A Class of Numerical Algorithms for Large Time Integration: The Nonlinear Galerkin Methods
The nonlinear Galerkin methods are numerical schemes well adapted to the long-term integration of evolution partial differential equations. They consist of looking for approximate solutions lying in nonlinear manifolds that are "close" (in some sense) to the attractor. The aim of this pape...
Saved in:
| Published in: | SIAM journal on numerical analysis Vol. 29; no. 2; pp. 462 - 483 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.04.1992
|
| Subjects: | |
| ISSN: | 0036-1429, 1095-7170 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The nonlinear Galerkin methods are numerical schemes well adapted to the long-term integration of evolution partial differential equations. They consist of looking for approximate solutions lying in nonlinear manifolds that are "close" (in some sense) to the attractor. The aim of this paper is to extend these schemes to a large class of manifolds. Convergence results are derived for the schemes introduced. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0036-1429 1095-7170 |
| DOI: | 10.1137/0729028 |