NNhb9-Z5-TdYNN7IGXqIpsp_Vdzt9d774j5H3NajB6WZ5klhdJphhLjLQiEcxNAZ_YwoVswu9fytNTOZmorzFPtwvtBMq2lauVuvivooZ7IGxfOvsIcQ-Lwg34DEKHK4gdrv8k-BEYg8UVvOog12N92QW71lmfqvkr5lj4_9WxSgBLpNYR6u0Q4RqxRGAfXzWAcH2nFd2FOO4Qd9ZtjNDOQ17tELv9_aNZND-xBns8b-ohouOrV8KME23i-Bh84HwtkaO3URK8z9DS98agRgpZNIlpHI-na4rxjT8MN8YQZofNTHuWVs4D-yx2Jr7Nkn3n9BpyCvt0tVnl16j8GhVTVSCL3eRlrsDmbY4-jSefh5PaN1pBLwN_RCyqwvy_u9_k78BlDYycbZHn0YugI5T-S_LEta_Ii75DB40Ge5ukI4rKQM9bispAB2U4oqgKFFSB9qqwQ76djM-OPyaxSUZiBWPLRBvhUoBZsihN6VjBual1Jhz4IQqwvRJG6kyndVnYqckEd4VNrWK51vlU1kyI12SjPW_dG0KVAOcgd7qQymRFXivP9lcDgDHTTCrLd0na70BlI4O8b2Qyr-7f-13yYZhzgfwpD47O-42tIgJEZFeBnjww7-2jnrJHnt3o8j7ZWC4u3QF5aq-WTbd4F5XkGsQGecg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Causal+Discovery%3A+Theory+and+Practice&rft.jtitle=International+journal+of+approximate+reasoning&rft.au=Zanga%2C+Alessio&rft.au=Ozkirimli%2C+Elif&rft.au=Stella%2C+Fabio&rft.date=2022-12-01&rft.issn=0888-613X&rft.volume=151&rft.spage=101&rft.epage=129&rft_id=info:doi/10.1016%2Fj.ijar.2022.09.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijar_2022_09_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-613X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-613X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-613X&client=summon