Osprey Gannet optimization enabled CNN based Transfer learning for optic disc detection and cardiovascular risk prediction using retinal fundus images
•The pre-processing process utilizing bilateral filter.•The OD detection is done by Osprey Gannet-active counter model trained by OGO.•CV risk prediction is accomplished by CNN-based TL trained by OGO. The identification of retinal vascular features that have been demonstrated to predict cardiovascu...
Gespeichert in:
| Veröffentlicht in: | Biomedical signal processing and control Jg. 93; S. 106177 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.07.2024
|
| Schlagworte: | |
| ISSN: | 1746-8094, 1746-8108 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •The pre-processing process utilizing bilateral filter.•The OD detection is done by Osprey Gannet-active counter model trained by OGO.•CV risk prediction is accomplished by CNN-based TL trained by OGO.
The identification of retinal vascular features that have been demonstrated to predict cardiovascular (CV) risk has been made possible by recent developments in retinal imaging modality, and the detection of the optic disc (OD) is a key step in the development of automated screening systems for diabetic retinopathy (DR). However, there are some risk factors, which cannot be detected in both cardiovascular and OD. To bridge this gap, Transfer learning (TL) based Osprey Gannet optimization (OGO) utilizing retinal fundus image is established. Initially, the input fundus image is allowed into the preprocessing process utilizing a bilateral filter. Thereafter, the OD detection is done using the devised Osprey Gannet-active counter model, which is trained using OGO. Here, OGO is developed by the integration of Osprey Optimization (OO) and Gannet Optimization (GO). Simultaneously, the pre-processed image is passed to the blood vessel segmentation (BVS) and is performed by Res-UNet, trained by the Jaya Chronological Chef-Based Optimization Algorithm (Jaya-CCBOA). Hereafter, the feature extraction is carried out from the OD detection phase and BVS. On the other hand, the input image is also extracted using various feature extractors. Thereafter, feature selection is done using Tanimoto similarity. Finally, the detection of CV risk as normal and hypertensive is accomplished by the Convolutional neural network (CNN) based TL, trained by OGO. The measures employed in OGO_CNN based TL achieved maximum values of 92.1%, 91.5%, 93.1%, 87.9%, and 87.9%. |
|---|---|
| AbstractList | •The pre-processing process utilizing bilateral filter.•The OD detection is done by Osprey Gannet-active counter model trained by OGO.•CV risk prediction is accomplished by CNN-based TL trained by OGO.
The identification of retinal vascular features that have been demonstrated to predict cardiovascular (CV) risk has been made possible by recent developments in retinal imaging modality, and the detection of the optic disc (OD) is a key step in the development of automated screening systems for diabetic retinopathy (DR). However, there are some risk factors, which cannot be detected in both cardiovascular and OD. To bridge this gap, Transfer learning (TL) based Osprey Gannet optimization (OGO) utilizing retinal fundus image is established. Initially, the input fundus image is allowed into the preprocessing process utilizing a bilateral filter. Thereafter, the OD detection is done using the devised Osprey Gannet-active counter model, which is trained using OGO. Here, OGO is developed by the integration of Osprey Optimization (OO) and Gannet Optimization (GO). Simultaneously, the pre-processed image is passed to the blood vessel segmentation (BVS) and is performed by Res-UNet, trained by the Jaya Chronological Chef-Based Optimization Algorithm (Jaya-CCBOA). Hereafter, the feature extraction is carried out from the OD detection phase and BVS. On the other hand, the input image is also extracted using various feature extractors. Thereafter, feature selection is done using Tanimoto similarity. Finally, the detection of CV risk as normal and hypertensive is accomplished by the Convolutional neural network (CNN) based TL, trained by OGO. The measures employed in OGO_CNN based TL achieved maximum values of 92.1%, 91.5%, 93.1%, 87.9%, and 87.9%. |
| ArticleNumber | 106177 |
| Author | Kadry, Seifedine Balasubramaniam, S Satheesh Kumar, K. |
| Author_xml | – sequence: 1 givenname: S surname: Balasubramaniam fullname: Balasubramaniam, S email: baluttn@gmail.com organization: School of Computer Science and Engineering, Kerala University of Digital Sciences, Innovation and Technology (Formerly IIITM-K), Digital University Kerala, Thiruvananthapuram, Kerala, India – 695317 – sequence: 2 givenname: Seifedine surname: Kadry fullname: Kadry, Seifedine organization: Department of Applied Data Science, Noroff University College, Kristiansand, Norway-4612 – sequence: 3 givenname: K. surname: Satheesh Kumar fullname: Satheesh Kumar, K. organization: Department of Future Studies, University of Kerala, Thiruvananthapuram, Kerala, India-695581 |
| BookMark | eNp9kM9OAjEQhxujiYC-gKe-ANhul_2TeDFE0YTABc_NbDslxaVL2oUEH8TntcvqxQOXdjLp95vpNyTXrnFIyANnE8549ridVGGvJglL0tjIeJ5fkQHP02xccFZc_9WsTG_JMIQtY2mR83RAvldh7_FE5-ActrTZt3Znv6C1jaPooKpR09lySSsIsVp7cMGgpzWCd9ZtqGn8GVJU2xAPbFGdYXCaKvDaNkcI6lCDp96GTxqnads_OYQuwWNrHdTUHJw-BGp3sMFwR24M1AHvf-8R-Xh9Wc_exovV_H32vBgrwVg7hjIRUFW6AJ4LlZlCAxZTUSaGCYFGpEZAkqYKRAFCVNMsYpqzcqoyzblSYkSSPlf5JgSPRu593MCfJGeyMyu3sjMrO7OyNxuh4h-kbHtW1nqw9WX0qUcxfupo0cugLDoVnfgoTurGXsJ_AH42mro |
| CitedBy_id | crossref_primary_10_1016_j_asej_2025_103369 crossref_primary_10_1016_j_bspc_2025_108598 crossref_primary_10_1016_j_bspc_2024_107442 crossref_primary_10_1016_j_knosys_2024_112679 crossref_primary_10_1038_s41598_025_98593_w crossref_primary_10_1016_j_aej_2025_03_139 crossref_primary_10_1007_s10115_024_02332_y crossref_primary_10_1038_s41598_025_94677_9 crossref_primary_10_1016_j_bspc_2024_107136 crossref_primary_10_1155_int_4296751 crossref_primary_10_1007_s10115_024_02322_0 crossref_primary_10_1038_s41598_025_97675_z crossref_primary_10_1016_j_bspc_2024_107070 crossref_primary_10_1016_j_bspc_2024_107170 crossref_primary_10_1038_s41598_025_88728_4 |
| Cites_doi | 10.1038/s41551-020-00626-4 10.1109/TIP.2014.2321495 10.1016/j.patrec.2014.08.012 10.1167/tvst.9.2.28 10.1016/j.bbe.2019.07.001 10.3390/s22124310 10.1007/s11760-019-01463-y 10.1007/s11517-019-02032-8 10.1016/j.comcom.2019.12.063 10.3390/app10113777 10.1167/iovs.16-21015 10.1038/s41598-022-19313-2 10.32604/biocell.2023.025905 10.1007/s11042-018-6082-6 10.1016/S2589-7500(21)00043-1 10.1016/j.matcom.2022.06.007 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2024.106177 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1746-8108 |
| ExternalDocumentID | 10_1016_j_bspc_2024_106177 S1746809424002350 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABMYL ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-a923abbd8a173c6f8dae85392f033ef34f3a244ca38a33b56c30d1095c6d11cc3 |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001209191200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1746-8094 |
| IngestDate | Sat Nov 29 02:51:25 EST 2025 Tue Nov 18 22:33:51 EST 2025 Sat Mar 23 16:41:49 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Transfer learning (TL) Convolutional neural network (CNN) Optic disc (OD) Retinal fundus image Cardiovascular disease (CVD) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-a923abbd8a173c6f8dae85392f033ef34f3a244ca38a33b56c30d1095c6d11cc3 |
| ParticipantIDs | crossref_primary_10_1016_j_bspc_2024_106177 crossref_citationtrail_10_1016_j_bspc_2024_106177 elsevier_sciencedirect_doi_10_1016_j_bspc_2024_106177 |
| PublicationCentury | 2000 |
| PublicationDate | July 2024 2024-07-00 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Shi, Hao, Zhao, Feng, He, Wang, Suzuki (b0115) 2019; 78 Rao (b0075) 2016; 7 Jiang, Wang, Gao, Cao (b0040) 2020; 10 Pan, Zhang, Wang, Snášel, Chu (b0065) 2022; 202 Son, Shin, Chun, Jung, Park, Park (b0015) 2020; 9 Wang, Pei, Wang, Gorriz, Zhang (b0130) 2023; 47 Al-Absi, Islam, Refaee, Chowdhury, Alam (b0005) 2022; 22 Trojovsky, Dehghani (b0060) 2023; 8 Mohanaiah, Sathyanarayana, GuruKumar (b0105) 2013; 3 Liu, Yuan (b0070) 2021; 1924 Rim, Lee, Tham, Cheung, Yu, Lee, Kim, Ting, Chong, Choi, Yoo (b0010) 2021; 3 accessed on March 2023. 1000 fundus images with 39 categories Dataset will be taken from Sadhukhan, Sarkar, Sinha, Ghorai, Sarkar, Dhara (b0025) 2020; 14 Fan, Hung (b0095) 2014; 23 Zhang, Deng, Zhu, Wang, Ren, Zhou, Siyuan, Sun, Zhu, Gorriz, Wang (b0135) 2023; 998 Mall, Singh, Yadav (b0125) 2019 Zhu, Wang, Ulidowski, Zhou, Wang, Chen, Zhang (b0140) 2023; 280 Cheung, Xu, Cheng, Sabanayagam, Tham, Yu, Rim, Chai, Gopinath, Mitchell, Poulton (b0020) 2021; 5 Bielik, Raychev, Vechev (b0090) 2016 Kumar, Poornima, Nagendraswamy, Manjunath, Rangaswamy (b0050) 2020; 11 Liew, Benitez-Aguirre, Craig, Jenkins, Hodgson, Kifley, Mitchell, Wong, Donaghue (b0120) 2017; 58 Trojovská, Dehghani (b0080) 2022; 12 Pooja, Balan, Anisha, Muthukumaran, Jothikumar (b0110) 2020; 151 Binsaadoon, El-Alfy (b0100) 2016 Abdullah, Rahebi, Ozok, Aljanabi (b0055) 2020; 58 Karkuzhali, Manimegalai (b0035) 2019; 39 Naqvi, Fatima, Khan, Rehman, Khan (b0030) 2019; 13 Rivera, Castillo, Chae (b0085) 2015; 51 Karkuzhali (10.1016/j.bspc.2024.106177_b0035) 2019; 39 Pooja (10.1016/j.bspc.2024.106177_b0110) 2020; 151 Rim (10.1016/j.bspc.2024.106177_b0010) 2021; 3 Zhu (10.1016/j.bspc.2024.106177_b0140) 2023; 280 Bielik (10.1016/j.bspc.2024.106177_b0090) 2016 Son (10.1016/j.bspc.2024.106177_b0015) 2020; 9 Al-Absi (10.1016/j.bspc.2024.106177_b0005) 2022; 22 Sadhukhan (10.1016/j.bspc.2024.106177_b0025) 2020; 14 Mall (10.1016/j.bspc.2024.106177_b0125) 2019 Cheung (10.1016/j.bspc.2024.106177_b0020) 2021; 5 Trojovská (10.1016/j.bspc.2024.106177_b0080) 2022; 12 Abdullah (10.1016/j.bspc.2024.106177_b0055) 2020; 58 Jiang (10.1016/j.bspc.2024.106177_b0040) 2020; 10 Fan (10.1016/j.bspc.2024.106177_b0095) 2014; 23 10.1016/j.bspc.2024.106177_b0045 Kumar (10.1016/j.bspc.2024.106177_b0050) 2020; 11 Mohanaiah (10.1016/j.bspc.2024.106177_b0105) 2013; 3 Zhang (10.1016/j.bspc.2024.106177_b0135) 2023; 998 Wang (10.1016/j.bspc.2024.106177_b0130) 2023; 47 Naqvi (10.1016/j.bspc.2024.106177_b0030) 2019; 13 Liu (10.1016/j.bspc.2024.106177_b0070) 2021; 1924 Trojovsky (10.1016/j.bspc.2024.106177_b0060) 2023; 8 Liew (10.1016/j.bspc.2024.106177_b0120) 2017; 58 Shi (10.1016/j.bspc.2024.106177_b0115) 2019; 78 Rao (10.1016/j.bspc.2024.106177_b0075) 2016; 7 Rivera (10.1016/j.bspc.2024.106177_b0085) 2015; 51 Pan (10.1016/j.bspc.2024.106177_b0065) 2022; 202 Binsaadoon (10.1016/j.bspc.2024.106177_b0100) 2016 |
| References_xml | – volume: 12 start-page: 14861 year: 2022 ident: b0080 article-title: A new human-based metahurestic optimization method based on mimicking cooking training publication-title: Sci. Rep. – volume: 202 start-page: 343 year: 2022 end-page: 373 ident: b0065 article-title: Gannet optimization algorithm: A new metaheuristic algorithm for solving engineering optimization problems publication-title: Math. Comput. Simul – reference: 1000 fundus images with 39 categories Dataset will be taken from “ – volume: 78 start-page: 1017 year: 2019 end-page: 1033 ident: b0115 article-title: A deep CNN based transfer learning method for false positive reduction publication-title: Multimed. Tools Appl. – volume: 998 year: 2023 ident: b0135 article-title: “Deep learning in food category recognition” publication-title: Information Fusion – volume: 8 start-page: 136 year: 2023 ident: b0060 article-title: Osprey Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems publication-title: Frontiers in Mechanical Engineering – volume: 3 start-page: 1 year: 2013 end-page: 5 ident: b0105 article-title: Image texture feature extraction using GLCM approach publication-title: Int. J. Sci. Res. Publ. – volume: 22 start-page: 4310 year: 2022 ident: b0005 article-title: Cardiovascular disease diagnosis from DXA scan and retinal images using deep learning publication-title: Sensors – volume: 11 start-page: 2201 year: 2020 end-page: 2210 ident: b0050 article-title: Structure preserving image abstraction and artistic stylization from complex background and low illuminated images publication-title: ICTACT Journal on Image and Video Processing – volume: 10 start-page: 3777 year: 2020 ident: b0040 article-title: Multi-path recurrent U-Net segmentation of retinal fundus image publication-title: Appl. Sci. – volume: 51 start-page: 94 year: 2015 end-page: 100 ident: b0085 article-title: Local directional texture pattern image descriptor publication-title: Pattern Recogn. Lett. – volume: 47 start-page: 373 year: 2023 end-page: 384 ident: b0130 article-title: “PSTCNN: Explainable COVID-19 diagnosis using PSO-guided self-tuning CNN” publication-title: Biocell – volume: 14 start-page: 200 year: 2020 end-page: 204 ident: b0025 article-title: Attention based fully convolutional neural network for simultaneous detection and segmentation of optic disc in retinal fundus images publication-title: International Journal of Medical and Health Sciences – volume: 1924 year: 2021 ident: b0070 article-title: An Res-Unet method for pulmonary artery segmentation of CT images publication-title: In Proceeding of Journal of Physics: Conference Series – start-page: 2933 year: 2016 end-page: 2942 ident: b0090 article-title: PHOG: probabilistic model for code publication-title: International Conference on Machine Learning – volume: 9 start-page: 28 year: 2020 ident: b0015 article-title: Predicting high coronary artery calcium score from retinal fundus images with deep learning algorithms publication-title: Transl. Vis. Sci. Technol. – volume: 23 start-page: 2877 year: 2014 end-page: 2891 ident: b0095 article-title: A novel local pattern descriptor—local vector pattern in high-order derivative space for face recognition publication-title: IEEE Trans. Image Process. – volume: 7 start-page: 19 year: 2016 end-page: 34 ident: b0075 article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems publication-title: Int. J. Ind. Eng. Comput. – volume: 151 start-page: 266 year: 2020 end-page: 274 ident: b0110 article-title: Techniques Tanimoto correlated feature selection system and hybridization of clustering and boosting ensemble classification of remote sensed big data for weather forecasting publication-title: Comput. Commun. – volume: 3 start-page: e306 year: 2021 end-page: e316 ident: b0010 article-title: Deep-learning-based cardiovascular risk stratification using coronary artery calcium scores predicted from retinal photographs publication-title: The Lancet Digital Health – volume: 280 year: 2023 ident: b0140 article-title: “MEEDNets: Medical image classification via ensemble bio-inspired evolutionary densenets” publication-title: Knowl.-Based Syst. – volume: 58 start-page: 25 year: 2020 end-page: 37 ident: b0055 article-title: A new and effective method for human retina optic disc segmentation with fuzzy clustering method based on active contour model publication-title: Med. Biol. Eng. Compu. – volume: 5 start-page: 498 year: 2021 end-page: 508 ident: b0020 article-title: A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel caliber publication-title: Nat. Biomed. Eng. – volume: 13 start-page: 1191 year: 2019 end-page: 1198 ident: b0030 article-title: Automatic optic disk detection and segmentation by variational active contour estimation in retinal fundus images publication-title: SIViP – reference: ”, accessed on March 2023. – start-page: 1 year: 2019 end-page: 6 ident: b0125 article-title: “Glcm based feature extraction and medical x-ray image classification using machine learning techniques” publication-title: IEEE Conference on Information and Communication Technology – start-page: 314 year: 2016 end-page: 321 ident: b0100 article-title: “Gait-based recognition for human identification using fuzzy local binary patterns” publication-title: Proceedings of the 8th International Conference on Agents and Artificial Intelligence – volume: 58 start-page: 2503 year: 2017 end-page: 2509 ident: b0120 article-title: Progressive retinal vasodilation in patients with type 1 diabetes: a longitudinal study of retinal vascular geometry publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 39 start-page: 753 year: 2019 end-page: 764 ident: b0035 article-title: Robust intensity variation and inverse surface adaptive thresholding techniques for detection of optic disc and exudates in retinal fundus images publication-title: Biocybernetics and Biomedical Engineering – volume: 5 start-page: 498 issue: 6 year: 2021 ident: 10.1016/j.bspc.2024.106177_b0020 article-title: A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel caliber publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-020-00626-4 – volume: 998 issue: 2 year: 2023 ident: 10.1016/j.bspc.2024.106177_b0135 article-title: “Deep learning in food category recognition” publication-title: Information Fusion – volume: 23 start-page: 2877 issue: 7 year: 2014 ident: 10.1016/j.bspc.2024.106177_b0095 article-title: A novel local pattern descriptor—local vector pattern in high-order derivative space for face recognition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2321495 – volume: 51 start-page: 94 year: 2015 ident: 10.1016/j.bspc.2024.106177_b0085 article-title: Local directional texture pattern image descriptor publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2014.08.012 – volume: 9 start-page: 28 issue: 2 year: 2020 ident: 10.1016/j.bspc.2024.106177_b0015 article-title: Predicting high coronary artery calcium score from retinal fundus images with deep learning algorithms publication-title: Transl. Vis. Sci. Technol. doi: 10.1167/tvst.9.2.28 – ident: 10.1016/j.bspc.2024.106177_b0045 – volume: 39 start-page: 753 issue: 3 year: 2019 ident: 10.1016/j.bspc.2024.106177_b0035 article-title: Robust intensity variation and inverse surface adaptive thresholding techniques for detection of optic disc and exudates in retinal fundus images publication-title: Biocybernetics and Biomedical Engineering doi: 10.1016/j.bbe.2019.07.001 – start-page: 1 year: 2019 ident: 10.1016/j.bspc.2024.106177_b0125 article-title: “Glcm based feature extraction and medical x-ray image classification using machine learning techniques” – volume: 22 start-page: 4310 issue: 12 year: 2022 ident: 10.1016/j.bspc.2024.106177_b0005 article-title: Cardiovascular disease diagnosis from DXA scan and retinal images using deep learning publication-title: Sensors doi: 10.3390/s22124310 – volume: 13 start-page: 1191 year: 2019 ident: 10.1016/j.bspc.2024.106177_b0030 article-title: Automatic optic disk detection and segmentation by variational active contour estimation in retinal fundus images publication-title: SIViP doi: 10.1007/s11760-019-01463-y – volume: 7 start-page: 19 issue: 1 year: 2016 ident: 10.1016/j.bspc.2024.106177_b0075 article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems publication-title: Int. J. Ind. Eng. Comput. – volume: 14 start-page: 200 issue: 8 year: 2020 ident: 10.1016/j.bspc.2024.106177_b0025 article-title: Attention based fully convolutional neural network for simultaneous detection and segmentation of optic disc in retinal fundus images publication-title: International Journal of Medical and Health Sciences – volume: 58 start-page: 25 year: 2020 ident: 10.1016/j.bspc.2024.106177_b0055 article-title: A new and effective method for human retina optic disc segmentation with fuzzy clustering method based on active contour model publication-title: Med. Biol. Eng. Compu. doi: 10.1007/s11517-019-02032-8 – volume: 151 start-page: 266 year: 2020 ident: 10.1016/j.bspc.2024.106177_b0110 article-title: Techniques Tanimoto correlated feature selection system and hybridization of clustering and boosting ensemble classification of remote sensed big data for weather forecasting publication-title: Comput. Commun. doi: 10.1016/j.comcom.2019.12.063 – start-page: 314 year: 2016 ident: 10.1016/j.bspc.2024.106177_b0100 article-title: “Gait-based recognition for human identification using fuzzy local binary patterns” – volume: 3 start-page: 1 issue: 5 year: 2013 ident: 10.1016/j.bspc.2024.106177_b0105 article-title: Image texture feature extraction using GLCM approach publication-title: Int. J. Sci. Res. Publ. – volume: 10 start-page: 3777 issue: 11 year: 2020 ident: 10.1016/j.bspc.2024.106177_b0040 article-title: Multi-path recurrent U-Net segmentation of retinal fundus image publication-title: Appl. Sci. doi: 10.3390/app10113777 – volume: 8 start-page: 136 year: 2023 ident: 10.1016/j.bspc.2024.106177_b0060 article-title: Osprey Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems publication-title: Frontiers in Mechanical Engineering – volume: 58 start-page: 2503 issue: 5 year: 2017 ident: 10.1016/j.bspc.2024.106177_b0120 article-title: Progressive retinal vasodilation in patients with type 1 diabetes: a longitudinal study of retinal vascular geometry publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.16-21015 – volume: 1924 issue: 1 year: 2021 ident: 10.1016/j.bspc.2024.106177_b0070 article-title: An Res-Unet method for pulmonary artery segmentation of CT images publication-title: In Proceeding of Journal of Physics: Conference Series – start-page: 2933 year: 2016 ident: 10.1016/j.bspc.2024.106177_b0090 article-title: PHOG: probabilistic model for code – volume: 12 start-page: 14861 issue: 1 year: 2022 ident: 10.1016/j.bspc.2024.106177_b0080 article-title: A new human-based metahurestic optimization method based on mimicking cooking training publication-title: Sci. Rep. doi: 10.1038/s41598-022-19313-2 – volume: 47 start-page: 373 issue: 2 year: 2023 ident: 10.1016/j.bspc.2024.106177_b0130 article-title: “PSTCNN: Explainable COVID-19 diagnosis using PSO-guided self-tuning CNN” publication-title: Biocell doi: 10.32604/biocell.2023.025905 – volume: 280 issue: 6 year: 2023 ident: 10.1016/j.bspc.2024.106177_b0140 article-title: “MEEDNets: Medical image classification via ensemble bio-inspired evolutionary densenets” publication-title: Knowl.-Based Syst. – volume: 78 start-page: 1017 year: 2019 ident: 10.1016/j.bspc.2024.106177_b0115 article-title: A deep CNN based transfer learning method for false positive reduction publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-6082-6 – volume: 3 start-page: e306 issue: 5 year: 2021 ident: 10.1016/j.bspc.2024.106177_b0010 article-title: Deep-learning-based cardiovascular risk stratification using coronary artery calcium scores predicted from retinal photographs publication-title: The Lancet Digital Health doi: 10.1016/S2589-7500(21)00043-1 – volume: 11 start-page: 2201 issue: 1 year: 2020 ident: 10.1016/j.bspc.2024.106177_b0050 article-title: Structure preserving image abstraction and artistic stylization from complex background and low illuminated images publication-title: ICTACT Journal on Image and Video Processing – volume: 202 start-page: 343 year: 2022 ident: 10.1016/j.bspc.2024.106177_b0065 article-title: Gannet optimization algorithm: A new metaheuristic algorithm for solving engineering optimization problems publication-title: Math. Comput. Simul doi: 10.1016/j.matcom.2022.06.007 |
| SSID | ssj0048714 |
| Score | 2.4484813 |
| Snippet | •The pre-processing process utilizing bilateral filter.•The OD detection is done by Osprey Gannet-active counter model trained by OGO.•CV risk prediction is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106177 |
| SubjectTerms | Cardiovascular disease (CVD) Convolutional neural network (CNN) Optic disc (OD) Retinal fundus image Transfer learning (TL) |
| Title | Osprey Gannet optimization enabled CNN based Transfer learning for optic disc detection and cardiovascular risk prediction using retinal fundus images |
| URI | https://dx.doi.org/10.1016/j.bspc.2024.106177 |
| Volume | 93 |
| WOSCitedRecordID | wos001209191200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIEXJ dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpIf2UPqk6QsdejNebMvPYwjpK7AtJIW9GVmW2g2JY9a7Ib-kf6V_rzMeyetN29AcehGLkWTj-XbmG3kejL0VogoKiYfuwAf8GAiCXxWx8VMTilTHVS4DajaRzWb5fF58mUx-ulyYy7OsafKrq6L9r6KGayBsTJ29hbiHTeEC_Aahwwhih_GfBP-5a0E83nuJCTfeBaiEc5tr6ek-Uar2DmYzD81XTbXNjV667hEUVYmLFH67gUGvtO0mjglw29GrfVw63K1e0JR1f_CAeZHIccFk1uvOW5yDyuq2Ph73Kf-Uj7n4hlNbSldwCZM2fn5zygoUfw1uPdbqIAAPFPZI1hQIcKwXBg3xANRj5La6--4NUeRH0_EZRxQP8bBOLWcxlk2mdshObxdipHjRs6V-ML_ZBDqeOJ1WXYs1K6N4upm8XYD7mmEcwhVdJNxpiXuUuEdJe9xhu1GWFGARdvc_Hs4_ORIAbmBfVn54cJuvRaGF15_kz5xoxHNOHrIH1kHh-wSsR2yim8fs_qhs5RP2gyDGCWJ8DDFuIcYBYryHGHcQ4w5iHCDWL1IcIcYHiHGQPd-GGEeI8Q3EeA8xbiHGCWKcIPaUfX13eHLwwbf9PXwlgmDlS3AuZFXVuQwzoVKT11IDeywiEwihjYiNkMA-lRS5BJ2SpLCsDsEnUGkdhkqJZ2ynuWj0c8aLuIiTKsqrKDNxFCSwJRIxmVfGBKkK9ljo3nCpbPF77MFyVv5dtnvMG9a0VPrlxtmJE1xpySuR0hJweMO6F7e6y0t2b_P_eMV2Vsu1fs3uqsvVolu-sSD8BXIVwoc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Osprey+Gannet+optimization+enabled+CNN+based+Transfer+learning+for+optic+disc+detection+and+cardiovascular+risk+prediction+using+retinal+fundus+images&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Balasubramaniam%2C+S&rft.au=Kadry%2C+Seifedine&rft.au=Satheesh+Kumar%2C+K.&rft.date=2024-07-01&rft.issn=1746-8094&rft.volume=93&rft.spage=106177&rft_id=info:doi/10.1016%2Fj.bspc.2024.106177&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2024_106177 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |