Federated learning enabled multi-key homomorphic encryption

The rapid advancement of digital healthcare systems has significantly increased the volume of medical data, raising concerns about its security and confidentiality. As patient information is highly sensitive, any compromise could have severe consequences in healthcare delivery. Federated Learning (F...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 268; p. 126197
Main Authors: Kumbhar, Hemant Ramdas, Srinivasa Rao, S.
Format: Journal Article
Language:English
Published: Elsevier Ltd 05.04.2025
Subjects:
ISSN:0957-4174
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The rapid advancement of digital healthcare systems has significantly increased the volume of medical data, raising concerns about its security and confidentiality. As patient information is highly sensitive, any compromise could have severe consequences in healthcare delivery. Federated Learning (FL) has emerged as a promising solution by enabling decentralized data processing through local training and global model aggregation. Despite its advantages, FL faces challenges in ensuring the secure transmission of data and preserving privacy during model updates. Homomorphic encryption (HE)-based security is a promising approach for secure data transmission. Hence, the Puzzle Archimedes Optimization Algorithm (PAOA)-based multi-key HE is designed in this research. The healthcare data is obtained from the dataset and shared among many parties using a multi-party data-sharing platform. All parties utilize noise-free HE to protect sensitive data and enhance communication security. The ideal multi-keys are created using the proposed PAOA. Moreover, the PAOA-trained deep residual network (DRN) (PAOA_DRN) is utilized for privacy data classification. The outcome from each of the local training is aggregated into the global training, and the weights of every local training model are updated. Furthermore, the training accuracy, training loss, mean average precision, and Mean Squared Error (MSE) metrics are utilized for computing the efficacy of the PAOA_DRN. On the Cleveland dataset, the model achieved superior results with a training accuracy of 0.946, training loss of 0.053, MAP of 0.951, and MSE of 0.182. This research provides a significant step forward in addressing critical issues in healthcare data security, with the potential for broad application in medical data sharing and privacy-preserving analytics.
AbstractList The rapid advancement of digital healthcare systems has significantly increased the volume of medical data, raising concerns about its security and confidentiality. As patient information is highly sensitive, any compromise could have severe consequences in healthcare delivery. Federated Learning (FL) has emerged as a promising solution by enabling decentralized data processing through local training and global model aggregation. Despite its advantages, FL faces challenges in ensuring the secure transmission of data and preserving privacy during model updates. Homomorphic encryption (HE)-based security is a promising approach for secure data transmission. Hence, the Puzzle Archimedes Optimization Algorithm (PAOA)-based multi-key HE is designed in this research. The healthcare data is obtained from the dataset and shared among many parties using a multi-party data-sharing platform. All parties utilize noise-free HE to protect sensitive data and enhance communication security. The ideal multi-keys are created using the proposed PAOA. Moreover, the PAOA-trained deep residual network (DRN) (PAOA_DRN) is utilized for privacy data classification. The outcome from each of the local training is aggregated into the global training, and the weights of every local training model are updated. Furthermore, the training accuracy, training loss, mean average precision, and Mean Squared Error (MSE) metrics are utilized for computing the efficacy of the PAOA_DRN. On the Cleveland dataset, the model achieved superior results with a training accuracy of 0.946, training loss of 0.053, MAP of 0.951, and MSE of 0.182. This research provides a significant step forward in addressing critical issues in healthcare data security, with the potential for broad application in medical data sharing and privacy-preserving analytics.
ArticleNumber 126197
Author Kumbhar, Hemant Ramdas
Srinivasa Rao, S.
