A Class of Numerical Algorithms for Large Time Integration: The Nonlinear Galerkin Methods
The nonlinear Galerkin methods are numerical schemes well adapted to the long-term integration of evolution partial differential equations. They consist of looking for approximate solutions lying in nonlinear manifolds that are "close" (in some sense) to the attractor. The aim of this pape...
Uloženo v:
| Vydáno v: | SIAM journal on numerical analysis Ročník 29; číslo 2; s. 462 - 483 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.04.1992
|
| Témata: | |
| ISSN: | 0036-1429, 1095-7170 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The nonlinear Galerkin methods are numerical schemes well adapted to the long-term integration of evolution partial differential equations. They consist of looking for approximate solutions lying in nonlinear manifolds that are "close" (in some sense) to the attractor. The aim of this paper is to extend these schemes to a large class of manifolds. Convergence results are derived for the schemes introduced. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0036-1429 1095-7170 |
| DOI: | 10.1137/0729028 |