A Class of Numerical Algorithms for Large Time Integration: The Nonlinear Galerkin Methods

The nonlinear Galerkin methods are numerical schemes well adapted to the long-term integration of evolution partial differential equations. They consist of looking for approximate solutions lying in nonlinear manifolds that are "close" (in some sense) to the attractor. The aim of this pape...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SIAM journal on numerical analysis Ročník 29; číslo 2; s. 462 - 483
Hlavní autori: Devulder, Christophe, Marion, Martine
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia, PA Society for Industrial and Applied Mathematics 01.04.1992
Predmet:
ISSN:0036-1429, 1095-7170
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The nonlinear Galerkin methods are numerical schemes well adapted to the long-term integration of evolution partial differential equations. They consist of looking for approximate solutions lying in nonlinear manifolds that are "close" (in some sense) to the attractor. The aim of this paper is to extend these schemes to a large class of manifolds. Convergence results are derived for the schemes introduced.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0036-1429
1095-7170
DOI:10.1137/0729028