Osprey Gannet optimization enabled CNN based Transfer learning for optic disc detection and cardiovascular risk prediction using retinal fundus images

•The pre-processing process utilizing bilateral filter.•The OD detection is done by Osprey Gannet-active counter model trained by OGO.•CV risk prediction is accomplished by CNN-based TL trained by OGO. The identification of retinal vascular features that have been demonstrated to predict cardiovascu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical signal processing and control Jg. 93; S. 106177
Hauptverfasser: Balasubramaniam, S, Kadry, Seifedine, Satheesh Kumar, K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.07.2024
Schlagworte:
ISSN:1746-8094, 1746-8108
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •The pre-processing process utilizing bilateral filter.•The OD detection is done by Osprey Gannet-active counter model trained by OGO.•CV risk prediction is accomplished by CNN-based TL trained by OGO. The identification of retinal vascular features that have been demonstrated to predict cardiovascular (CV) risk has been made possible by recent developments in retinal imaging modality, and the detection of the optic disc (OD) is a key step in the development of automated screening systems for diabetic retinopathy (DR). However, there are some risk factors, which cannot be detected in both cardiovascular and OD. To bridge this gap, Transfer learning (TL) based Osprey Gannet optimization (OGO) utilizing retinal fundus image is established. Initially, the input fundus image is allowed into the preprocessing process utilizing a bilateral filter. Thereafter, the OD detection is done using the devised Osprey Gannet-active counter model, which is trained using OGO. Here, OGO is developed by the integration of Osprey Optimization (OO) and Gannet Optimization (GO). Simultaneously, the pre-processed image is passed to the blood vessel segmentation (BVS) and is performed by Res-UNet, trained by the Jaya Chronological Chef-Based Optimization Algorithm (Jaya-CCBOA). Hereafter, the feature extraction is carried out from the OD detection phase and BVS. On the other hand, the input image is also extracted using various feature extractors. Thereafter, feature selection is done using Tanimoto similarity. Finally, the detection of CV risk as normal and hypertensive is accomplished by the Convolutional neural network (CNN) based TL, trained by OGO. The measures employed in OGO_CNN based TL achieved maximum values of 92.1%, 91.5%, 93.1%, 87.9%, and 87.9%.
AbstractList •The pre-processing process utilizing bilateral filter.•The OD detection is done by Osprey Gannet-active counter model trained by OGO.•CV risk prediction is accomplished by CNN-based TL trained by OGO. The identification of retinal vascular features that have been demonstrated to predict cardiovascular (CV) risk has been made possible by recent developments in retinal imaging modality, and the detection of the optic disc (OD) is a key step in the development of automated screening systems for diabetic retinopathy (DR). However, there are some risk factors, which cannot be detected in both cardiovascular and OD. To bridge this gap, Transfer learning (TL) based Osprey Gannet optimization (OGO) utilizing retinal fundus image is established. Initially, the input fundus image is allowed into the preprocessing process utilizing a bilateral filter. Thereafter, the OD detection is done using the devised Osprey Gannet-active counter model, which is trained using OGO. Here, OGO is developed by the integration of Osprey Optimization (OO) and Gannet Optimization (GO). Simultaneously, the pre-processed image is passed to the blood vessel segmentation (BVS) and is performed by Res-UNet, trained by the Jaya Chronological Chef-Based Optimization Algorithm (Jaya-CCBOA). Hereafter, the feature extraction is carried out from the OD detection phase and BVS. On the other hand, the input image is also extracted using various feature extractors. Thereafter, feature selection is done using Tanimoto similarity. Finally, the detection of CV risk as normal and hypertensive is accomplished by the Convolutional neural network (CNN) based TL, trained by OGO. The measures employed in OGO_CNN based TL achieved maximum values of 92.1%, 91.5%, 93.1%, 87.9%, and 87.9%.
ArticleNumber 106177
Author Kadry, Seifedine
Balasubramaniam, S
Satheesh Kumar, K.
Author_xml – sequence: 1
  givenname: S
  surname: Balasubramaniam
  fullname: Balasubramaniam, S
  email: baluttn@gmail.com
  organization: School of Computer Science and Engineering, Kerala University of Digital Sciences, Innovation and Technology (Formerly IIITM-K), Digital University Kerala, Thiruvananthapuram, Kerala, India – 695317
– sequence: 2
  givenname: Seifedine
  surname: Kadry
  fullname: Kadry, Seifedine
  organization: Department of Applied Data Science, Noroff University College, Kristiansand, Norway-4612
– sequence: 3
  givenname: K.
  surname: Satheesh Kumar
  fullname: Satheesh Kumar, K.
  organization: Department of Future Studies, University of Kerala, Thiruvananthapuram, Kerala, India-695581
BookMark eNp9kM9OAjEQhxujiYC-gKe-ANhul_2TeDFE0YTABc_NbDslxaVL2oUEH8TntcvqxQOXdjLp95vpNyTXrnFIyANnE8549ridVGGvJglL0tjIeJ5fkQHP02xccFZc_9WsTG_JMIQtY2mR83RAvldh7_FE5-ActrTZt3Znv6C1jaPooKpR09lySSsIsVp7cMGgpzWCd9ZtqGn8GVJU2xAPbFGdYXCaKvDaNkcI6lCDp96GTxqnads_OYQuwWNrHdTUHJw-BGp3sMFwR24M1AHvf-8R-Xh9Wc_exovV_H32vBgrwVg7hjIRUFW6AJ4LlZlCAxZTUSaGCYFGpEZAkqYKRAFCVNMsYpqzcqoyzblSYkSSPlf5JgSPRu593MCfJGeyMyu3sjMrO7OyNxuh4h-kbHtW1nqw9WX0qUcxfupo0cugLDoVnfgoTurGXsJ_AH42mro
CitedBy_id crossref_primary_10_1016_j_asej_2025_103369
crossref_primary_10_1016_j_bspc_2025_108598
crossref_primary_10_1016_j_bspc_2024_107442
crossref_primary_10_1016_j_knosys_2024_112679
crossref_primary_10_1038_s41598_025_98593_w
crossref_primary_10_1016_j_aej_2025_03_139
crossref_primary_10_1007_s10115_024_02332_y
crossref_primary_10_1038_s41598_025_94677_9
crossref_primary_10_1016_j_bspc_2024_107136
crossref_primary_10_1155_int_4296751
crossref_primary_10_1007_s10115_024_02322_0
crossref_primary_10_1038_s41598_025_97675_z
crossref_primary_10_1016_j_bspc_2024_107070
crossref_primary_10_1016_j_bspc_2024_107170
crossref_primary_10_1038_s41598_025_88728_4
Cites_doi 10.1038/s41551-020-00626-4
10.1109/TIP.2014.2321495
10.1016/j.patrec.2014.08.012
10.1167/tvst.9.2.28
10.1016/j.bbe.2019.07.001
10.3390/s22124310
10.1007/s11760-019-01463-y
10.1007/s11517-019-02032-8
10.1016/j.comcom.2019.12.063
10.3390/app10113777
10.1167/iovs.16-21015
10.1038/s41598-022-19313-2
10.32604/biocell.2023.025905
10.1007/s11042-018-6082-6
10.1016/S2589-7500(21)00043-1
10.1016/j.matcom.2022.06.007
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2024.106177
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2024_106177
S1746809424002350
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABMYL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-a923abbd8a173c6f8dae85392f033ef34f3a244ca38a33b56c30d1095c6d11cc3
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001209191200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Sat Nov 29 02:51:25 EST 2025
Tue Nov 18 22:33:51 EST 2025
Sat Mar 23 16:41:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Transfer learning (TL)
Convolutional neural network (CNN)
Optic disc (OD)
Retinal fundus image
Cardiovascular disease (CVD)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-a923abbd8a173c6f8dae85392f033ef34f3a244ca38a33b56c30d1095c6d11cc3
ParticipantIDs crossref_primary_10_1016_j_bspc_2024_106177
crossref_citationtrail_10_1016_j_bspc_2024_106177
elsevier_sciencedirect_doi_10_1016_j_bspc_2024_106177
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shi, Hao, Zhao, Feng, He, Wang, Suzuki (b0115) 2019; 78
Rao (b0075) 2016; 7
Jiang, Wang, Gao, Cao (b0040) 2020; 10
Pan, Zhang, Wang, Snášel, Chu (b0065) 2022; 202
Son, Shin, Chun, Jung, Park, Park (b0015) 2020; 9
Wang, Pei, Wang, Gorriz, Zhang (b0130) 2023; 47
Al-Absi, Islam, Refaee, Chowdhury, Alam (b0005) 2022; 22
Trojovsky, Dehghani (b0060) 2023; 8
Mohanaiah, Sathyanarayana, GuruKumar (b0105) 2013; 3
Liu, Yuan (b0070) 2021; 1924
Rim, Lee, Tham, Cheung, Yu, Lee, Kim, Ting, Chong, Choi, Yoo (b0010) 2021; 3
accessed on March 2023.
1000 fundus images with 39 categories Dataset will be taken from
Sadhukhan, Sarkar, Sinha, Ghorai, Sarkar, Dhara (b0025) 2020; 14
Fan, Hung (b0095) 2014; 23
Zhang, Deng, Zhu, Wang, Ren, Zhou, Siyuan, Sun, Zhu, Gorriz, Wang (b0135) 2023; 998
Mall, Singh, Yadav (b0125) 2019
Zhu, Wang, Ulidowski, Zhou, Wang, Chen, Zhang (b0140) 2023; 280
Cheung, Xu, Cheng, Sabanayagam, Tham, Yu, Rim, Chai, Gopinath, Mitchell, Poulton (b0020) 2021; 5
Bielik, Raychev, Vechev (b0090) 2016
Kumar, Poornima, Nagendraswamy, Manjunath, Rangaswamy (b0050) 2020; 11
Liew, Benitez-Aguirre, Craig, Jenkins, Hodgson, Kifley, Mitchell, Wong, Donaghue (b0120) 2017; 58
Trojovská, Dehghani (b0080) 2022; 12
Pooja, Balan, Anisha, Muthukumaran, Jothikumar (b0110) 2020; 151
Binsaadoon, El-Alfy (b0100) 2016
Abdullah, Rahebi, Ozok, Aljanabi (b0055) 2020; 58
Karkuzhali, Manimegalai (b0035) 2019; 39
Naqvi, Fatima, Khan, Rehman, Khan (b0030) 2019; 13
Rivera, Castillo, Chae (b0085) 2015; 51
Karkuzhali (10.1016/j.bspc.2024.106177_b0035) 2019; 39
Pooja (10.1016/j.bspc.2024.106177_b0110) 2020; 151
Rim (10.1016/j.bspc.2024.106177_b0010) 2021; 3
Zhu (10.1016/j.bspc.2024.106177_b0140) 2023; 280
Bielik (10.1016/j.bspc.2024.106177_b0090) 2016
Son (10.1016/j.bspc.2024.106177_b0015) 2020; 9
Al-Absi (10.1016/j.bspc.2024.106177_b0005) 2022; 22
Sadhukhan (10.1016/j.bspc.2024.106177_b0025) 2020; 14
Mall (10.1016/j.bspc.2024.106177_b0125) 2019
Cheung (10.1016/j.bspc.2024.106177_b0020) 2021; 5
Trojovská (10.1016/j.bspc.2024.106177_b0080) 2022; 12
Abdullah (10.1016/j.bspc.2024.106177_b0055) 2020; 58
Jiang (10.1016/j.bspc.2024.106177_b0040) 2020; 10
Fan (10.1016/j.bspc.2024.106177_b0095) 2014; 23
10.1016/j.bspc.2024.106177_b0045
Kumar (10.1016/j.bspc.2024.106177_b0050) 2020; 11
Mohanaiah (10.1016/j.bspc.2024.106177_b0105) 2013; 3
Zhang (10.1016/j.bspc.2024.106177_b0135) 2023; 998
Wang (10.1016/j.bspc.2024.106177_b0130) 2023; 47
Naqvi (10.1016/j.bspc.2024.106177_b0030) 2019; 13
Liu (10.1016/j.bspc.2024.106177_b0070) 2021; 1924
Trojovsky (10.1016/j.bspc.2024.106177_b0060) 2023; 8
Liew (10.1016/j.bspc.2024.106177_b0120) 2017; 58
Shi (10.1016/j.bspc.2024.106177_b0115) 2019; 78
Rao (10.1016/j.bspc.2024.106177_b0075) 2016; 7
Rivera (10.1016/j.bspc.2024.106177_b0085) 2015; 51
Pan (10.1016/j.bspc.2024.106177_b0065) 2022; 202
Binsaadoon (10.1016/j.bspc.2024.106177_b0100) 2016
References_xml – volume: 12
  start-page: 14861
  year: 2022
  ident: b0080
  article-title: A new human-based metahurestic optimization method based on mimicking cooking training
  publication-title: Sci. Rep.
– volume: 202
  start-page: 343
  year: 2022
  end-page: 373
  ident: b0065
  article-title: Gannet optimization algorithm: A new metaheuristic algorithm for solving engineering optimization problems
  publication-title: Math. Comput. Simul
– reference: 1000 fundus images with 39 categories Dataset will be taken from “
– volume: 78
  start-page: 1017
  year: 2019
  end-page: 1033
  ident: b0115
  article-title: A deep CNN based transfer learning method for false positive reduction
  publication-title: Multimed. Tools Appl.
– volume: 998
  year: 2023
  ident: b0135
  article-title: “Deep learning in food category recognition”
  publication-title: Information Fusion
– volume: 8
  start-page: 136
  year: 2023
  ident: b0060
  article-title: Osprey Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems
  publication-title: Frontiers in Mechanical Engineering
– volume: 3
  start-page: 1
  year: 2013
  end-page: 5
  ident: b0105
  article-title: Image texture feature extraction using GLCM approach
  publication-title: Int. J. Sci. Res. Publ.
– volume: 22
  start-page: 4310
  year: 2022
  ident: b0005
  article-title: Cardiovascular disease diagnosis from DXA scan and retinal images using deep learning
  publication-title: Sensors
– volume: 11
  start-page: 2201
  year: 2020
  end-page: 2210
  ident: b0050
  article-title: Structure preserving image abstraction and artistic stylization from complex background and low illuminated images
  publication-title: ICTACT Journal on Image and Video Processing
– volume: 10
  start-page: 3777
  year: 2020
  ident: b0040
  article-title: Multi-path recurrent U-Net segmentation of retinal fundus image
  publication-title: Appl. Sci.
– volume: 51
  start-page: 94
  year: 2015
  end-page: 100
  ident: b0085
  article-title: Local directional texture pattern image descriptor
  publication-title: Pattern Recogn. Lett.
– volume: 47
  start-page: 373
  year: 2023
  end-page: 384
  ident: b0130
  article-title: “PSTCNN: Explainable COVID-19 diagnosis using PSO-guided self-tuning CNN”
  publication-title: Biocell
– volume: 14
  start-page: 200
  year: 2020
  end-page: 204
  ident: b0025
  article-title: Attention based fully convolutional neural network for simultaneous detection and segmentation of optic disc in retinal fundus images
  publication-title: International Journal of Medical and Health Sciences
– volume: 1924
  year: 2021
  ident: b0070
  article-title: An Res-Unet method for pulmonary artery segmentation of CT images
  publication-title: In Proceeding of Journal of Physics: Conference Series
– start-page: 2933
  year: 2016
  end-page: 2942
  ident: b0090
  article-title: PHOG: probabilistic model for code
  publication-title: International Conference on Machine Learning
– volume: 9
  start-page: 28
  year: 2020
  ident: b0015
  article-title: Predicting high coronary artery calcium score from retinal fundus images with deep learning algorithms
  publication-title: Transl. Vis. Sci. Technol.
– volume: 23
  start-page: 2877
  year: 2014
  end-page: 2891
  ident: b0095
  article-title: A novel local pattern descriptor—local vector pattern in high-order derivative space for face recognition
  publication-title: IEEE Trans. Image Process.
– volume: 7
  start-page: 19
  year: 2016
  end-page: 34
  ident: b0075
  article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems
  publication-title: Int. J. Ind. Eng. Comput.
– volume: 151
  start-page: 266
  year: 2020
  end-page: 274
  ident: b0110
  article-title: Techniques Tanimoto correlated feature selection system and hybridization of clustering and boosting ensemble classification of remote sensed big data for weather forecasting
  publication-title: Comput. Commun.
– volume: 3
  start-page: e306
  year: 2021
  end-page: e316
  ident: b0010
  article-title: Deep-learning-based cardiovascular risk stratification using coronary artery calcium scores predicted from retinal photographs
  publication-title: The Lancet Digital Health
– volume: 280
  year: 2023
  ident: b0140
  article-title: “MEEDNets: Medical image classification via ensemble bio-inspired evolutionary densenets”
  publication-title: Knowl.-Based Syst.
– volume: 58
  start-page: 25
  year: 2020
  end-page: 37
  ident: b0055
  article-title: A new and effective method for human retina optic disc segmentation with fuzzy clustering method based on active contour model
  publication-title: Med. Biol. Eng. Compu.
– volume: 5
  start-page: 498
  year: 2021
  end-page: 508
  ident: b0020
  article-title: A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel caliber
  publication-title: Nat. Biomed. Eng.
– volume: 13
  start-page: 1191
  year: 2019
  end-page: 1198
  ident: b0030
  article-title: Automatic optic disk detection and segmentation by variational active contour estimation in retinal fundus images
  publication-title: SIViP
– reference: ”, accessed on March 2023.
– start-page: 1
  year: 2019
  end-page: 6
  ident: b0125
  article-title: “Glcm based feature extraction and medical x-ray image classification using machine learning techniques”
  publication-title: IEEE Conference on Information and Communication Technology
– start-page: 314
  year: 2016
  end-page: 321
  ident: b0100
  article-title: “Gait-based recognition for human identification using fuzzy local binary patterns”
  publication-title: Proceedings of the 8th International Conference on Agents and Artificial Intelligence
– volume: 58
  start-page: 2503
  year: 2017
  end-page: 2509
  ident: b0120
  article-title: Progressive retinal vasodilation in patients with type 1 diabetes: a longitudinal study of retinal vascular geometry
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 39
  start-page: 753
  year: 2019
  end-page: 764
  ident: b0035
  article-title: Robust intensity variation and inverse surface adaptive thresholding techniques for detection of optic disc and exudates in retinal fundus images
  publication-title: Biocybernetics and Biomedical Engineering
– volume: 5
  start-page: 498
  issue: 6
  year: 2021
  ident: 10.1016/j.bspc.2024.106177_b0020
  article-title: A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel caliber
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-020-00626-4
– volume: 998
  issue: 2
  year: 2023
  ident: 10.1016/j.bspc.2024.106177_b0135
  article-title: “Deep learning in food category recognition”
  publication-title: Information Fusion
– volume: 23
  start-page: 2877
  issue: 7
  year: 2014
  ident: 10.1016/j.bspc.2024.106177_b0095
  article-title: A novel local pattern descriptor—local vector pattern in high-order derivative space for face recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2321495
– volume: 51
  start-page: 94
  year: 2015
  ident: 10.1016/j.bspc.2024.106177_b0085
  article-title: Local directional texture pattern image descriptor
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2014.08.012
– volume: 9
  start-page: 28
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2024.106177_b0015
  article-title: Predicting high coronary artery calcium score from retinal fundus images with deep learning algorithms
  publication-title: Transl. Vis. Sci. Technol.
  doi: 10.1167/tvst.9.2.28
– ident: 10.1016/j.bspc.2024.106177_b0045
– volume: 39
  start-page: 753
  issue: 3
  year: 2019
  ident: 10.1016/j.bspc.2024.106177_b0035
  article-title: Robust intensity variation and inverse surface adaptive thresholding techniques for detection of optic disc and exudates in retinal fundus images
  publication-title: Biocybernetics and Biomedical Engineering
  doi: 10.1016/j.bbe.2019.07.001
– start-page: 1
  year: 2019
  ident: 10.1016/j.bspc.2024.106177_b0125
  article-title: “Glcm based feature extraction and medical x-ray image classification using machine learning techniques”
– volume: 22
  start-page: 4310
  issue: 12
  year: 2022
  ident: 10.1016/j.bspc.2024.106177_b0005
  article-title: Cardiovascular disease diagnosis from DXA scan and retinal images using deep learning
  publication-title: Sensors
  doi: 10.3390/s22124310
– volume: 13
  start-page: 1191
  year: 2019
  ident: 10.1016/j.bspc.2024.106177_b0030
  article-title: Automatic optic disk detection and segmentation by variational active contour estimation in retinal fundus images
  publication-title: SIViP
  doi: 10.1007/s11760-019-01463-y
– volume: 7
  start-page: 19
  issue: 1
  year: 2016
  ident: 10.1016/j.bspc.2024.106177_b0075
  article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems
  publication-title: Int. J. Ind. Eng. Comput.
– volume: 14
  start-page: 200
  issue: 8
  year: 2020
  ident: 10.1016/j.bspc.2024.106177_b0025
  article-title: Attention based fully convolutional neural network for simultaneous detection and segmentation of optic disc in retinal fundus images
  publication-title: International Journal of Medical and Health Sciences
– volume: 58
  start-page: 25
  year: 2020
  ident: 10.1016/j.bspc.2024.106177_b0055
  article-title: A new and effective method for human retina optic disc segmentation with fuzzy clustering method based on active contour model
  publication-title: Med. Biol. Eng. Compu.
  doi: 10.1007/s11517-019-02032-8
– volume: 151
  start-page: 266
  year: 2020
  ident: 10.1016/j.bspc.2024.106177_b0110
  article-title: Techniques Tanimoto correlated feature selection system and hybridization of clustering and boosting ensemble classification of remote sensed big data for weather forecasting
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2019.12.063
– start-page: 314
  year: 2016
  ident: 10.1016/j.bspc.2024.106177_b0100
  article-title: “Gait-based recognition for human identification using fuzzy local binary patterns”
– volume: 3
  start-page: 1
  issue: 5
  year: 2013
  ident: 10.1016/j.bspc.2024.106177_b0105
  article-title: Image texture feature extraction using GLCM approach
  publication-title: Int. J. Sci. Res. Publ.
– volume: 10
  start-page: 3777
  issue: 11
  year: 2020
  ident: 10.1016/j.bspc.2024.106177_b0040
  article-title: Multi-path recurrent U-Net segmentation of retinal fundus image
  publication-title: Appl. Sci.
  doi: 10.3390/app10113777
– volume: 8
  start-page: 136
  year: 2023
  ident: 10.1016/j.bspc.2024.106177_b0060
  article-title: Osprey Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems
  publication-title: Frontiers in Mechanical Engineering
– volume: 58
  start-page: 2503
  issue: 5
  year: 2017
  ident: 10.1016/j.bspc.2024.106177_b0120
  article-title: Progressive retinal vasodilation in patients with type 1 diabetes: a longitudinal study of retinal vascular geometry
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.16-21015
– volume: 1924
  issue: 1
  year: 2021
  ident: 10.1016/j.bspc.2024.106177_b0070
  article-title: An Res-Unet method for pulmonary artery segmentation of CT images
  publication-title: In Proceeding of Journal of Physics: Conference Series
– start-page: 2933
  year: 2016
  ident: 10.1016/j.bspc.2024.106177_b0090
  article-title: PHOG: probabilistic model for code
– volume: 12
  start-page: 14861
  issue: 1
  year: 2022
  ident: 10.1016/j.bspc.2024.106177_b0080
  article-title: A new human-based metahurestic optimization method based on mimicking cooking training
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-19313-2
– volume: 47
  start-page: 373
  issue: 2
  year: 2023
  ident: 10.1016/j.bspc.2024.106177_b0130
  article-title: “PSTCNN: Explainable COVID-19 diagnosis using PSO-guided self-tuning CNN”
  publication-title: Biocell
  doi: 10.32604/biocell.2023.025905
– volume: 280
  issue: 6
  year: 2023
  ident: 10.1016/j.bspc.2024.106177_b0140
  article-title: “MEEDNets: Medical image classification via ensemble bio-inspired evolutionary densenets”
  publication-title: Knowl.-Based Syst.
– volume: 78
  start-page: 1017
  year: 2019
  ident: 10.1016/j.bspc.2024.106177_b0115
  article-title: A deep CNN based transfer learning method for false positive reduction
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-6082-6
– volume: 3
  start-page: e306
  issue: 5
  year: 2021
  ident: 10.1016/j.bspc.2024.106177_b0010
  article-title: Deep-learning-based cardiovascular risk stratification using coronary artery calcium scores predicted from retinal photographs
  publication-title: The Lancet Digital Health
  doi: 10.1016/S2589-7500(21)00043-1
– volume: 11
  start-page: 2201
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2024.106177_b0050
  article-title: Structure preserving image abstraction and artistic stylization from complex background and low illuminated images
  publication-title: ICTACT Journal on Image and Video Processing
– volume: 202
  start-page: 343
  year: 2022
  ident: 10.1016/j.bspc.2024.106177_b0065
  article-title: Gannet optimization algorithm: A new metaheuristic algorithm for solving engineering optimization problems
  publication-title: Math. Comput. Simul
  doi: 10.1016/j.matcom.2022.06.007
SSID ssj0048714
Score 2.4484813
Snippet •The pre-processing process utilizing bilateral filter.•The OD detection is done by Osprey Gannet-active counter model trained by OGO.•CV risk prediction is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106177
SubjectTerms Cardiovascular disease (CVD)
Convolutional neural network (CNN)
Optic disc (OD)
Retinal fundus image
Transfer learning (TL)
Title Osprey Gannet optimization enabled CNN based Transfer learning for optic disc detection and cardiovascular risk prediction using retinal fundus images
URI https://dx.doi.org/10.1016/j.bspc.2024.106177
Volume 93
WOSCitedRecordID wos001209191200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpIf2UPqk6QsdejNebMvPYwjpK7AtJIW9GVmW2g2JY9a7Ib-kf6V_rzMeyetN29AcehGLkWTj-XbmG3kejL0VogoKiYfuwAf8GAiCXxWx8VMTilTHVS4DajaRzWb5fF58mUx-ulyYy7OsafKrq6L9r6KGayBsTJ29hbiHTeEC_Aahwwhih_GfBP-5a0E83nuJCTfeBaiEc5tr6ek-Uar2DmYzD81XTbXNjV667hEUVYmLFH67gUGvtO0mjglw29GrfVw63K1e0JR1f_CAeZHIccFk1uvOW5yDyuq2Ph73Kf-Uj7n4hlNbSldwCZM2fn5zygoUfw1uPdbqIAAPFPZI1hQIcKwXBg3xANRj5La6--4NUeRH0_EZRxQP8bBOLWcxlk2mdshObxdipHjRs6V-ML_ZBDqeOJ1WXYs1K6N4upm8XYD7mmEcwhVdJNxpiXuUuEdJe9xhu1GWFGARdvc_Hs4_ORIAbmBfVn54cJuvRaGF15_kz5xoxHNOHrIH1kHh-wSsR2yim8fs_qhs5RP2gyDGCWJ8DDFuIcYBYryHGHcQ4w5iHCDWL1IcIcYHiHGQPd-GGEeI8Q3EeA8xbiHGCWKcIPaUfX13eHLwwbf9PXwlgmDlS3AuZFXVuQwzoVKT11IDeywiEwihjYiNkMA-lRS5BJ2SpLCsDsEnUGkdhkqJZ2ynuWj0c8aLuIiTKsqrKDNxFCSwJRIxmVfGBKkK9ljo3nCpbPF77MFyVv5dtnvMG9a0VPrlxtmJE1xpySuR0hJweMO6F7e6y0t2b_P_eMV2Vsu1fs3uqsvVolu-sSD8BXIVwoc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Osprey+Gannet+optimization+enabled+CNN+based+Transfer+learning+for+optic+disc+detection+and+cardiovascular+risk+prediction+using+retinal+fundus+images&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Balasubramaniam%2C+S&rft.au=Kadry%2C+Seifedine&rft.au=Satheesh+Kumar%2C+K.&rft.date=2024-07-01&rft.issn=1746-8094&rft.volume=93&rft.spage=106177&rft_id=info:doi/10.1016%2Fj.bspc.2024.106177&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2024_106177
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon