A Class of Numerical Algorithms for Large Time Integration: The Nonlinear Galerkin Methods

The nonlinear Galerkin methods are numerical schemes well adapted to the long-term integration of evolution partial differential equations. They consist of looking for approximate solutions lying in nonlinear manifolds that are "close" (in some sense) to the attractor. The aim of this pape...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on numerical analysis Ročník 29; číslo 2; s. 462 - 483
Hlavní autoři: Devulder, Christophe, Marion, Martine
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Society for Industrial and Applied Mathematics 01.04.1992
Témata:
ISSN:0036-1429, 1095-7170
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The nonlinear Galerkin methods are numerical schemes well adapted to the long-term integration of evolution partial differential equations. They consist of looking for approximate solutions lying in nonlinear manifolds that are "close" (in some sense) to the attractor. The aim of this paper is to extend these schemes to a large class of manifolds. Convergence results are derived for the schemes introduced.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0036-1429
1095-7170
DOI:10.1137/0729028