Author_xml – sequence: 1
  givenname: Hemant Ramdas
  orcidid: 0009-0004-9956-1197
  surname: Kumbhar
  fullname: Kumbhar, Hemant Ramdas
  email: hemant.kumbhar@gmail.com
– sequence: 2
  givenname: S.
  surname: Srinivasa Rao
  fullname: Srinivasa Rao, S.
  email: srinu1479cse@kluniversity.in
BookMark eNp9j7FOwzAQhj0UibbwAkx9gYSz4_hSwYIqCkiVWGC2HOdCXdKksg2ob4-jMjFUN5x0v77T_83YpB96YuyGQ86Bq9tdTuHH5AKEzLlQfIkTNoVliZnkKC_ZLIQdAEcAnLK7NTXkTaRm0ZHxves_FtSbukuH_VcXXfZJx8V22Kfxh62zKbX-eIhu6K_YRWu6QNd_e87e149vq-ds8_r0snrYZLYAiJlZysKK2pSlKrFBtAKtqsCArBqeKtUt2hZEWSFBWaiaCiJslUQUslY1L-ZMnP5aP4TgqdUH7_bGHzUHPSrrnR6V9aisT8oJqv5B1kUz1o7euO48en9CKUl9O_I6WJe0qXGebNTN4M7hv1RZdi8
CitedBy_id crossref_primary_10_1109_JIOT_2025_3565598
crossref_primary_10_3390_ai6050095
crossref_primary_10_1007_s10586_025_05354_5
crossref_primary_10_1007_s11227_025_07322_7
crossref_primary_10_1007_s10586_025_05337_6
Cites_doi 10.1007/s00607-020-00847-0
10.3390/cryptography6030034
10.1109/ACCESS.2021.3114581
10.1007/978-3-319-72395-2_49
10.1016/j.future.2020.04.034
10.4018/IJISMD.2020070102
10.3389/fcvm.2023.1117360
10.1155/2020/3910250
10.1016/j.procs.2018.10.199
10.1002/int.22818
10.3390/app9061207
10.1007/s10489-020-01893-z
10.1007/s11227-021-03720-9
10.1145/3412357
10.1016/j.neucom.2019.11.041
10.3390/math10244678
10.1109/JIOT.2021.3066307
10.3390/s22155574
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2024.126197
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2024_126197
S0957417424030641
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAYWO
AAYXX
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY1
LY7
M41
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-a943c2ba55657d77c27c680a048d1417bf7cf02587e0536be3ee7f647724b6b13
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001412045700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 03:07:47 EST 2025
Tue Nov 18 22:43:31 EST 2025
Sat Feb 15 15:52:42 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Homomorphic Encryption (HE)
Deep Residual Network (DRN)
Archimedes Optimization Algorithm (AOA)
Puzzle Optimization Algorithm (POA)
Healthcare Data
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-a943c2ba55657d77c27c680a048d1417bf7cf02587e0536be3ee7f647724b6b13
ORCID 0009-0004-9956-1197
ParticipantIDs crossref_primary_10_1016_j_eswa_2024_126197
crossref_citationtrail_10_1016_j_eswa_2024_126197
elsevier_sciencedirect_doi_10_1016_j_eswa_2024_126197
PublicationCentury 2000
PublicationDate 2025-04-05
PublicationDateYYYYMMDD 2025-04-05
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-05
  day: 05
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zeidabadi, Dehghani (b0120) 2022; 15
Al Omar, A., Rahman, M. S., Basu, A. & Kiyomoto, S. (2017). Medibchain: A blockchain based privacy preserving platform for healthcare data.
El Bouchti, Bahsani, Nahhal (b0040) 2016
Cabrero-Holgueras, Pastrana (b0020) 2023; 10
Wibawa, Catak, Sarp, Kuzlu (b0110) 2022; 6
Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (b0045) 2021; 51
534-543.
Dhasarathan, Kumar, Srivastava, Al-Turjman, Shankar, Kumar (b0030) 2021; 77
Boulemtafes, Derhab, Challal (b0015) 2020; 384
Pandey (b0080) 2020; 111
Mewada, Gautam, Sharma (b0070) 2020; 11
Yuan, Wang, Zhang, Wang, Ji, Ren (b0115) 2022; 10
Domadiya, Rao (b0035) 2021; 103
Liang, Qin, Xue, Lin, Shen (b0060) 2021; 8
Ma, Naas, Sigg, Lyu (b0065) 2022; 37
Heart Disease dataset is taken from, https://archive.ics.uci.edu/dataset/45/heart+disease, accessed on November (2023).
Bjerva, J., Plank, B., & Bos, J. (2016). Semantic tagging with deep residual networks.
.
Shen, Guo, Yang (b0095) 2019; 9
Pfitzner, Steckhan, Arnrich (b0090) 2021; 21
Vizitiu, A., Nită, C. I., Puiu, A., Suciu, C., & Itu, L. M. (2020). Applying deep neural networks over homomorphic encrypted medical data.
Cheng, N., Önen, M., Mitrokotsa, A., Chouchane, O., Todisco, M., & Ibarrondo, A. (2023). Privacy-preserving Cosine Similarity Computation with Malicious Security Applied to Biometric Authentication.
Padinjappurathu Gopalan, Chowdhary, Iwendi, Farid, Ramasamy (b0075) 2022; 22
Khaloufi, Abouelmehdi, Beni-hssane, Saadi (b0055) 2018; 141
Paul, Annamalai, Ming, Al Badawi, Veeravalli, Aung (b0085) 2021; 9
Solares, Raimondi, Zhu, Rahimian, Canoy, Tran, Gomes, Payberah, Zottoli, Nazarzadeh, Conrad (b0100) 2020; 101
10.1016/j.eswa.2024.126197_b0010
Liang (10.1016/j.eswa.2024.126197_b0060) 2021; 8
Padinjappurathu Gopalan (10.1016/j.eswa.2024.126197_b0075) 2022; 22
Mewada (10.1016/j.eswa.2024.126197_b0070) 2020; 11
Zeidabadi (10.1016/j.eswa.2024.126197_b0120) 2022; 15
10.1016/j.eswa.2024.126197_b0050
Boulemtafes (10.1016/j.eswa.2024.126197_b0015) 2020; 384
Solares (10.1016/j.eswa.2024.126197_b0100) 2020; 101
Wibawa (10.1016/j.eswa.2024.126197_b0110) 2022; 6
Ma (10.1016/j.eswa.2024.126197_b0065) 2022; 37
Shen (10.1016/j.eswa.2024.126197_b0095) 2019; 9
10.1016/j.eswa.2024.126197_b0025
El Bouchti (10.1016/j.eswa.2024.126197_b0040) 2016
Dhasarathan (10.1016/j.eswa.2024.126197_b0030) 2021; 77
10.1016/j.eswa.2024.126197_b0005
Paul (10.1016/j.eswa.2024.126197_b0085) 2021; 9
10.1016/j.eswa.2024.126197_b0105
Hashim (10.1016/j.eswa.2024.126197_b0045) 2021; 51
Cabrero-Holgueras (10.1016/j.eswa.2024.126197_b0020) 2023; 10
Pandey (10.1016/j.eswa.2024.126197_b0080) 2020; 111
Domadiya (10.1016/j.eswa.2024.126197_b0035) 2021; 103
Pfitzner (10.1016/j.eswa.2024.126197_b0090) 2021; 21
Khaloufi (10.1016/j.eswa.2024.126197_b0055) 2018; 141
Yuan (10.1016/j.eswa.2024.126197_b0115) 2022; 10
References_xml – volume: 101
  year: 2020
  ident: b0100
  article-title: Deep learning for electronic health records: A comparative review of multiple deep neural architectures
  publication-title: Journal of Biomedical Informatics
– reference: Heart Disease dataset is taken from, https://archive.ics.uci.edu/dataset/45/heart+disease, accessed on November (2023).
– reference: Al Omar, A., Rahman, M. S., Basu, A. & Kiyomoto, S. (2017). Medibchain: A blockchain based privacy preserving platform for healthcare data.
– start-page: 48
  year: 2016
  end-page: 54
  ident: b0040
  article-title: Encryption as a service for data healthcare cloud security
  publication-title: In proceedings of 2016 fifth international conference on future generation communication technologies (FGCT)
– reference: Vizitiu, A., Nită, C. I., Puiu, A., Suciu, C., & Itu, L. M. (2020). Applying deep neural networks over homomorphic encrypted medical data.
– volume: 10
  start-page: 4678
  year: 2022
  ident: b0115
  article-title: An examination of multi-key fully homomorphic encryption and its applications
  publication-title: Mathematics
– volume: 9
  start-page: 132084
  year: 2021
  end-page: 132096
  ident: b0085
  article-title: Privacy-preserving collective learning with homomorphic encryption
  publication-title: IEEE Access
– reference: Cheng, N., Önen, M., Mitrokotsa, A., Chouchane, O., Todisco, M., & Ibarrondo, A. (2023). Privacy-preserving Cosine Similarity Computation with Malicious Security Applied to Biometric Authentication.
– volume: 10
  year: 2023
  ident: b0020
  article-title: Towards realistic privacy-preserving deep learning over encrypted medical data
  publication-title: Frontiers in Cardiovascular Medicine
– reference: , 534-543.
– volume: 21
  start-page: 1
  year: 2021
  end-page: 31
  ident: b0090
  article-title: Federated learning in a medical context: A systematic literature review
  publication-title: ACM Transactions on Internet Technology (TOIT)
– volume: 11
  start-page: 22
  year: 2020
  end-page: 39
  ident: b0070
  article-title: Artificial bee colony-based approach for privacy preservation of medical data
  publication-title: International Journal of Information System Modeling and Design (IJISMD)
– volume: 37
  start-page: 5880
  year: 2022
  end-page: 5901
  ident: b0065
  article-title: Privacy‐preserving federated learning based on multi‐key homomorphic encryption
  publication-title: International Journal of Intelligent Systems
– volume: 51
  start-page: 1531
  year: 2021
  end-page: 1551
  ident: b0045
  article-title: Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems
  publication-title: Applied Intelligence
– volume: 8
  start-page: 12528
  year: 2021
  end-page: 12539
  ident: b0060
  article-title: Efficient and privacy-preserving decision tree classification for health monitoring systems
  publication-title: IEEE Internet of Things Journal
– volume: 111
  start-page: 213
  year: 2020
  end-page: 225
  ident: b0080
  article-title: Secure medical data transmission using a fusion of bit mask oriented genetic algorithm, encryption and steganography
  publication-title: Future Generation Computer Systems
– reference: .
– volume: 22
  start-page: 5574
  year: 2022
  ident: b0075
  article-title: An efficient and privacy-preserving scheme for disease prediction in modern healthcare systems
  publication-title: Sensors
– reference: Bjerva, J., Plank, B., & Bos, J. (2016). Semantic tagging with deep residual networks.
– volume: 77
  start-page: 11099
  year: 2021
  end-page: 11134
  ident: b0030
  article-title: A bio-inspired privacy-preserving framework for healthcare systems
  publication-title: The Journal of Supercomputing
– volume: 103
  start-page: 155
  year: 2021
  end-page: 177
  ident: b0035
  article-title: Improving healthcare services using source anonymous scheme with privacy preserving distributed healthcare data collection and mining
  publication-title: Computing
– volume: 15
  year: 2022
  ident: b0120
  article-title: POA: Puzzle optimization algorithm
  publication-title: International Journal of Intelligent Engineering & Systems
– volume: 384
  start-page: 21
  year: 2020
  end-page: 45
  ident: b0015
  article-title: A review of privacy-preserving techniques for deep learning
  publication-title: Neurocomputing
– volume: 9
  start-page: 1207
  year: 2019
  ident: b0095
  article-title: MedChain: Efficient healthcare data sharing via blockchain
  publication-title: Applied Sciences
– volume: 141
  start-page: 294
  year: 2018
  end-page: 301
  ident: b0055
  article-title: Security model for big healthcare data lifecycle
  publication-title: Procedia Computer Science
– volume: 6
  start-page: 34
  year: 2022
  ident: b0110
  article-title: BFV-based homomorphic encryption for privacy-preserving CNN models
  publication-title: Cryptography
– ident: 10.1016/j.eswa.2024.126197_b0010
– volume: 103
  start-page: 155
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2024.126197_b0035
  article-title: Improving healthcare services using source anonymous scheme with privacy preserving distributed healthcare data collection and mining
  publication-title: Computing
  doi: 10.1007/s00607-020-00847-0
– volume: 6
  start-page: 34
  issue: 3
  year: 2022
  ident: 10.1016/j.eswa.2024.126197_b0110
  article-title: BFV-based homomorphic encryption for privacy-preserving CNN models
  publication-title: Cryptography
  doi: 10.3390/cryptography6030034
– volume: 9
  start-page: 132084
  year: 2021
  ident: 10.1016/j.eswa.2024.126197_b0085
  article-title: Privacy-preserving collective learning with homomorphic encryption
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3114581
– ident: 10.1016/j.eswa.2024.126197_b0005
  doi: 10.1007/978-3-319-72395-2_49
– volume: 111
  start-page: 213
  year: 2020
  ident: 10.1016/j.eswa.2024.126197_b0080
  article-title: Secure medical data transmission using a fusion of bit mask oriented genetic algorithm, encryption and steganography
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2020.04.034
– volume: 11
  start-page: 22
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2024.126197_b0070
  article-title: Artificial bee colony-based approach for privacy preservation of medical data
  publication-title: International Journal of Information System Modeling and Design (IJISMD)
  doi: 10.4018/IJISMD.2020070102
– volume: 10
  year: 2023
  ident: 10.1016/j.eswa.2024.126197_b0020
  article-title: Towards realistic privacy-preserving deep learning over encrypted medical data
  publication-title: Frontiers in Cardiovascular Medicine
  doi: 10.3389/fcvm.2023.1117360
– ident: 10.1016/j.eswa.2024.126197_b0105
  doi: 10.1155/2020/3910250
– start-page: 48
  year: 2016
  ident: 10.1016/j.eswa.2024.126197_b0040
  article-title: Encryption as a service for data healthcare cloud security
– volume: 141
  start-page: 294
  year: 2018
  ident: 10.1016/j.eswa.2024.126197_b0055
  article-title: Security model for big healthcare data lifecycle
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2018.10.199
– volume: 37
  start-page: 5880
  issue: 9
  year: 2022
  ident: 10.1016/j.eswa.2024.126197_b0065
  article-title: Privacy‐preserving federated learning based on multi‐key homomorphic encryption
  publication-title: International Journal of Intelligent Systems
  doi: 10.1002/int.22818
– volume: 9
  start-page: 1207
  issue: 6
  year: 2019
  ident: 10.1016/j.eswa.2024.126197_b0095
  article-title: MedChain: Efficient healthcare data sharing via blockchain
  publication-title: Applied Sciences
  doi: 10.3390/app9061207
– volume: 101
  year: 2020
  ident: 10.1016/j.eswa.2024.126197_b0100
  article-title: Deep learning for electronic health records: A comparative review of multiple deep neural architectures
  publication-title: Journal of Biomedical Informatics
– ident: 10.1016/j.eswa.2024.126197_b0050
– volume: 51
  start-page: 1531
  year: 2021
  ident: 10.1016/j.eswa.2024.126197_b0045
  article-title: Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-020-01893-z
– volume: 77
  start-page: 11099
  year: 2021
  ident: 10.1016/j.eswa.2024.126197_b0030
  article-title: A bio-inspired privacy-preserving framework for healthcare systems
  publication-title: The Journal of Supercomputing
  doi: 10.1007/s11227-021-03720-9
– volume: 21
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2024.126197_b0090
  article-title: Federated learning in a medical context: A systematic literature review
  publication-title: ACM Transactions on Internet Technology (TOIT)
  doi: 10.1145/3412357
– volume: 384
  start-page: 21
  year: 2020
  ident: 10.1016/j.eswa.2024.126197_b0015
  article-title: A review of privacy-preserving techniques for deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.041
– volume: 10
  start-page: 4678
  issue: 24
  year: 2022
  ident: 10.1016/j.eswa.2024.126197_b0115
  article-title: An examination of multi-key fully homomorphic encryption and its applications
  publication-title: Mathematics
  doi: 10.3390/math10244678
– volume: 8
  start-page: 12528
  issue: 16
  year: 2021
  ident: 10.1016/j.eswa.2024.126197_b0060
  article-title: Efficient and privacy-preserving decision tree classification for health monitoring systems
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2021.3066307
– volume: 22
  start-page: 5574
  issue: 15
  year: 2022
  ident: 10.1016/j.eswa.2024.126197_b0075
  article-title: An efficient and privacy-preserving scheme for disease prediction in modern healthcare systems
  publication-title: Sensors
  doi: 10.3390/s22155574
– ident: 10.1016/j.eswa.2024.126197_b0025
– volume: 15
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2024.126197_b0120
  article-title: POA: Puzzle optimization algorithm
  publication-title: International Journal of Intelligent Engineering & Systems
SSID ssj0017007
Score 2.5005534
Snippet The rapid advancement of digital healthcare systems has significantly increased the volume of medical data, raising concerns about its security and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126197
SubjectTerms Archimedes Optimization Algorithm (AOA)
Deep Residual Network (DRN)
Healthcare Data
Homomorphic Encryption (HE)
Puzzle Optimization Algorithm (POA)
Title Federated learning enabled multi-key homomorphic encryption
URI https://dx.doi.org/10.1016/j.eswa.2024.126197
Volume 268
WOSCitedRecordID wos001412045700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS-NAFB9E97AXXddd_FglB28lJZlkMlM8FVFUFpGtC72FycsELTaWtmr9732T-UjZFdGFpRDKpDNt32_m5X0_Qg6hEBVQfZBEjAoKFSwUikNYJRVKt0xEWdQkCv_kl5diOOxd2a5rs6adAK9rsVj0Jv8VahxDsHXq7Afg9oviAL5H0PGKsOP1XcCf6vIQUguSd87soZoEqdJED4Z4bDs392N8IY1vAe_C9HniARr54Dw1ndtKzy4Hbsnb3fqAxsWNidI-U2PEqfNLjkvp7w-0i-hRziSON2bZQXfZ0kBZE6DCWvOXS4Fp442MHZGHaWxa7TiWSk2rnL_Ys7EUjLpq9qRrPtG0G2sNjrcPIx8iONAL63V1wUCUm1DDXaOc9ZBzrfXPT4YX3lfEI5MU736ITY0yUXx_ftPr4seSSHH9haxbXSDoGww3yYqqv5IN12cjsGx3ixx5SAMHaWAhDTykwRKkQQvpN_L79OT6-Cy0TS9CSKJoHspemgAtJNP-6JJzoBwyEUnktGWMf6-oOFQIjuC6qUdWqEQpXul0YpoWWREn38lqfV-rbRJUkrISGPBEotJbUUmB0SIDPIGRhCjdIbGjRQ62IrxuTHKXu9C_Ua7pl2v65YZ-O6Tj50xMPZQ3P80ciXMr0RlJLccd8ca83X-ct0c-txv3B1mdTx_UPvkEj_Pb2fTAbpwXkfpwoQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+learning+enabled+multi-key+homomorphic+encryption&rft.jtitle=Expert+systems+with+applications&rft.au=Kumbhar%2C+Hemant+Ramdas&rft.au=Srinivasa+Rao%2C+S.&rft.date=2025-04-05&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=268&rft_id=info:doi/10.1016%2Fj.eswa.2024.126197&rft.externalDocID=S0957417424030641
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon