Federated learning enabled multi-key homomorphic encryption
The rapid advancement of digital healthcare systems has significantly increased the volume of medical data, raising concerns about its security and confidentiality. As patient information is highly sensitive, any compromise could have severe consequences in healthcare delivery. Federated Learning (F...
Uložené v:
| Vydané v: | Expert systems with applications Ročník 268; s. 126197 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
05.04.2025
|
| Predmet: | |
| ISSN: | 0957-4174 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The rapid advancement of digital healthcare systems has significantly increased the volume of medical data, raising concerns about its security and confidentiality. As patient information is highly sensitive, any compromise could have severe consequences in healthcare delivery. Federated Learning (FL) has emerged as a promising solution by enabling decentralized data processing through local training and global model aggregation. Despite its advantages, FL faces challenges in ensuring the secure transmission of data and preserving privacy during model updates. Homomorphic encryption (HE)-based security is a promising approach for secure data transmission. Hence, the Puzzle Archimedes Optimization Algorithm (PAOA)-based multi-key HE is designed in this research. The healthcare data is obtained from the dataset and shared among many parties using a multi-party data-sharing platform. All parties utilize noise-free HE to protect sensitive data and enhance communication security. The ideal multi-keys are created using the proposed PAOA. Moreover, the PAOA-trained deep residual network (DRN) (PAOA_DRN) is utilized for privacy data classification. The outcome from each of the local training is aggregated into the global training, and the weights of every local training model are updated. Furthermore, the training accuracy, training loss, mean average precision, and Mean Squared Error (MSE) metrics are utilized for computing the efficacy of the PAOA_DRN. On the Cleveland dataset, the model achieved superior results with a training accuracy of 0.946, training loss of 0.053, MAP of 0.951, and MSE of 0.182. This research provides a significant step forward in addressing critical issues in healthcare data security, with the potential for broad application in medical data sharing and privacy-preserving analytics. |
|---|---|
| AbstractList | The rapid advancement of digital healthcare systems has significantly increased the volume of medical data, raising concerns about its security and confidentiality. As patient information is highly sensitive, any compromise could have severe consequences in healthcare delivery. Federated Learning (FL) has emerged as a promising solution by enabling decentralized data processing through local training and global model aggregation. Despite its advantages, FL faces challenges in ensuring the secure transmission of data and preserving privacy during model updates. Homomorphic encryption (HE)-based security is a promising approach for secure data transmission. Hence, the Puzzle Archimedes Optimization Algorithm (PAOA)-based multi-key HE is designed in this research. The healthcare data is obtained from the dataset and shared among many parties using a multi-party data-sharing platform. All parties utilize noise-free HE to protect sensitive data and enhance communication security. The ideal multi-keys are created using the proposed PAOA. Moreover, the PAOA-trained deep residual network (DRN) (PAOA_DRN) is utilized for privacy data classification. The outcome from each of the local training is aggregated into the global training, and the weights of every local training model are updated. Furthermore, the training accuracy, training loss, mean average precision, and Mean Squared Error (MSE) metrics are utilized for computing the efficacy of the PAOA_DRN. On the Cleveland dataset, the model achieved superior results with a training accuracy of 0.946, training loss of 0.053, MAP of 0.951, and MSE of 0.182. This research provides a significant step forward in addressing critical issues in healthcare data security, with the potential for broad application in medical data sharing and privacy-preserving analytics. |
| ArticleNumber | 126197 |
| Author | Kumbhar, Hemant Ramdas Srinivasa Rao, S. |
| Author_xml | – sequence: 1 givenname: Hemant Ramdas orcidid: 0009-0004-9956-1197 surname: Kumbhar fullname: Kumbhar, Hemant Ramdas email: hemant.kumbhar@gmail.com – sequence: 2 givenname: S. surname: Srinivasa Rao fullname: Srinivasa Rao, S. email: srinu1479cse@kluniversity.in |
| BookMark | eNp9j7FOwzAQhj0UibbwAkx9gYSz4_hSwYIqCkiVWGC2HOdCXdKksg2ob4-jMjFUN5x0v77T_83YpB96YuyGQ86Bq9tdTuHH5AKEzLlQfIkTNoVliZnkKC_ZLIQdAEcAnLK7NTXkTaRm0ZHxves_FtSbukuH_VcXXfZJx8V22Kfxh62zKbX-eIhu6K_YRWu6QNd_e87e149vq-ds8_r0snrYZLYAiJlZysKK2pSlKrFBtAKtqsCArBqeKtUt2hZEWSFBWaiaCiJslUQUslY1L-ZMnP5aP4TgqdUH7_bGHzUHPSrrnR6V9aisT8oJqv5B1kUz1o7euO48en9CKUl9O_I6WJe0qXGebNTN4M7hv1RZdi8 |
| CitedBy_id | crossref_primary_10_1109_JIOT_2025_3565598 crossref_primary_10_3390_ai6050095 crossref_primary_10_1007_s10586_025_05354_5 crossref_primary_10_1007_s11227_025_07322_7 crossref_primary_10_1007_s10586_025_05337_6 |
| Cites_doi | 10.1007/s00607-020-00847-0 10.3390/cryptography6030034 10.1109/ACCESS.2021.3114581 10.1007/978-3-319-72395-2_49 10.1016/j.future.2020.04.034 10.4018/IJISMD.2020070102 10.3389/fcvm.2023.1117360 10.1155/2020/3910250 10.1016/j.procs.2018.10.199 10.1002/int.22818 10.3390/app9061207 10.1007/s10489-020-01893-z 10.1007/s11227-021-03720-9 10.1145/3412357 10.1016/j.neucom.2019.11.041 10.3390/math10244678 10.1109/JIOT.2021.3066307 10.3390/s22155574 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2024.126197 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_eswa_2024_126197 S0957417424030641 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAYWO AAYXX ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY1 LY7 M41 R2- SBC SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c300t-a943c2ba55657d77c27c680a048d1417bf7cf02587e0536be3ee7f647724b6b13 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001412045700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sat Nov 29 03:07:47 EST 2025 Tue Nov 18 22:43:31 EST 2025 Sat Feb 15 15:52:42 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Homomorphic Encryption (HE) Deep Residual Network (DRN) Archimedes Optimization Algorithm (AOA) Puzzle Optimization Algorithm (POA) Healthcare Data |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-a943c2ba55657d77c27c680a048d1417bf7cf02587e0536be3ee7f647724b6b13 |
| ORCID | 0009-0004-9956-1197 |
| ParticipantIDs | crossref_primary_10_1016_j_eswa_2024_126197 crossref_citationtrail_10_1016_j_eswa_2024_126197 elsevier_sciencedirect_doi_10_1016_j_eswa_2024_126197 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-05 |
| PublicationDateYYYYMMDD | 2025-04-05 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zeidabadi, Dehghani (b0120) 2022; 15 Al Omar, A., Rahman, M. S., Basu, A. & Kiyomoto, S. (2017). Medibchain: A blockchain based privacy preserving platform for healthcare data. El Bouchti, Bahsani, Nahhal (b0040) 2016 Cabrero-Holgueras, Pastrana (b0020) 2023; 10 Wibawa, Catak, Sarp, Kuzlu (b0110) 2022; 6 Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (b0045) 2021; 51 534-543. Dhasarathan, Kumar, Srivastava, Al-Turjman, Shankar, Kumar (b0030) 2021; 77 Boulemtafes, Derhab, Challal (b0015) 2020; 384 Pandey (b0080) 2020; 111 Mewada, Gautam, Sharma (b0070) 2020; 11 Yuan, Wang, Zhang, Wang, Ji, Ren (b0115) 2022; 10 Domadiya, Rao (b0035) 2021; 103 Liang, Qin, Xue, Lin, Shen (b0060) 2021; 8 Ma, Naas, Sigg, Lyu (b0065) 2022; 37 Heart Disease dataset is taken from, https://archive.ics.uci.edu/dataset/45/heart+disease, accessed on November (2023). Bjerva, J., Plank, B., & Bos, J. (2016). Semantic tagging with deep residual networks. . Shen, Guo, Yang (b0095) 2019; 9 Pfitzner, Steckhan, Arnrich (b0090) 2021; 21 Vizitiu, A., Nită, C. I., Puiu, A., Suciu, C., & Itu, L. M. (2020). Applying deep neural networks over homomorphic encrypted medical data. Cheng, N., Önen, M., Mitrokotsa, A., Chouchane, O., Todisco, M., & Ibarrondo, A. (2023). Privacy-preserving Cosine Similarity Computation with Malicious Security Applied to Biometric Authentication. Padinjappurathu Gopalan, Chowdhary, Iwendi, Farid, Ramasamy (b0075) 2022; 22 Khaloufi, Abouelmehdi, Beni-hssane, Saadi (b0055) 2018; 141 Paul, Annamalai, Ming, Al Badawi, Veeravalli, Aung (b0085) 2021; 9 Solares, Raimondi, Zhu, Rahimian, Canoy, Tran, Gomes, Payberah, Zottoli, Nazarzadeh, Conrad (b0100) 2020; 101 10.1016/j.eswa.2024.126197_b0010 Liang (10.1016/j.eswa.2024.126197_b0060) 2021; 8 Padinjappurathu Gopalan (10.1016/j.eswa.2024.126197_b0075) 2022; 22 Mewada (10.1016/j.eswa.2024.126197_b0070) 2020; 11 Zeidabadi (10.1016/j.eswa.2024.126197_b0120) 2022; 15 10.1016/j.eswa.2024.126197_b0050 Boulemtafes (10.1016/j.eswa.2024.126197_b0015) 2020; 384 Solares (10.1016/j.eswa.2024.126197_b0100) 2020; 101 Wibawa (10.1016/j.eswa.2024.126197_b0110) 2022; 6 Ma (10.1016/j.eswa.2024.126197_b0065) 2022; 37 Shen (10.1016/j.eswa.2024.126197_b0095) 2019; 9 10.1016/j.eswa.2024.126197_b0025 El Bouchti (10.1016/j.eswa.2024.126197_b0040) 2016 Dhasarathan (10.1016/j.eswa.2024.126197_b0030) 2021; 77 10.1016/j.eswa.2024.126197_b0005 Paul (10.1016/j.eswa.2024.126197_b0085) 2021; 9 10.1016/j.eswa.2024.126197_b0105 Hashim (10.1016/j.eswa.2024.126197_b0045) 2021; 51 Cabrero-Holgueras (10.1016/j.eswa.2024.126197_b0020) 2023; 10 Pandey (10.1016/j.eswa.2024.126197_b0080) 2020; 111 Domadiya (10.1016/j.eswa.2024.126197_b0035) 2021; 103 Pfitzner (10.1016/j.eswa.2024.126197_b0090) 2021; 21 Khaloufi (10.1016/j.eswa.2024.126197_b0055) 2018; 141 Yuan (10.1016/j.eswa.2024.126197_b0115) 2022; 10 |
| References_xml | – volume: 101 year: 2020 ident: b0100 article-title: Deep learning for electronic health records: A comparative review of multiple deep neural architectures publication-title: Journal of Biomedical Informatics – reference: Heart Disease dataset is taken from, https://archive.ics.uci.edu/dataset/45/heart+disease, accessed on November (2023). – reference: Al Omar, A., Rahman, M. S., Basu, A. & Kiyomoto, S. (2017). Medibchain: A blockchain based privacy preserving platform for healthcare data. – start-page: 48 year: 2016 end-page: 54 ident: b0040 article-title: Encryption as a service for data healthcare cloud security publication-title: In proceedings of 2016 fifth international conference on future generation communication technologies (FGCT) – reference: Vizitiu, A., Nită, C. I., Puiu, A., Suciu, C., & Itu, L. M. (2020). Applying deep neural networks over homomorphic encrypted medical data. – volume: 10 start-page: 4678 year: 2022 ident: b0115 article-title: An examination of multi-key fully homomorphic encryption and its applications publication-title: Mathematics – volume: 9 start-page: 132084 year: 2021 end-page: 132096 ident: b0085 article-title: Privacy-preserving collective learning with homomorphic encryption publication-title: IEEE Access – reference: Cheng, N., Önen, M., Mitrokotsa, A., Chouchane, O., Todisco, M., & Ibarrondo, A. (2023). Privacy-preserving Cosine Similarity Computation with Malicious Security Applied to Biometric Authentication. – volume: 10 year: 2023 ident: b0020 article-title: Towards realistic privacy-preserving deep learning over encrypted medical data publication-title: Frontiers in Cardiovascular Medicine – reference: , 534-543. – volume: 21 start-page: 1 year: 2021 end-page: 31 ident: b0090 article-title: Federated learning in a medical context: A systematic literature review publication-title: ACM Transactions on Internet Technology (TOIT) – volume: 11 start-page: 22 year: 2020 end-page: 39 ident: b0070 article-title: Artificial bee colony-based approach for privacy preservation of medical data publication-title: International Journal of Information System Modeling and Design (IJISMD) – volume: 37 start-page: 5880 year: 2022 end-page: 5901 ident: b0065 article-title: Privacy‐preserving federated learning based on multi‐key homomorphic encryption publication-title: International Journal of Intelligent Systems – volume: 51 start-page: 1531 year: 2021 end-page: 1551 ident: b0045 article-title: Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems publication-title: Applied Intelligence – volume: 8 start-page: 12528 year: 2021 end-page: 12539 ident: b0060 article-title: Efficient and privacy-preserving decision tree classification for health monitoring systems publication-title: IEEE Internet of Things Journal – volume: 111 start-page: 213 year: 2020 end-page: 225 ident: b0080 article-title: Secure medical data transmission using a fusion of bit mask oriented genetic algorithm, encryption and steganography publication-title: Future Generation Computer Systems – reference: . – volume: 22 start-page: 5574 year: 2022 ident: b0075 article-title: An efficient and privacy-preserving scheme for disease prediction in modern healthcare systems publication-title: Sensors – reference: Bjerva, J., Plank, B., & Bos, J. (2016). Semantic tagging with deep residual networks. – volume: 77 start-page: 11099 year: 2021 end-page: 11134 ident: b0030 article-title: A bio-inspired privacy-preserving framework for healthcare systems publication-title: The Journal of Supercomputing – volume: 103 start-page: 155 year: 2021 end-page: 177 ident: b0035 article-title: Improving healthcare services using source anonymous scheme with privacy preserving distributed healthcare data collection and mining publication-title: Computing – volume: 15 year: 2022 ident: b0120 article-title: POA: Puzzle optimization algorithm publication-title: International Journal of Intelligent Engineering & Systems – volume: 384 start-page: 21 year: 2020 end-page: 45 ident: b0015 article-title: A review of privacy-preserving techniques for deep learning publication-title: Neurocomputing – volume: 9 start-page: 1207 year: 2019 ident: b0095 article-title: MedChain: Efficient healthcare data sharing via blockchain publication-title: Applied Sciences – volume: 141 start-page: 294 year: 2018 end-page: 301 ident: b0055 article-title: Security model for big healthcare data lifecycle publication-title: Procedia Computer Science – volume: 6 start-page: 34 year: 2022 ident: b0110 article-title: BFV-based homomorphic encryption for privacy-preserving CNN models publication-title: Cryptography – ident: 10.1016/j.eswa.2024.126197_b0010 – volume: 103 start-page: 155 issue: 1 year: 2021 ident: 10.1016/j.eswa.2024.126197_b0035 article-title: Improving healthcare services using source anonymous scheme with privacy preserving distributed healthcare data collection and mining publication-title: Computing doi: 10.1007/s00607-020-00847-0 – volume: 6 start-page: 34 issue: 3 year: 2022 ident: 10.1016/j.eswa.2024.126197_b0110 article-title: BFV-based homomorphic encryption for privacy-preserving CNN models publication-title: Cryptography doi: 10.3390/cryptography6030034 – volume: 9 start-page: 132084 year: 2021 ident: 10.1016/j.eswa.2024.126197_b0085 article-title: Privacy-preserving collective learning with homomorphic encryption publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3114581 – ident: 10.1016/j.eswa.2024.126197_b0005 doi: 10.1007/978-3-319-72395-2_49 – volume: 111 start-page: 213 year: 2020 ident: 10.1016/j.eswa.2024.126197_b0080 article-title: Secure medical data transmission using a fusion of bit mask oriented genetic algorithm, encryption and steganography publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2020.04.034 – volume: 11 start-page: 22 issue: 3 year: 2020 ident: 10.1016/j.eswa.2024.126197_b0070 article-title: Artificial bee colony-based approach for privacy preservation of medical data publication-title: International Journal of Information System Modeling and Design (IJISMD) doi: 10.4018/IJISMD.2020070102 – volume: 10 year: 2023 ident: 10.1016/j.eswa.2024.126197_b0020 article-title: Towards realistic privacy-preserving deep learning over encrypted medical data publication-title: Frontiers in Cardiovascular Medicine doi: 10.3389/fcvm.2023.1117360 – ident: 10.1016/j.eswa.2024.126197_b0105 doi: 10.1155/2020/3910250 – start-page: 48 year: 2016 ident: 10.1016/j.eswa.2024.126197_b0040 article-title: Encryption as a service for data healthcare cloud security – volume: 141 start-page: 294 year: 2018 ident: 10.1016/j.eswa.2024.126197_b0055 article-title: Security model for big healthcare data lifecycle publication-title: Procedia Computer Science doi: 10.1016/j.procs.2018.10.199 – volume: 37 start-page: 5880 issue: 9 year: 2022 ident: 10.1016/j.eswa.2024.126197_b0065 article-title: Privacy‐preserving federated learning based on multi‐key homomorphic encryption publication-title: International Journal of Intelligent Systems doi: 10.1002/int.22818 – volume: 9 start-page: 1207 issue: 6 year: 2019 ident: 10.1016/j.eswa.2024.126197_b0095 article-title: MedChain: Efficient healthcare data sharing via blockchain publication-title: Applied Sciences doi: 10.3390/app9061207 – volume: 101 year: 2020 ident: 10.1016/j.eswa.2024.126197_b0100 article-title: Deep learning for electronic health records: A comparative review of multiple deep neural architectures publication-title: Journal of Biomedical Informatics – ident: 10.1016/j.eswa.2024.126197_b0050 – volume: 51 start-page: 1531 year: 2021 ident: 10.1016/j.eswa.2024.126197_b0045 article-title: Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems publication-title: Applied Intelligence doi: 10.1007/s10489-020-01893-z – volume: 77 start-page: 11099 year: 2021 ident: 10.1016/j.eswa.2024.126197_b0030 article-title: A bio-inspired privacy-preserving framework for healthcare systems publication-title: The Journal of Supercomputing doi: 10.1007/s11227-021-03720-9 – volume: 21 start-page: 1 issue: 2 year: 2021 ident: 10.1016/j.eswa.2024.126197_b0090 article-title: Federated learning in a medical context: A systematic literature review publication-title: ACM Transactions on Internet Technology (TOIT) doi: 10.1145/3412357 – volume: 384 start-page: 21 year: 2020 ident: 10.1016/j.eswa.2024.126197_b0015 article-title: A review of privacy-preserving techniques for deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.041 – volume: 10 start-page: 4678 issue: 24 year: 2022 ident: 10.1016/j.eswa.2024.126197_b0115 article-title: An examination of multi-key fully homomorphic encryption and its applications publication-title: Mathematics doi: 10.3390/math10244678 – volume: 8 start-page: 12528 issue: 16 year: 2021 ident: 10.1016/j.eswa.2024.126197_b0060 article-title: Efficient and privacy-preserving decision tree classification for health monitoring systems publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2021.3066307 – volume: 22 start-page: 5574 issue: 15 year: 2022 ident: 10.1016/j.eswa.2024.126197_b0075 article-title: An efficient and privacy-preserving scheme for disease prediction in modern healthcare systems publication-title: Sensors doi: 10.3390/s22155574 – ident: 10.1016/j.eswa.2024.126197_b0025 – volume: 15 issue: 1 year: 2022 ident: 10.1016/j.eswa.2024.126197_b0120 article-title: POA: Puzzle optimization algorithm publication-title: International Journal of Intelligent Engineering & Systems |
| SSID | ssj0017007 |
| Score | 2.5005534 |
| Snippet | The rapid advancement of digital healthcare systems has significantly increased the volume of medical data, raising concerns about its security and... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 126197 |
| SubjectTerms | Archimedes Optimization Algorithm (AOA) Deep Residual Network (DRN) Healthcare Data Homomorphic Encryption (HE) Puzzle Optimization Algorithm (POA) |
| Title | Federated learning enabled multi-key homomorphic encryption |
| URI | https://dx.doi.org/10.1016/j.eswa.2024.126197 |
| Volume | 268 |
| WOSCitedRecordID | wos001412045700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017007 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFA6iPvjiXbzTB99GxpqmTYtPIor6IOIU9laSNEWHq2Obc_57T5ZLh4qoIIMy0iXbzpednZzbh9BRxiUHQ4LiUqgE00zEWPCI4ZASXmSkJGlqyCbY9XXa6WQ3lnVtOKUTYFWVTiZZ_1-hhjEAW5fO_gJuvygMwHMAHa4AO1x_BPy5bg_BtSH55NwealogVZjsQQw_28bDcw8eIONHCXfl4K3vAer65Dw1GNlOz64GbibaXceAeuLBZGlfqB7g1LjlvYL7-20dIhrzIYfxqVu23Zz1NJB4mqAS1-4vVwJT5xsZPyLDNDRUO06lEkOV80k9G09Bt6mGr7rnE6HNUJ_gWP1n5FME23phva5uGAh2E5xwFwiLM9BcCyeXZ50rHytiLVMU7z6ILY0yWXwf3-lr82PGpLhbRcv2LBCcGAzX0Jyq1tGK49kIrNrdQMce0sBBGlhIAw9pMANpUEO6ie7Pz-5OL7AlvcAyarVGmGc0kkTwWMejC8YkYTJJWxw0bRHC1xMlkyWAkzJN6pEIFSnFSl1OTKhIRBhtofnquVLbKIDDqJQwylVBqVS6xFrJNFRhwjNOS76DQieLXNqO8JqY5Cl3qX_dXMsv1_LLjfx2UMPP6Zt-KN--OnYizq1FZyy1HHbEN_N2_zhvDy3VG3cfzY8GL-oALcrx6HE4OLQb5x0ZZ3GL |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+learning+enabled+multi-key+homomorphic+encryption&rft.jtitle=Expert+systems+with+applications&rft.au=Kumbhar%2C+Hemant+Ramdas&rft.au=Srinivasa+Rao%2C+S.&rft.date=2025-04-05&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=268&rft_id=info:doi/10.1016%2Fj.eswa.2024.126197&rft.externalDocID=S0957417424030641 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |