Constrained multi-objective state transition algorithm via adaptive bidirectional coevolution

Constrained multi-objective optimization problems (CMOPs) involve optimizing multiple conflicting objectives subject to at least one constraint. These constraints often divide the search space into various infeasible regions and narrow or disconnected feasible regions. Most existing constrained mult...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 266; s. 126073
Hlavní autoři: Sun, Yan, Zhou, Xiaojun, Yang, Chunhua, Huang, Tingwen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 25.03.2025
Témata:
ISSN:0957-4174
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Constrained multi-objective optimization problems (CMOPs) involve optimizing multiple conflicting objectives subject to at least one constraint. These constraints often divide the search space into various infeasible regions and narrow or disconnected feasible regions. Most existing constrained multi-objective evolutionary algorithms struggle with imbalanced exploration between feasible and infeasible regions and exhibit poor search capabilities, resulting in populations becoming trapped in locally optimal feasible or infeasible areas. To overcome this limitation, we propose a novel constrained multi-objective state transition algorithm via adaptive bidirectional coevolution (CMOSTA). This algorithm comprises a main population (MP) and a cooperative population (CP), facilitating balanced exploration of both feasible and infeasible regions. CMOSTA adapts environmental selection strategies based on the proportion and distribution of feasible solutions within the MP, promoting efficient information sharing and avoiding unnecessary searches. Additionally, a dynamic ɛ-constraint relaxation strategy is put forward for the MP to prevent stagnation in locally feasible areas. A mating selection approach combining binary tournament and dynamic ɛ-constrained dominance is developed, followed by state transformation operators to generate candidate solutions with both global and local search capabilities. The effectiveness of CMOSTA is verified through 62 benchmark tests and an industrial case study on optimal copper removal, showing superior performance compared to ten well-established constrained multi-objective evolutionary algorithms. [Display omitted] •Propose a coevolution-based constrained multi-objective state transition algorithm.•Adapt environmental strategies based on real-time status of feasible solutions.•Present a dynamic ɛ-relaxation strategy to prevent local stagnation.•Employ binary tournament with ɛ-dominance for mating selection.•Adopt state transformation operators to generate high-quality candidate solutions.
AbstractList Constrained multi-objective optimization problems (CMOPs) involve optimizing multiple conflicting objectives subject to at least one constraint. These constraints often divide the search space into various infeasible regions and narrow or disconnected feasible regions. Most existing constrained multi-objective evolutionary algorithms struggle with imbalanced exploration between feasible and infeasible regions and exhibit poor search capabilities, resulting in populations becoming trapped in locally optimal feasible or infeasible areas. To overcome this limitation, we propose a novel constrained multi-objective state transition algorithm via adaptive bidirectional coevolution (CMOSTA). This algorithm comprises a main population (MP) and a cooperative population (CP), facilitating balanced exploration of both feasible and infeasible regions. CMOSTA adapts environmental selection strategies based on the proportion and distribution of feasible solutions within the MP, promoting efficient information sharing and avoiding unnecessary searches. Additionally, a dynamic ɛ-constraint relaxation strategy is put forward for the MP to prevent stagnation in locally feasible areas. A mating selection approach combining binary tournament and dynamic ɛ-constrained dominance is developed, followed by state transformation operators to generate candidate solutions with both global and local search capabilities. The effectiveness of CMOSTA is verified through 62 benchmark tests and an industrial case study on optimal copper removal, showing superior performance compared to ten well-established constrained multi-objective evolutionary algorithms. [Display omitted] •Propose a coevolution-based constrained multi-objective state transition algorithm.•Adapt environmental strategies based on real-time status of feasible solutions.•Present a dynamic ɛ-relaxation strategy to prevent local stagnation.•Employ binary tournament with ɛ-dominance for mating selection.•Adopt state transformation operators to generate high-quality candidate solutions.
ArticleNumber 126073
Author Huang, Tingwen
Yang, Chunhua
Sun, Yan
Zhou, Xiaojun
Author_xml – sequence: 1
  givenname: Yan
  orcidid: 0009-0008-3699-4883
  surname: Sun
  fullname: Sun, Yan
  email: sun_yan@csu.edu.cn
  organization: School of Automation, Central South University, Changsha 410083, China
– sequence: 2
  givenname: Xiaojun
  orcidid: 0000-0002-6367-696X
  surname: Zhou
  fullname: Zhou, Xiaojun
  email: michael.x.zhou@csu.edu.cn
  organization: School of Automation, Central South University, Changsha 410083, China
– sequence: 3
  givenname: Chunhua
  orcidid: 0000-0003-2550-1509
  surname: Yang
  fullname: Yang, Chunhua
  email: ychh@csu.edu.cn
  organization: School of Automation, Central South University, Changsha 410083, China
– sequence: 4
  givenname: Tingwen
  orcidid: 0000-0001-9610-846X
  surname: Huang
  fullname: Huang, Tingwen
  email: tingwen.huang@qatar.tamu.edu
  organization: Texas A & M University at Qatar, Doha 23874, Qatar
BookMark eNp9kM1OwzAMgHMYEtvgBTj1BVqc9CedxAVN_EmTuMARRW7iQqoumZKuiLenZZw44Itl2Z9lfyu2cN4RY1ccMg68uu4yip-YCRBFxkUFMl-wJWxKmRZcFudsFWMHwCWAXLK3rXdxCGgdmWR_7Aeb-qYjPdiRkjjgQMnUddEO1rsE-3cf7PCxT0aLCRo8_Mw11tgwM95hn2hPo--Pc3XBzlrsI13-5jV7vb972T6mu-eHp-3tLtU5wJDiFGDyWvASZE2kBWFetyB00RDX1GLZYFlUEuuWqOKbBowohalNgVIC5msmTnt18DEGatUh2D2GL8VBzVJUp2YpapaiTlImqP4DaTs9PJ09--j_R29OKE1PjZaCitqS03TyoIy3_-HfQyWFUA
CitedBy_id crossref_primary_10_1007_s44196_025_00830_7
Cites_doi 10.1016/j.asoc.2022.108553
10.1109/TCYB.2020.3031642
10.1109/TEVC.2007.892759
10.1109/TMAG.2004.825006
10.1109/TEVC.2020.2981949
10.1016/j.eswa.2022.119258
10.1007/s00500-019-03794-x
10.1016/j.hydromet.2017.08.007
10.1016/j.eswa.2023.122119
10.1016/j.hydromet.2018.03.021
10.1080/10556788.2020.1808977
10.1145/3510426
10.1016/j.eswa.2015.10.039
10.1109/TEVC.2020.3011829
10.1109/TCYB.2022.3163759
10.3390/math8010007
10.1145/508791.508907
10.1109/TCYB.2021.3056176
10.1109/TSMC.2022.3171076
10.1016/j.eswa.2023.122961
10.1016/j.ins.2021.01.029
10.1109/4235.873238
10.1016/j.cej.2015.07.094
10.1109/TEVC.2020.3004012
10.1016/j.swevo.2019.100619
10.1109/TEVC.2021.3066301
10.1109/TEVC.2018.2855411
10.1016/j.asoc.2017.06.053
10.1016/j.knosys.2021.107131
10.1007/s40747-022-00851-1
10.1007/s40747-020-00249-x
10.1109/TEVC.2013.2281534
10.1162/EVCO_a_00009
10.1109/TEVC.2019.2894743
10.3934/jimo.2012.8.1039
10.1109/TEVC.2013.2281535
10.1016/j.swevo.2018.08.017
10.1016/j.swevo.2024.101584
10.1016/j.energy.2022.125785
10.1016/j.swevo.2024.101581
10.1007/s11831-022-09859-9
10.1109/4235.996017
10.1109/MCI.2017.2742868
10.1109/CEC.2006.1688283
10.1016/j.knosys.2021.107653
10.1016/j.asoc.2022.109613
10.1109/TEVC.2019.2896967
10.1109/TEVC.2011.2161872
10.1016/j.asoc.2023.111172
10.1109/TEVC.2022.3155533
10.1109/TCYB.2018.2819208
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2024.126073
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2024_126073
S0957417424029403
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSH
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AAYWO
AAYXX
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-aaaa0d38215078eec2ea38f02c4be1cefa5ba5467a8fee619b0d252d8d4a770a3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001388422000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 06:54:52 EST 2025
Tue Nov 18 20:52:00 EST 2025
Sat Apr 19 16:00:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Constrained multi-objective optimization
Adaptive bidirectional coevolution
State transition algorithm
Dynamic ɛ-constraint boundary
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-aaaa0d38215078eec2ea38f02c4be1cefa5ba5467a8fee619b0d252d8d4a770a3
ORCID 0000-0002-6367-696X
0000-0003-2550-1509
0000-0001-9610-846X
0009-0008-3699-4883
ParticipantIDs crossref_primary_10_1016_j_eswa_2024_126073
crossref_citationtrail_10_1016_j_eswa_2024_126073
elsevier_sciencedirect_doi_10_1016_j_eswa_2024_126073
PublicationCentury 2000
PublicationDate 2025-03-25
PublicationDateYYYYMMDD 2025-03-25
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-25
  day: 25
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liang, Qiao, Yu, Qu, Yue, Guo, Wang (b20) 2023; 53
Ming, Trivedi, Wang, Srinivasan, Zhang (b27) 2021; 25
Cuate, Ponsich, Uribe, Zapotecas-Martínez, Lara, Schütze (b4) 2019; 8
Deb, Pratap, Agarwal, Meyarivan (b8) 2002; 6
Qiao, Liang, Yu, Yue, Lin, Zhang, Qu (b34) 2023
Bao, Wang, Dai, Chen, Song, Li (b2) 2023; 215
Ma, Wei, Tian, Cheng, Zhang (b26) 2021; 560
Jain, Deb (b16) 2013; 18
Binh, T. T., & Korn, U. (1997). MOBES: A multiobjective evolution strategy for constrained optimization problems. In
Zhang, Li (b49) 2007; 11
Zhou, Gao, Yang, Yang, Zhou (b52) 2022; 119
Pan, Chen, Liu, Zhang, Gao, Huang (b29) 2023; 53
Gu, Liu, Hui, Wang (b12) 2024; 244
Jiao, Zeng, Li, Yang, Ong (b17) 2020; 51
Xu, Chen, Cao, Wu (b47) 2024; 238
.
Deb, Jain (b7) 2014; 18
Schutze, Esquivel, Lara, Coello (b38) 2012; 16
Qiao, Yu, Qu, Liang, Song, Yue, Lin, Tan (b35) 2022
Long, Dong, Wang, Huang, Li, Yang, Fu (b24) 2023; 9
Zhang, Yang, Zhou, Zhu (b50) 2018; 178
Zhou, Xiang, He (b54) 2020; 25
Qiao, Hu, Xiong, Guo, Zhou, Li (b32) 2023; 263
Fan, Li, Cai, Li, Wei, Zhang, Deb, Goodman (b10) 2019; 44
Parsopoulos, K. E., & Vrahatis, M. N. (2002). Particle swarm optimization method in multiobjective problems. In
Gu, Wang, Xiong, Jiang, Chen (b13) 2022; 8
(pp. 603–607).
Liang, Ban, Yu, Qu, Qiao, Yue, Chen, Tan (b19) 2022; 27
Wang, Cai, Li, Pedrycz (b43) 2021; 227
Zhu, Zhang, Lin (b56) 2020; 24
Feng, Ming, Gong (b11) 2024
Zhang, Yang, Zhu, Li, Gui (b51) 2016; 284
Hansen, Auger, Ros, Mersmann, Tušar, Brockhoff (b15) 2021; 36
Liu, Wang (b22) 2019; 23
Tian, Zhang, Xiao, Zhang, Jin (b41) 2020; 25
Mirjalili, Saremi, Mirjalili, Coelho (b28) 2016; 47
Tian, Cheng, Zhang, Jin (b40) 2017; 12
Peng, Liu, Gu (b31) 2017; 60
Wang, Liang, Zhang (b45) 2018; 49
Qiao, Liang, Yu, Yuan, Qu, Yue (b33) 2022; 235
Runarsson, Yao (b37) 2000; 4
Vieira, Adriano, Vasconcelos, Krahenbuhl (b42) 2004; 40
(p. 27).
Wang, Li, Hou, Zou, Zheng (b44) 2024; 87
Liu, Feng, Yang, Zhang, Liu (b21) 2024; 152
Ma, Wang (b25) 2019; 23
Rahimi, Gandomi, Chen, Mezura-Montes (b36) 2023; 30
Liu, Wang, Tang (b23) 2021; 52
Wang, Vermetten, Ye, Doerr, Bäck (b46) 2022; 2
Fan, Li, Cai, Huang, Fang, You, Mo, Wei, Goodman (b9) 2019; 23
Zhou, Yang, Gui (b55) 2012; 8
Bader, Zitzler (b1) 2011; 19
Cuate, Uribe, Lara, Schütze (b5) 2020; 52
Yu, Yang, Dai, Peng, Li (b48) 2024; 88
Zhou, Sun, Huang, Yang, Yen (b53) 2022; 129
Deb (b6) 2001
Li, Chen, Fu, Yao (b18) 2018; 23
Han, Yang, Zhou, Gui (b14) 2017; 173
Takahama, T., & Sakai, S. (2006). Constrained optimization by the constrained differential evolution with gradient-based mutation and feasible elites. In
10.1016/j.eswa.2024.126073_b3
Liu (10.1016/j.eswa.2024.126073_b22) 2019; 23
Runarsson (10.1016/j.eswa.2024.126073_b37) 2000; 4
Liang (10.1016/j.eswa.2024.126073_b19) 2022; 27
Qiao (10.1016/j.eswa.2024.126073_b33) 2022; 235
Deb (10.1016/j.eswa.2024.126073_b7) 2014; 18
Fan (10.1016/j.eswa.2024.126073_b10) 2019; 44
Zhang (10.1016/j.eswa.2024.126073_b49) 2007; 11
Qiao (10.1016/j.eswa.2024.126073_b32) 2023; 263
Ma (10.1016/j.eswa.2024.126073_b25) 2019; 23
Peng (10.1016/j.eswa.2024.126073_b31) 2017; 60
Pan (10.1016/j.eswa.2024.126073_b29) 2023; 53
Wang (10.1016/j.eswa.2024.126073_b44) 2024; 87
Qiao (10.1016/j.eswa.2024.126073_b34) 2023
Zhang (10.1016/j.eswa.2024.126073_b51) 2016; 284
Fan (10.1016/j.eswa.2024.126073_b9) 2019; 23
Jiao (10.1016/j.eswa.2024.126073_b17) 2020; 51
Ma (10.1016/j.eswa.2024.126073_b26) 2021; 560
Tian (10.1016/j.eswa.2024.126073_b40) 2017; 12
Cuate (10.1016/j.eswa.2024.126073_b4) 2019; 8
Liu (10.1016/j.eswa.2024.126073_b23) 2021; 52
Gu (10.1016/j.eswa.2024.126073_b13) 2022; 8
Han (10.1016/j.eswa.2024.126073_b14) 2017; 173
Zhou (10.1016/j.eswa.2024.126073_b53) 2022; 129
Liang (10.1016/j.eswa.2024.126073_b20) 2023; 53
10.1016/j.eswa.2024.126073_b30
Xu (10.1016/j.eswa.2024.126073_b47) 2024; 238
Zhou (10.1016/j.eswa.2024.126073_b54) 2020; 25
Yu (10.1016/j.eswa.2024.126073_b48) 2024; 88
Mirjalili (10.1016/j.eswa.2024.126073_b28) 2016; 47
Qiao (10.1016/j.eswa.2024.126073_b35) 2022
Jain (10.1016/j.eswa.2024.126073_b16) 2013; 18
Wang (10.1016/j.eswa.2024.126073_b43) 2021; 227
Schutze (10.1016/j.eswa.2024.126073_b38) 2012; 16
10.1016/j.eswa.2024.126073_b39
Deb (10.1016/j.eswa.2024.126073_b6) 2001
Cuate (10.1016/j.eswa.2024.126073_b5) 2020; 52
Bao (10.1016/j.eswa.2024.126073_b2) 2023; 215
Vieira (10.1016/j.eswa.2024.126073_b42) 2004; 40
Wang (10.1016/j.eswa.2024.126073_b46) 2022; 2
Wang (10.1016/j.eswa.2024.126073_b45) 2018; 49
Feng (10.1016/j.eswa.2024.126073_b11) 2024
Zhou (10.1016/j.eswa.2024.126073_b52) 2022; 119
Rahimi (10.1016/j.eswa.2024.126073_b36) 2023; 30
Zhou (10.1016/j.eswa.2024.126073_b55) 2012; 8
Zhu (10.1016/j.eswa.2024.126073_b56) 2020; 24
Ming (10.1016/j.eswa.2024.126073_b27) 2021; 25
Zhang (10.1016/j.eswa.2024.126073_b50) 2018; 178
Deb (10.1016/j.eswa.2024.126073_b8) 2002; 6
Bader (10.1016/j.eswa.2024.126073_b1) 2011; 19
Hansen (10.1016/j.eswa.2024.126073_b15) 2021; 36
Li (10.1016/j.eswa.2024.126073_b18) 2018; 23
Gu (10.1016/j.eswa.2024.126073_b12) 2024; 244
Tian (10.1016/j.eswa.2024.126073_b41) 2020; 25
Liu (10.1016/j.eswa.2024.126073_b21) 2024; 152
Long (10.1016/j.eswa.2024.126073_b24) 2023; 9
References_xml – volume: 49
  start-page: 2060
  year: 2018
  end-page: 2072
  ident: b45
  article-title: Cooperative differential evolution framework for constrained multiobjective optimization
  publication-title: IEEE Transactions on Cybernetics
– volume: 178
  start-page: 60
  year: 2018
  end-page: 76
  ident: b50
  article-title: Fractional order fuzzy PID optimal control in copper removal process of zinc hydrometallurgy
  publication-title: Hydrometallurgy
– reference: Parsopoulos, K. E., & Vrahatis, M. N. (2002). Particle swarm optimization method in multiobjective problems. In
– volume: 40
  start-page: 1188
  year: 2004
  end-page: 1191
  ident: b42
  article-title: Treating constraints as objectives in multiobjective optimization problems using niched Pareto genetic algorithm
  publication-title: IEEE Transactions on Magnetics
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b8
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 8
  start-page: 2699
  year: 2022
  end-page: 2718
  ident: b13
  article-title: Surrogate-assisted evolutionary algorithm for expensive constrained multi-objective discrete optimization problems
  publication-title: Complex & Intelligent Systems
– volume: 36
  start-page: 114
  year: 2021
  end-page: 144
  ident: b15
  article-title: COCO: A platform for comparing continuous optimizers in a black-box setting
  publication-title: Optimization Methods & Software
– reference: (pp. 603–607).
– volume: 284
  start-page: 294
  year: 2016
  end-page: 304
  ident: b51
  article-title: Evaluation strategy for the control of the copper removal process based on oxidation–reduction potential
  publication-title: Chemical Engineering Journal
– volume: 8
  start-page: 7
  year: 2019
  ident: b4
  article-title: A new hybrid evolutionary algorithm for the treatment of equality constrained MOPs
  publication-title: Mathematics
– volume: 25
  start-page: 739
  year: 2021
  end-page: 753
  ident: b27
  article-title: A dual-population-based evolutionary algorithm for constrained multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 119
  year: 2022
  ident: b52
  article-title: A multiobjective state transition algorithm based on modified decomposition method
  publication-title: Applied Soft Computing
– volume: 560
  start-page: 68
  year: 2021
  end-page: 91
  ident: b26
  article-title: A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints
  publication-title: Information Sciences
– reference: Takahama, T., & Sakai, S. (2006). Constrained optimization by the constrained differential evolution with gradient-based mutation and feasible elites. In
– volume: 23
  start-page: 303
  year: 2018
  end-page: 315
  ident: b18
  article-title: Two-archive evolutionary algorithm for constrained multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 18
  start-page: 602
  year: 2013
  end-page: 622
  ident: b16
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 2023
  ident: b34
  article-title: Evolutionary constrained multiobjective optimization: Scalable high-dimensional constraint benchmarks and algorithm
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 227
  year: 2021
  ident: b43
  article-title: Constraint handling technique based on lebesgue measure for constrained multiobjective particle swarm optimization algorithm
  publication-title: Knowledge-Based Systems
– volume: 44
  start-page: 665
  year: 2019
  end-page: 679
  ident: b10
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm and Evolutionary Computation
– volume: 16
  start-page: 504
  year: 2012
  end-page: 522
  ident: b38
  article-title: Using the averaged hausdorff distance as a performance measure in evolutionary multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 263
  year: 2023
  ident: b32
  article-title: Multi-objective optimization of integrated energy system considering installation configuration
  publication-title: Energy
– volume: 23
  start-page: 870
  year: 2019
  end-page: 884
  ident: b22
  article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 244
  year: 2024
  ident: b12
  article-title: A constrained multi-objective optimization algorithm based on coordinated strategy of archive and weight vectors
  publication-title: Expert Systems with Applications
– volume: 30
  start-page: 2181
  year: 2023
  end-page: 2209
  ident: b36
  article-title: A review on constraint handling techniques for population-based algorithms: from single-objective to multi-objective optimization
  publication-title: Archives of Computational Methods in Engineering
– volume: 51
  start-page: 4834
  year: 2020
  end-page: 4847
  ident: b17
  article-title: Handling constrained many-objective optimization problems via problem transformation
  publication-title: IEEE Transactions on Cybernetics
– volume: 53
  start-page: 3873
  year: 2023
  end-page: 3886
  ident: b20
  article-title: Utilizing the relationship between unconstrained and constrained pareto fronts for constrained multiobjective optimization
  publication-title: IEEE Transactions on Cybernetics
– start-page: 1
  year: 2024
  end-page: 63
  ident: b11
  article-title: Multi-stage multiform optimization for constrained multi-objective optimization
  publication-title: Neural Computing and Applications
– volume: 19
  start-page: 45
  year: 2011
  end-page: 76
  ident: b1
  article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evolutionary Computation
– volume: 173
  start-page: 134
  year: 2017
  end-page: 148
  ident: b14
  article-title: Dynamic multi-objective optimization arising in iron precipitation of zinc hydrometallurgy
  publication-title: Hydrometallurgy
– volume: 47
  start-page: 106
  year: 2016
  end-page: 119
  ident: b28
  article-title: Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization
  publication-title: Expert Systems with Applications
– volume: 238
  year: 2024
  ident: b47
  article-title: Multi-objective trajectory planning in the multiple strata drilling process: A bi-directional constrained co-evolutionary optimizer with Pareto front learning
  publication-title: Expert Systems with Applications
– volume: 25
  start-page: 102
  year: 2020
  end-page: 116
  ident: b41
  article-title: A coevolutionary framework for constrained multiobjective optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 4
  start-page: 284
  year: 2000
  end-page: 294
  ident: b37
  article-title: Stochastic ranking for constrained evolutionary optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 23
  start-page: 12491
  year: 2019
  end-page: 12510
  ident: b9
  article-title: An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions
  publication-title: Soft Computing
– volume: 2
  start-page: 1
  year: 2022
  end-page: 29
  ident: b46
  article-title: IOHanalyzer: Detailed performance analyses for iterative optimization heuristics
  publication-title: ACM Transactions on Evolutionary Learning and Optimization
– reference: Binh, T. T., & Korn, U. (1997). MOBES: A multiobjective evolution strategy for constrained optimization problems. In
– volume: 87
  year: 2024
  ident: b44
  article-title: A novel multi-population evolutionary algorithm based on hybrid collaboration for constrained multi-objective optimization
  publication-title: Swarm and Evolutionary Computation
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: b7
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 2001
  ident: b6
  article-title: Multi-objective optimization using evolutionary algorithms
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: b40
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [Educational forum]
  publication-title: IEEE Computational Intelligence Magazine
– volume: 215
  year: 2023
  ident: b2
  article-title: A dual-population based bidirectional coevolution algorithm for constrained multi-objective optimization problems
  publication-title: Expert Systems with Applications
– volume: 24
  start-page: 938
  year: 2020
  end-page: 947
  ident: b56
  article-title: A constrained multiobjective evolutionary algorithm with detect-and-escape strategy
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 9
  start-page: 1455
  year: 2023
  end-page: 1478
  ident: b24
  article-title: A constrained multi-objective optimization algorithm using an efficient global diversity strategy
  publication-title: Complex & Intelligent Systems
– volume: 25
  start-page: 172
  year: 2020
  end-page: 186
  ident: b54
  article-title: Constrained multiobjective optimization: Test problem construction and performance evaluations
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 52
  start-page: 10163
  year: 2021
  end-page: 10176
  ident: b23
  article-title: Handling constrained multiobjective optimization problems via bidirectional coevolution
  publication-title: IEEE Transactions on Cybernetics
– volume: 53
  start-page: 142
  year: 2023
  end-page: 151
  ident: b29
  article-title: Pareto multiobjective Lyapunov-based economic model-predictive control for nonlinear time-delayed system
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 152
  year: 2024
  ident: b21
  article-title: Dynamic
  publication-title: Applied Soft Computing
– reference: .
– volume: 8
  start-page: 1039
  year: 2012
  end-page: 1056
  ident: b55
  article-title: State transition algorithm
  publication-title: Journal of Industrial and Management Optimization
– volume: 52
  year: 2020
  ident: b5
  article-title: A benchmark for equality constrained multi-objective optimization
  publication-title: Swarm and Evolutionary Computation
– volume: 88
  year: 2024
  ident: b48
  article-title: A novel penalty function-based interval constrained multi-objective optimization algorithm for uncertain problems
  publication-title: Swarm and Evolutionary Computation
– reference: (p. 27).
– volume: 27
  start-page: 201
  year: 2022
  end-page: 221
  ident: b19
  article-title: A survey on evolutionary constrained multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 2022
  ident: b35
  article-title: Dynamic auxiliary task-based evolutionary multitasking for constrained multi-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 23
  start-page: 972
  year: 2019
  end-page: 986
  ident: b25
  article-title: Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 235
  year: 2022
  ident: b33
  article-title: Self-adaptive resources allocation-based differential evolution for constrained evolutionary optimization
  publication-title: Knowledge-Based Systems
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b49
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 129
  year: 2022
  ident: b53
  article-title: Dynamic multi-objective optimization and fuzzy AHP for copper removal process of zinc hydrometallurgy
  publication-title: Applied Soft Computing
– volume: 60
  start-page: 613
  year: 2017
  end-page: 622
  ident: b31
  article-title: An evolutionary algorithm with directed weights for constrained multi-objective optimization
  publication-title: Applied Soft Computing
– volume: 119
  year: 2022
  ident: 10.1016/j.eswa.2024.126073_b52
  article-title: A multiobjective state transition algorithm based on modified decomposition method
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2022.108553
– volume: 51
  start-page: 4834
  issue: 10
  year: 2020
  ident: 10.1016/j.eswa.2024.126073_b17
  article-title: Handling constrained many-objective optimization problems via problem transformation
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2020.3031642
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.eswa.2024.126073_b49
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.892759
– year: 2023
  ident: 10.1016/j.eswa.2024.126073_b34
  article-title: Evolutionary constrained multiobjective optimization: Scalable high-dimensional constraint benchmarks and algorithm
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 40
  start-page: 1188
  issue: 2
  year: 2004
  ident: 10.1016/j.eswa.2024.126073_b42
  article-title: Treating constraints as objectives in multiobjective optimization problems using niched Pareto genetic algorithm
  publication-title: IEEE Transactions on Magnetics
  doi: 10.1109/TMAG.2004.825006
– volume: 24
  start-page: 938
  issue: 5
  year: 2020
  ident: 10.1016/j.eswa.2024.126073_b56
  article-title: A constrained multiobjective evolutionary algorithm with detect-and-escape strategy
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2020.2981949
– volume: 215
  year: 2023
  ident: 10.1016/j.eswa.2024.126073_b2
  article-title: A dual-population based bidirectional coevolution algorithm for constrained multi-objective optimization problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.119258
– year: 2022
  ident: 10.1016/j.eswa.2024.126073_b35
  article-title: Dynamic auxiliary task-based evolutionary multitasking for constrained multi-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 1
  year: 2024
  ident: 10.1016/j.eswa.2024.126073_b11
  article-title: Multi-stage multiform optimization for constrained multi-objective optimization
  publication-title: Neural Computing and Applications
– volume: 23
  start-page: 12491
  year: 2019
  ident: 10.1016/j.eswa.2024.126073_b9
  article-title: An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions
  publication-title: Soft Computing
  doi: 10.1007/s00500-019-03794-x
– volume: 173
  start-page: 134
  year: 2017
  ident: 10.1016/j.eswa.2024.126073_b14
  article-title: Dynamic multi-objective optimization arising in iron precipitation of zinc hydrometallurgy
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2017.08.007
– volume: 238
  year: 2024
  ident: 10.1016/j.eswa.2024.126073_b47
  article-title: Multi-objective trajectory planning in the multiple strata drilling process: A bi-directional constrained co-evolutionary optimizer with Pareto front learning
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.122119
– volume: 178
  start-page: 60
  year: 2018
  ident: 10.1016/j.eswa.2024.126073_b50
  article-title: Fractional order fuzzy PID optimal control in copper removal process of zinc hydrometallurgy
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2018.03.021
– volume: 36
  start-page: 114
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2024.126073_b15
  article-title: COCO: A platform for comparing continuous optimizers in a black-box setting
  publication-title: Optimization Methods & Software
  doi: 10.1080/10556788.2020.1808977
– volume: 2
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2024.126073_b46
  article-title: IOHanalyzer: Detailed performance analyses for iterative optimization heuristics
  publication-title: ACM Transactions on Evolutionary Learning and Optimization
  doi: 10.1145/3510426
– volume: 47
  start-page: 106
  year: 2016
  ident: 10.1016/j.eswa.2024.126073_b28
  article-title: Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.10.039
– volume: 25
  start-page: 172
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2024.126073_b54
  article-title: Constrained multiobjective optimization: Test problem construction and performance evaluations
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2020.3011829
– volume: 53
  start-page: 3873
  issue: 6
  year: 2023
  ident: 10.1016/j.eswa.2024.126073_b20
  article-title: Utilizing the relationship between unconstrained and constrained pareto fronts for constrained multiobjective optimization
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2022.3163759
– volume: 8
  start-page: 7
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2024.126073_b4
  article-title: A new hybrid evolutionary algorithm for the treatment of equality constrained MOPs
  publication-title: Mathematics
  doi: 10.3390/math8010007
– ident: 10.1016/j.eswa.2024.126073_b30
  doi: 10.1145/508791.508907
– volume: 52
  start-page: 10163
  issue: 10
  year: 2021
  ident: 10.1016/j.eswa.2024.126073_b23
  article-title: Handling constrained multiobjective optimization problems via bidirectional coevolution
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2021.3056176
– volume: 53
  start-page: 142
  issue: 1
  year: 2023
  ident: 10.1016/j.eswa.2024.126073_b29
  article-title: Pareto multiobjective Lyapunov-based economic model-predictive control for nonlinear time-delayed system
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2022.3171076
– volume: 244
  year: 2024
  ident: 10.1016/j.eswa.2024.126073_b12
  article-title: A constrained multi-objective optimization algorithm based on coordinated strategy of archive and weight vectors
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.122961
– volume: 560
  start-page: 68
  year: 2021
  ident: 10.1016/j.eswa.2024.126073_b26
  article-title: A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.01.029
– volume: 4
  start-page: 284
  issue: 3
  year: 2000
  ident: 10.1016/j.eswa.2024.126073_b37
  article-title: Stochastic ranking for constrained evolutionary optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.873238
– volume: 284
  start-page: 294
  year: 2016
  ident: 10.1016/j.eswa.2024.126073_b51
  article-title: Evaluation strategy for the control of the copper removal process based on oxidation–reduction potential
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2015.07.094
– volume: 25
  start-page: 102
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2024.126073_b41
  article-title: A coevolutionary framework for constrained multiobjective optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2020.3004012
– volume: 52
  year: 2020
  ident: 10.1016/j.eswa.2024.126073_b5
  article-title: A benchmark for equality constrained multi-objective optimization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2019.100619
– volume: 25
  start-page: 739
  issue: 4
  year: 2021
  ident: 10.1016/j.eswa.2024.126073_b27
  article-title: A dual-population-based evolutionary algorithm for constrained multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2021.3066301
– volume: 23
  start-page: 303
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2024.126073_b18
  article-title: Two-archive evolutionary algorithm for constrained multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2018.2855411
– volume: 60
  start-page: 613
  year: 2017
  ident: 10.1016/j.eswa.2024.126073_b31
  article-title: An evolutionary algorithm with directed weights for constrained multi-objective optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.06.053
– volume: 227
  year: 2021
  ident: 10.1016/j.eswa.2024.126073_b43
  article-title: Constraint handling technique based on lebesgue measure for constrained multiobjective particle swarm optimization algorithm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107131
– volume: 9
  start-page: 1455
  issue: 2
  year: 2023
  ident: 10.1016/j.eswa.2024.126073_b24
  article-title: A constrained multi-objective optimization algorithm using an efficient global diversity strategy
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-022-00851-1
– volume: 8
  start-page: 2699
  issue: 4
  year: 2022
  ident: 10.1016/j.eswa.2024.126073_b13
  article-title: Surrogate-assisted evolutionary algorithm for expensive constrained multi-objective discrete optimization problems
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-020-00249-x
– ident: 10.1016/j.eswa.2024.126073_b3
– volume: 18
  start-page: 602
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2024.126073_b16
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281534
– volume: 19
  start-page: 45
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2024.126073_b1
  article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evolutionary Computation
  doi: 10.1162/EVCO_a_00009
– year: 2001
  ident: 10.1016/j.eswa.2024.126073_b6
– volume: 23
  start-page: 870
  issue: 5
  year: 2019
  ident: 10.1016/j.eswa.2024.126073_b22
  article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2019.2894743
– volume: 8
  start-page: 1039
  issue: 4
  year: 2012
  ident: 10.1016/j.eswa.2024.126073_b55
  article-title: State transition algorithm
  publication-title: Journal of Industrial and Management Optimization
  doi: 10.3934/jimo.2012.8.1039
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2024.126073_b7
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281535
– volume: 44
  start-page: 665
  year: 2019
  ident: 10.1016/j.eswa.2024.126073_b10
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2018.08.017
– volume: 88
  year: 2024
  ident: 10.1016/j.eswa.2024.126073_b48
  article-title: A novel penalty function-based interval constrained multi-objective optimization algorithm for uncertain problems
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2024.101584
– volume: 263
  year: 2023
  ident: 10.1016/j.eswa.2024.126073_b32
  article-title: Multi-objective optimization of integrated energy system considering installation configuration
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125785
– volume: 87
  year: 2024
  ident: 10.1016/j.eswa.2024.126073_b44
  article-title: A novel multi-population evolutionary algorithm based on hybrid collaboration for constrained multi-objective optimization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2024.101581
– volume: 30
  start-page: 2181
  issue: 3
  year: 2023
  ident: 10.1016/j.eswa.2024.126073_b36
  article-title: A review on constraint handling techniques for population-based algorithms: from single-objective to multi-objective optimization
  publication-title: Archives of Computational Methods in Engineering
  doi: 10.1007/s11831-022-09859-9
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.eswa.2024.126073_b8
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 12
  start-page: 73
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2024.126073_b40
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [Educational forum]
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2017.2742868
– ident: 10.1016/j.eswa.2024.126073_b39
  doi: 10.1109/CEC.2006.1688283
– volume: 235
  year: 2022
  ident: 10.1016/j.eswa.2024.126073_b33
  article-title: Self-adaptive resources allocation-based differential evolution for constrained evolutionary optimization
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107653
– volume: 129
  year: 2022
  ident: 10.1016/j.eswa.2024.126073_b53
  article-title: Dynamic multi-objective optimization and fuzzy AHP for copper removal process of zinc hydrometallurgy
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2022.109613
– volume: 23
  start-page: 972
  issue: 6
  year: 2019
  ident: 10.1016/j.eswa.2024.126073_b25
  article-title: Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2019.2896967
– volume: 16
  start-page: 504
  issue: 4
  year: 2012
  ident: 10.1016/j.eswa.2024.126073_b38
  article-title: Using the averaged hausdorff distance as a performance measure in evolutionary multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2011.2161872
– volume: 152
  year: 2024
  ident: 10.1016/j.eswa.2024.126073_b21
  article-title: Dynamic ɛ-multilevel hierarchy constraint optimization with adaptive boundary constraint handling technology
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2023.111172
– volume: 27
  start-page: 201
  issue: 2
  year: 2022
  ident: 10.1016/j.eswa.2024.126073_b19
  article-title: A survey on evolutionary constrained multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2022.3155533
– volume: 49
  start-page: 2060
  issue: 6
  year: 2018
  ident: 10.1016/j.eswa.2024.126073_b45
  article-title: Cooperative differential evolution framework for constrained multiobjective optimization
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2819208
SSID ssj0017007
Score 2.4704006
Snippet Constrained multi-objective optimization problems (CMOPs) involve optimizing multiple conflicting objectives subject to at least one constraint. These...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126073
SubjectTerms Adaptive bidirectional coevolution
Constrained multi-objective optimization
Dynamic ɛ-constraint boundary
State transition algorithm
Title Constrained multi-objective state transition algorithm via adaptive bidirectional coevolution
URI https://dx.doi.org/10.1016/j.eswa.2024.126073
Volume 266
WOSCitedRecordID wos001388422000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxoELjC8xNpAP3KpMiWPH7nGahsaEJg4FdUgochyHtuqSqku6Xfjf9xw7Hy0wsQM9RNWT8-Lm_fr8_Pw-EPpANVgJREReJAn1qJLCS5gK4O-ehZGSUabqHkvfPvOLCzGZjL4MBr-aXJj1gue5uL0dLf-rqIEGwjapsw8Qd8sUCPAdhA5XEDtc_0nwpgVn3fgBTMk6XNArkrlVa8M6fci0hchtqNZQLn4Wq1k5vRquTXZWKpf1uGRmlzrrJ1SFXrspbzjyTZXk0tWCbrLkeufh3XlTrdkuOxx-nxaVIU1msphXLfnS-a5PplU-rWSHOEcfwzJ741LXnKOCMBOpZZOaW48j92hgm_I0ypdEffUZwO7Kdjb5TbNbJ8P8SF_fmHJRhB51gzfLaG8tb23QYRPPNo8Nj9jwiC2PR2iXcDYCpbh7_Ol0ct4eQ3Hf5ts3M3dZVzZAcHsmf7ZsetbKeA89ddsMfGzh8RwNdP4CPWtaeGCn0V-iHz204C204BotuEMLbtGCAS24QQveQAvuoeUV-vrxdHxy5rmOG54Kfb_0JHz8NBTEbBOE1opoGYrMJ4omOlA6kyyRDNZWKTKtYe-d-ClhJBUplZz7MnyNdvIi128QTlNFaOpnUagYDYJUMKqBdail5CFnyT4KmrcVK1eO3vzcRfx3Oe2jYXvP0hZjuXc0a4QQO3PSvo0YMHXPfW8f9JQD9KQD-yHaKVeVfoceq3U5u169d4C6A5fFnLE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+multi-objective+state+transition+algorithm+via+adaptive+bidirectional+coevolution&rft.jtitle=Expert+systems+with+applications&rft.au=Sun%2C+Yan&rft.au=Zhou%2C+Xiaojun&rft.au=Yang%2C+Chunhua&rft.au=Huang%2C+Tingwen&rft.date=2025-03-25&rft.issn=0957-4174&rft.volume=266&rft.spage=126073&rft_id=info:doi/10.1016%2Fj.eswa.2024.126073&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2024_126073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon