Flexible job shop scheduling with stochastic machine breakdowns by an improved tuna swarm optimization algorithm
In job-shop production environments, machine breakdowns are a significant factor in reducing productivity. Existing approaches seldom consider algorithm improvement and rescheduling scheme design in an integrated manner, and lack stability considerations. This paper addresses the flexible job shop s...
Uloženo v:
| Vydáno v: | Journal of manufacturing systems Ročník 74; s. 180 - 197 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.06.2024
|
| Témata: | |
| ISSN: | 0278-6125, 1878-6642 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In job-shop production environments, machine breakdowns are a significant factor in reducing productivity. Existing approaches seldom consider algorithm improvement and rescheduling scheme design in an integrated manner, and lack stability considerations. This paper addresses the flexible job shop scheduling problem with random machine breakdowns, aiming to produce a stable rescheduling scheme that minimizes a combined index of maximum completion time and stability. The paper innovatively applies the tuna swarm optimization algorithm to the flexible job shop scheduling problem, proposing an efficient and superior improved version called the genetic chaos levy nonlinear tuna swarm optimization (GCLNTSO) algorithm. Three stability metrics are designed to guide the generation of efficient and stable rescheduling schemes. A rescheduling scheme is proposed that combines right-shift rescheduling with complete rescheduling. The proposed scheme is benchmarked against Brandymalter and Kacem’s problems, and compared with other algorithms from the literature. The results demonstrate that the GCLNTSO algorithm outperforms other algorithms in terms of both performance and stability.
•An improved TSO algorithm (GCLNTSO) is designed.•A hybrid rescheduling strategy and three stability indicators are designed.•Numerical experiments have demonstrated that the GCLNTSO is effective. |
|---|---|
| AbstractList | In job-shop production environments, machine breakdowns are a significant factor in reducing productivity. Existing approaches seldom consider algorithm improvement and rescheduling scheme design in an integrated manner, and lack stability considerations. This paper addresses the flexible job shop scheduling problem with random machine breakdowns, aiming to produce a stable rescheduling scheme that minimizes a combined index of maximum completion time and stability. The paper innovatively applies the tuna swarm optimization algorithm to the flexible job shop scheduling problem, proposing an efficient and superior improved version called the genetic chaos levy nonlinear tuna swarm optimization (GCLNTSO) algorithm. Three stability metrics are designed to guide the generation of efficient and stable rescheduling schemes. A rescheduling scheme is proposed that combines right-shift rescheduling with complete rescheduling. The proposed scheme is benchmarked against Brandymalter and Kacem’s problems, and compared with other algorithms from the literature. The results demonstrate that the GCLNTSO algorithm outperforms other algorithms in terms of both performance and stability.
•An improved TSO algorithm (GCLNTSO) is designed.•A hybrid rescheduling strategy and three stability indicators are designed.•Numerical experiments have demonstrated that the GCLNTSO is effective. |
| Author | Fan, Chengshuai Tian, Jun Wang, Wentao |
| Author_xml | – sequence: 1 givenname: Chengshuai surname: Fan fullname: Fan, Chengshuai – sequence: 2 givenname: Wentao surname: Wang fullname: Wang, Wentao – sequence: 3 givenname: Jun surname: Tian fullname: Tian, Jun email: jtian@nankai.edu.cn |
| BookMark | eNp9kMtOwzAQRS0EEqXwA6z8Aw0TJ2kTiQ2qeEmV2MDamjjjxiGxI9ttKV9PC6xYsJq7OVd3zgU7tc4SY9cpJCmk85su6YawTwSIPIEsARAnbJKWi3I2n-filE1AHHMqinN2EUIHkIocxISNDz19mLon3rmah9aNPKiWmk1v7JrvTGx5iE61GKJRfEDVGku89oTvjdvZwOs9R8vNMHq3pYbHjUUedugH7sZoBvOJ0TjLsV87f2gbLtmZxj7Q1e-dsreH-9fl02z18vi8vFvNVAYQZ7jIi6wSlSgWZYp6XmRlnZVNI0jopga9QEIsNOVIhQadV0WdZ1SJUosKqpqyKSt_epV3IXjSUpn4vSV6NL1MQR7NyU4ezcmjOQmZPJg7oOIPOnozoN__D93-QHR4amvIy6AMWUWN8aSibJz5D_8CUW6Nxg |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2025_102050 crossref_primary_10_3390_machines13080732 crossref_primary_10_1016_j_engappai_2024_109557 crossref_primary_10_1016_j_ejor_2025_08_039 crossref_primary_10_1016_j_jmsy_2025_04_007 crossref_primary_10_1007_s12065_024_00976_x crossref_primary_10_1016_j_engappai_2024_108572 crossref_primary_10_1016_j_asoc_2025_112697 crossref_primary_10_3390_biomimetics9070388 crossref_primary_10_1016_j_swevo_2024_101836 crossref_primary_10_1016_j_swevo_2025_101979 crossref_primary_10_1109_ACCESS_2025_3589064 crossref_primary_10_3390_electronics14081663 crossref_primary_10_1016_j_cie_2024_110813 crossref_primary_10_1007_s10586_025_05456_0 crossref_primary_10_1007_s12293_025_00449_3 crossref_primary_10_1016_j_istruc_2025_109058 crossref_primary_10_1016_j_rcim_2025_103085 crossref_primary_10_3390_fractalfract8110625 crossref_primary_10_1016_j_eswa_2025_129183 crossref_primary_10_1016_j_asoc_2024_112124 crossref_primary_10_1016_j_jmsy_2025_06_001 crossref_primary_10_1016_j_cie_2025_111256 crossref_primary_10_1016_j_jmsy_2025_08_013 crossref_primary_10_3390_electronics13142844 crossref_primary_10_1016_j_jece_2025_117990 crossref_primary_10_1016_j_eswa_2025_128951 crossref_primary_10_1016_j_jmsy_2025_07_018 |
| Cites_doi | 10.1080/00207543.2013.793428 10.1016/j.eswa.2020.113545 10.1109/ACCESS.2020.2992478 10.1080/00207543.2021.1968526 10.1007/s10845-008-0150-0 10.1080/0305215X.2016.1145216 10.1016/j.jmsy.2023.01.004 10.1016/j.asoc.2013.02.013 10.1080/00207543.2020.1790686 10.1109/ACCESS.2020.2997783 10.1007/s12652-016-0370-7 10.1016/S0378-4371(01)00057-7 10.1111/itor.12199 10.1016/j.cor.2016.03.009 10.1016/j.ijpe.2012.04.015 10.1016/j.jmsy.2019.12.004 10.1007/s00170-018-2805-0 10.1007/s10845-007-0026-8 10.1155/2017/1527858 10.1109/TSMCC.2002.1009117 10.1109/TCYB.2021.3086181 10.1016/j.swevo.2023.101387 10.1016/j.cie.2016.12.020 10.1063/5.0034006 10.1016/j.jmsy.2021.09.018 10.1016/j.knosys.2023.110801 10.1016/j.eswa.2022.117489 10.1080/00207543.2013.784408 10.1080/00207543.2016.1267414 10.1155/2021/9210050 10.3390/math9151743 10.1109/ACCESS.2020.2989445 10.1016/j.eswa.2015.06.004 10.1007/s00170-005-0237-0 10.1016/j.procs.2012.09.039 10.1016/j.eswa.2022.117460 10.1142/S0217984918401115 10.1016/j.asoc.2020.106208 10.1080/0951192X.2017.1407455 10.1016/j.cie.2022.108786 10.1109/TEVC.2003.810067 10.1103/PhysRevE.49.4677 10.1016/S0378-4754(02)00019-8 10.1016/j.ijpe.2011.04.020 10.1007/BF02023073 10.1016/j.asoc.2019.02.011 10.1016/j.ifacol.2018.08.357 10.1007/s00170-012-4344-4 10.1007/s00170-013-5510-z 10.1016/j.cie.2017.03.006 10.1080/00207540802112652 10.1016/j.jmsy.2020.06.005 |
| ContentType | Journal Article |
| Copyright | 2024 The Society of Manufacturing Engineers |
| Copyright_xml | – notice: 2024 The Society of Manufacturing Engineers |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jmsy.2024.03.002 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1878-6642 |
| EndPage | 197 |
| ExternalDocumentID | 10_1016_j_jmsy_2024_03_002 S0278612524000517 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29K 3EH 3V. 4.4 457 4G. 5GY 5VS 7-5 71M 7WY 883 88I 8AO 8FE 8FG 8FL 8FW 8G5 8P~ 8R4 8R5 9JN 9M8 AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABFNM ABJCF ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACGOD ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKRA AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BENPR BEZIV BGLVJ BJAXD BKOJK BKOMP BLXMC BPHCQ C1A CCPQU CS3 D-I DU5 DWQXO E3Z EBS EFJIC EJD EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FRNLG FYGXN G-2 GBLVA GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HVGLF HZ~ H~9 IHE J1W JJJVA K60 K6V K6~ K7- KOM L6V LY7 M0C M0F M0N M2O M2P M41 M7S MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PQBIZ PQBZA PQQKQ PRG PROAC PTHSS Q2X Q38 R2- RIG ROL RPZ RWL S0X SDF SES SET SPC SPCBC SST SSZ T5K TAE TN5 U5U WH7 WUQ ZHY ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFFHD AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG PHGZM PHGZT PQGLB ~HD |
| ID | FETCH-LOGICAL-c300t-a745392925781af6538b38dd2e2fdb0f7aeaa5fe4ae5f0f495b43e928f2909be3 |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001223004000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-6125 |
| IngestDate | Tue Nov 18 22:36:11 EST 2025 Sat Nov 29 03:35:04 EST 2025 Sat Jul 13 15:32:46 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Flexible job-shop scheduling Tuna swarm optimization algorithm Machine breakdowns Rescheduling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-a745392925781af6538b38dd2e2fdb0f7aeaa5fe4ae5f0f495b43e928f2909be3 |
| PageCount | 18 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_jmsy_2024_03_002 crossref_primary_10_1016_j_jmsy_2024_03_002 elsevier_sciencedirect_doi_10_1016_j_jmsy_2024_03_002 |
| PublicationCentury | 2000 |
| PublicationDate | June 2024 2024-06-00 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of manufacturing systems |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Aloui, Hamidi, Jerbi, Omri, Popescu, Abbassi (b60) 2021; 9 Destouet, Tlahig, Bettayeb, Mazari (b3) 2023; 67 Baykasoğlu, Madenoğlu, Hamzadayı (b41) 2020; 56 Ghaleb, Taghipour, Zolfagharinia (b32) 2021; 61 Viswanathan, Afanasyev, Buldyrev, Havlin, Da Luz, Raposo, Stanley (b56) 2001; 295 Ziaee (b5) 2014; 71 Duan, Wang (b34) 2022; 203 Liu, Gu, Xi (b44) 2007; 31 Caldeira, Gnanavelbabu, Akkash, Avinash, Manojkumar, Shanjay (b17) 2020; Vol. 2311 Gao, Yang, Li, Sang, Luo (b15) 2020; 8 Al-Hinai, ElMekkawy (b35) 2011; 132 Gomes, Barbosa-Póvoa, Novais (b36) 2013; 51 Zhang, Wong (b13) 2017; 55 Han, Peng, Mei, Cao, Deng, Wang, Wu (b6) 2023; 277 Buddala, Mahapatra (b14) 2019; 100 Gao, Suganthan, Chua, Chong, Cai, Pan (b37) 2015; 42 Jensen (b28) 2003; 7 Lin, Gen, Liang, Ohno (b24) 2012; 12 Chen, An, Zhang, Li (b18) 2020; 54 Yuan, Xu, Yang (b46) 2013; 13 Nouiri, Bekrar, Jemai, Trentesaux, Ammari, Niar (b45) 2017; 112 Zhang, Wang (b59) 2020; 8 Zhang, Xu, Wang, Song, Wang (b55) 2021; 36 Gholami, Zandieh (b10) 2009; 20 Zhang, Lu, Liu, Zhang, Wei, Zhang (b20) 2022; 203 Wang, Luo, Cai (b25) 2017; 2017 Petavratzis, Moysis, Volos, Nistazakis, Munoz-Pacheco, Stouboulos (b54) 2020 Rao (b16) 2016; 7 Lu, Li, Gao, Liao, Yi (b42) 2017; 104 He, Sun (b11) 2013; 66 Vasuyta, Zakharchenko (b52) 2016 Pluhacek, Senkerik, Zelinka, Davendra (b48) 2013 Brandimarte (b65) 1993; 41 Jiteurtragool, Ketthong, Wannaboon, San-Um (b53) 2013 Wang, Liu (b47) 2008 Zhang, Wang (b58) 2020; 8 Luo (b43) 2020; 91 Xie, Han, Zhou, Zhang, Han, Tang (b22) 2021; 2021 Yang, Huang, Wang, Zhu (b19) 2020; 158 Li, Sun, Li, Wang (b51) 2009 Zhao, Di, Wang (b8) 2022 Xiong, Xing, Chen (b29) 2013; 141 Ning, Huang, Liang, Jin (b38) 2016; 7 Ahmadi, Zandieh, Farrokh, Emami (b31) 2016; 73 Mihoubi, Bouzouia, Gaham (b27) 2021; 59 Kacem, Hammadi, Borne (b63) 2002; 32 Mantegna (b57) 1994; 49 Tang, Chen, Li, Peng, Guo, Du (b61) 2019; 78 Sun, He, Zheng, Liao (b4) 2014; 52 Chen, Ji, Wang (b26) 2018; 32 Yao, Zhang, Li, Zhang (b39) 2018; 31 Zhang, Zhu, Zhu, Cheng (b50) 2017 Ren, Yan, Hu, Guan (b33) 2022; 60 Fahmy, Balakrishnan, ElMekkawy (b23) 2009; 47 Thi, Mai Anh, Van Hop (b21) 2022 Chaudhry, Khan (b2) 2016; 23 Zhao (b49) 2011 Li, Guo, Tang, Wu, Wang, Pang, Liu, Xu, Li (b9) 2022 Nouiri, Bekrar, Trentesaux (b40) 2018; 51 Kacem, Hammadi, Borne (b64) 2002; 60 Fattahi, Saidi Mehrabad, Jolai (b66) 2007; 18 Zhenyu, Linfeng, Jiajia, Guorong (b12) 2016 WorldBank (b1) 2021 Zhang, Yang, Zhou (b30) 2016; 48 Jieran, Aimin, Yan, Xinyi (b62) 2020 Hu, Gong, Pedrycz, Li (b7) 2023; 83 Chen (10.1016/j.jmsy.2024.03.002_b26) 2018; 32 Vasuyta (10.1016/j.jmsy.2024.03.002_b52) 2016 Caldeira (10.1016/j.jmsy.2024.03.002_b17) 2020; Vol. 2311 Al-Hinai (10.1016/j.jmsy.2024.03.002_b35) 2011; 132 Zhang (10.1016/j.jmsy.2024.03.002_b55) 2021; 36 Yao (10.1016/j.jmsy.2024.03.002_b39) 2018; 31 Kacem (10.1016/j.jmsy.2024.03.002_b63) 2002; 32 Zhang (10.1016/j.jmsy.2024.03.002_b50) 2017 Chaudhry (10.1016/j.jmsy.2024.03.002_b2) 2016; 23 Mantegna (10.1016/j.jmsy.2024.03.002_b57) 1994; 49 Ziaee (10.1016/j.jmsy.2024.03.002_b5) 2014; 71 Yang (10.1016/j.jmsy.2024.03.002_b19) 2020; 158 Gomes (10.1016/j.jmsy.2024.03.002_b36) 2013; 51 Nouiri (10.1016/j.jmsy.2024.03.002_b45) 2017; 112 Xiong (10.1016/j.jmsy.2024.03.002_b29) 2013; 141 Duan (10.1016/j.jmsy.2024.03.002_b34) 2022; 203 Tang (10.1016/j.jmsy.2024.03.002_b61) 2019; 78 Zhenyu (10.1016/j.jmsy.2024.03.002_b12) 2016 Rao (10.1016/j.jmsy.2024.03.002_b16) 2016; 7 Fahmy (10.1016/j.jmsy.2024.03.002_b23) 2009; 47 Sun (10.1016/j.jmsy.2024.03.002_b4) 2014; 52 Jensen (10.1016/j.jmsy.2024.03.002_b28) 2003; 7 Yuan (10.1016/j.jmsy.2024.03.002_b46) 2013; 13 Zhao (10.1016/j.jmsy.2024.03.002_b49) 2011 Liu (10.1016/j.jmsy.2024.03.002_b44) 2007; 31 Gholami (10.1016/j.jmsy.2024.03.002_b10) 2009; 20 Ren (10.1016/j.jmsy.2024.03.002_b33) 2022; 60 Pluhacek (10.1016/j.jmsy.2024.03.002_b48) 2013 Brandimarte (10.1016/j.jmsy.2024.03.002_b65) 1993; 41 Jiteurtragool (10.1016/j.jmsy.2024.03.002_b53) 2013 Nouiri (10.1016/j.jmsy.2024.03.002_b40) 2018; 51 Wang (10.1016/j.jmsy.2024.03.002_b47) 2008 Petavratzis (10.1016/j.jmsy.2024.03.002_b54) 2020 Zhang (10.1016/j.jmsy.2024.03.002_b30) 2016; 48 He (10.1016/j.jmsy.2024.03.002_b11) 2013; 66 Xie (10.1016/j.jmsy.2024.03.002_b22) 2021; 2021 Li (10.1016/j.jmsy.2024.03.002_b9) 2022 Wang (10.1016/j.jmsy.2024.03.002_b25) 2017; 2017 Zhang (10.1016/j.jmsy.2024.03.002_b20) 2022; 203 Buddala (10.1016/j.jmsy.2024.03.002_b14) 2019; 100 Lin (10.1016/j.jmsy.2024.03.002_b24) 2012; 12 Kacem (10.1016/j.jmsy.2024.03.002_b64) 2002; 60 Ahmadi (10.1016/j.jmsy.2024.03.002_b31) 2016; 73 Gao (10.1016/j.jmsy.2024.03.002_b37) 2015; 42 Jieran (10.1016/j.jmsy.2024.03.002_b62) 2020 Mihoubi (10.1016/j.jmsy.2024.03.002_b27) 2021; 59 Aloui (10.1016/j.jmsy.2024.03.002_b60) 2021; 9 Lu (10.1016/j.jmsy.2024.03.002_b42) 2017; 104 Luo (10.1016/j.jmsy.2024.03.002_b43) 2020; 91 Han (10.1016/j.jmsy.2024.03.002_b6) 2023; 277 Destouet (10.1016/j.jmsy.2024.03.002_b3) 2023; 67 Zhao (10.1016/j.jmsy.2024.03.002_b8) 2022 Gao (10.1016/j.jmsy.2024.03.002_b15) 2020; 8 Fattahi (10.1016/j.jmsy.2024.03.002_b66) 2007; 18 WorldBank (10.1016/j.jmsy.2024.03.002_b1) 2021 Ning (10.1016/j.jmsy.2024.03.002_b38) 2016; 7 Chen (10.1016/j.jmsy.2024.03.002_b18) 2020; 54 Viswanathan (10.1016/j.jmsy.2024.03.002_b56) 2001; 295 Zhang (10.1016/j.jmsy.2024.03.002_b58) 2020; 8 Ghaleb (10.1016/j.jmsy.2024.03.002_b32) 2021; 61 Zhang (10.1016/j.jmsy.2024.03.002_b59) 2020; 8 Zhang (10.1016/j.jmsy.2024.03.002_b13) 2017; 55 Baykasoğlu (10.1016/j.jmsy.2024.03.002_b41) 2020; 56 Thi (10.1016/j.jmsy.2024.03.002_b21) 2022 Hu (10.1016/j.jmsy.2024.03.002_b7) 2023; 83 Li (10.1016/j.jmsy.2024.03.002_b51) 2009 |
| References_xml | – volume: 141 start-page: 112 year: 2013 end-page: 126 ident: b29 article-title: Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns publication-title: Int J Prod Econ – volume: 132 start-page: 279 year: 2011 end-page: 291 ident: b35 article-title: Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm publication-title: Int J Prod Econ – volume: 36 start-page: 1173 year: 2021 end-page: 1180 ident: b55 article-title: Whale optimization algorithm for embedded circle mapping and onedimensional oppositional learning based small hole imaging publication-title: Control Decis – volume: 52 start-page: 3858 year: 2014 end-page: 3876 ident: b4 article-title: Scheduling flexible job shop problem subject to machine breakdown with game theory publication-title: Int J Prod Res – volume: 31 start-page: 228 year: 2018 end-page: 242 ident: b39 article-title: Towards flexible rfid event-driven integrated manufacturing for make-to-order production publication-title: Int J Comput Integr Manuf – volume: 7 start-page: 721 year: 2016 end-page: 729 ident: b38 article-title: A novel dynamic scheduling strategy for solving flexible job-shop problems publication-title: J. Ambient Intell Humaniz Comput – volume: 71 start-page: 519 year: 2014 end-page: 528 ident: b5 article-title: A heuristic algorithm for solving flexible job shop scheduling problem publication-title: Int J Adv Manuf Technol – volume: 32 start-page: 1 year: 2002 end-page: 13 ident: b63 article-title: Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems publication-title: IEEE Trans Syst Man Cybern C (Appl Rev) – start-page: 36 year: 2008 end-page: 56 ident: b47 article-title: Particle swarm optimization and scheduling algorithms – start-page: 1090 year: 2017 end-page: 1093 ident: b50 article-title: Some improvements to logistic map for chaotic signal generator publication-title: 2017 3rd IEEE international conference on computer and communications – volume: 158 year: 2020 ident: b19 article-title: Robust scheduling based on extreme learning machine for bi-objective flexible job-shop problems with machine breakdowns publication-title: Expert Syst Appl – volume: 49 start-page: 4677 year: 1994 ident: b57 article-title: Fast, accurate algorithm for numerical simulation of levy stable stochastic processes publication-title: Phys Rev E – year: 2022 ident: b9 article-title: Survey of integrated flexible job shop scheduling problems publication-title: Comput Ind Eng – volume: 83 year: 2023 ident: b7 article-title: Deep reinforcement learning assisted co-evolutionary differential evolution for constrained optimization publication-title: Swarm Evol Comput – volume: 60 start-page: 245 year: 2002 end-page: 276 ident: b64 article-title: Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic publication-title: Math Comput Simul – volume: 203 year: 2022 ident: b34 article-title: Robust scheduling for flexible machining job shop subject to machine breakdowns and new job arrivals considering system reusability and task recurrence publication-title: Expert Syst Appl – volume: 9 start-page: 1743 year: 2021 ident: b60 article-title: A chaotic krill herd optimization algorithm for global numerical estimation of the attraction domain for nonlinear systems publication-title: Mathematics – volume: 59 start-page: 5790 year: 2021 end-page: 5808 ident: b27 article-title: Reactive scheduling approach for solving a realistic flexible job shop scheduling problem publication-title: Int J Prod Res – start-page: 217 year: 2016 end-page: 219 ident: b52 article-title: Modified discrete chaotic map based on chebyshev polynomial publication-title: 2016 third international scientific-practical conference problems of infocommunications science and technology (PIC s & t) – volume: 51 start-page: 1275 year: 2018 end-page: 1280 ident: b40 article-title: Towards energy efficient scheduling and rescheduling for dynamic flexible job shop problem publication-title: IFAC-PapersOnLine – year: 2022 ident: b8 article-title: A hyperheuristic with q-learning for the multiobjective energy-efficient distributed blocking flow shop scheduling problem publication-title: IEEE Trans Cybern – volume: Vol. 2311 year: 2020 ident: b17 article-title: Two stage approach to address the flexible job shop scheduling problem using an evolutionary algorithm considering random machine breakdowns publication-title: AIP conference proceedings – volume: 73 start-page: 56 year: 2016 end-page: 66 ident: b31 article-title: A multi objective optimization approach for flexible job shop scheduling problem under random machine breakdown by evolutionary algorithms publication-title: Comput Oper Res – volume: 8 start-page: 77013 year: 2020 end-page: 77048 ident: b58 article-title: Improved whale optimization algorithm based on nonlinear adaptive weight and golden sine operator publication-title: IEEE Access – year: 2021 ident: b1 article-title: Manufacturing, value added ( – volume: 8 start-page: 86915 year: 2020 end-page: 86922 ident: b15 article-title: Improved jaya algorithm for flexible job shop rescheduling problem publication-title: IEEE Access – volume: 203 year: 2022 ident: b20 article-title: An effective two-stage algorithm based on convolutional neural network for the bi-objective flexible job shop scheduling problem with machine breakdown publication-title: Expert Syst Appl – start-page: 19 year: 2013 end-page: 23 ident: b48 article-title: Designing pid controllers by means of pso algorithm enhanced by various chaotic maps publication-title: 2013 8th EUROSIm congress on modelling and simulation – volume: 23 start-page: 551 year: 2016 end-page: 591 ident: b2 article-title: A research survey: review of flexible job shop scheduling techniques publication-title: Int Trans Oper Res – start-page: 1089 year: 2013 end-page: 1094 ident: b53 article-title: A topologically simple keyed hash function based on circular chaotic sinusoidal map network publication-title: 2013 15th international conference on advanced communications technology – volume: 67 start-page: 155 year: 2023 end-page: 173 ident: b3 article-title: Flexible job shop scheduling problem under industry 5.0: A survey on human reintegration, environmental consideration and resilience improvement publication-title: J Manuf Syst – start-page: 221 year: 2011 end-page: 224 ident: b49 article-title: Chaotic particle swarm optimization algorithm based on tent mapping for dynamic origin–destination matrix estimation publication-title: 2011 international conference on electric information and control engineering – volume: 32 year: 2018 ident: b26 article-title: Nsga-ii applied to dynamic flexible job shop scheduling problems with machine breakdown publication-title: Modern Phys Lett B – volume: 31 start-page: 645 year: 2007 end-page: 654 ident: b44 article-title: Robust and stable scheduling of a single machine with random machine breakdowns publication-title: Int J Adv Manuf Technol – volume: 100 start-page: 1419 year: 2019 end-page: 1432 ident: b14 article-title: Two-stage teaching-learning-based optimization method for flexible job-shop scheduling under machine breakdown publication-title: Int J Adv Manuf Technol – volume: 48 start-page: 1973 year: 2016 end-page: 1989 ident: b30 article-title: Robust scheduling for multi-objective flexible job-shop problems with flexible workdays publication-title: Eng Optim – volume: 55 start-page: 3173 year: 2017 end-page: 3196 ident: b13 article-title: Flexible job-shop scheduling/rescheduling in dynamic environment: a hybrid mas/aco approach publication-title: Int J Prod Res – volume: 104 start-page: 156 year: 2017 end-page: 174 ident: b42 article-title: An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times publication-title: Comput Ind Eng – volume: 112 start-page: 595 year: 2017 end-page: 606 ident: b45 article-title: Two stage particle swarm optimization to solve the flexible job shop predictive scheduling problem considering possible machine breakdowns publication-title: Comput Ind Eng – volume: 54 start-page: 227 year: 2020 end-page: 241 ident: b18 article-title: An approximate nondominated sorting genetic algorithm to integrate optimization of production scheduling and accurate maintenance based on reliability intervals publication-title: J Manuf Syst – volume: 277 year: 2023 ident: b6 article-title: Multi-strategy multi-objective differential evolutionary algorithm with reinforcement learning publication-title: Knowl-Based Syst – volume: 91 year: 2020 ident: b43 article-title: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning publication-title: Appl Soft Comput – volume: 12 start-page: 110 year: 2012 end-page: 115 ident: b24 article-title: A hybrid ea for reactive flexible job-shop scheduling publication-title: Procedia Comput Sci – volume: 61 start-page: 423 year: 2021 end-page: 449 ident: b32 article-title: Real-time integrated production-scheduling and maintenance-planning in a flexible job shop with machine deterioration and condition-based maintenance publication-title: J Manuf Syst – volume: 42 start-page: 7652 year: 2015 end-page: 7663 ident: b37 article-title: A two-stage artificial bee colony algorithm scheduling flexible job-shop scheduling problem with new job insertion publication-title: Expert Syst Appl – volume: 56 start-page: 425 year: 2020 end-page: 451 ident: b41 article-title: Greedy randomized adaptive search for dynamic flexible job-shop scheduling publication-title: J Manuf Syst – volume: 60 start-page: 5675 year: 2022 end-page: 5696 ident: b33 article-title: Joint optimisation for dynamic flexible job-shop scheduling problem with transportation time and resource constraints publication-title: Int J Prod Res – volume: 2017 year: 2017 ident: b25 article-title: A variable interval rescheduling strategy for dynamic flexible job shop scheduling problem by improved genetic algorithm publication-title: J Adv Transp – volume: 7 start-page: 275 year: 2003 end-page: 288 ident: b28 article-title: Generating robust and flexible job shop schedules using genetic algorithms publication-title: IEEE Trans Evol Comput – volume: 8 start-page: 99740 year: 2020 end-page: 99771 ident: b59 article-title: Improved salp swarm algorithm based on levy flight and sine cosine operator publication-title: Ieee Access – volume: 18 start-page: 331 year: 2007 end-page: 342 ident: b66 article-title: Mathematical modeling and heuristic approaches to flexible job shop scheduling problems publication-title: J Intell Manuf – volume: 47 start-page: 5657 year: 2009 end-page: 5676 ident: b23 article-title: A generic deadlock-free reactive scheduling approach publication-title: Int J Prod Res – start-page: 1 year: 2020 end-page: 4 ident: b54 article-title: Motion control of a mobile robot based on a chaotic iterative map publication-title: 2020 9th international conference on modern circuits and systems technologies – start-page: 1 year: 2022 end-page: 21 ident: b21 article-title: An improved hybrid metaheuristics and rule-based approach for flexible job-shop scheduling subject to machine breakdowns publication-title: Eng Optim – volume: 295 start-page: 85 year: 2001 end-page: 88 ident: b56 article-title: Lévy flights search patterns of biological organisms publication-title: Physica A – start-page: 213 year: 2020 end-page: 217 ident: b62 article-title: An improved grey wolf optimizer for flexible job-shop scheduling problem publication-title: 2020 IEEE 11th international conference on mechanical and intelligent manufacturing technologies – volume: 78 start-page: 176 year: 2019 end-page: 194 ident: b61 article-title: Flexible job-shop scheduling with tolerated time interval and limited starting time interval based on hybrid discrete pso-sa: An application from a casting workshop publication-title: Appl Soft Comput – volume: 13 start-page: 3259 year: 2013 end-page: 3272 ident: b46 article-title: A hybrid harmony search algorithm for the flexible job shop scheduling problem publication-title: Appl Soft Comput – start-page: 1 year: 2009 end-page: 7 ident: b51 article-title: Improved chaotic particle swarm optimization using circle map for training svm publication-title: 2009 fourth international on conference on bio-inspired computing – volume: 66 start-page: 501 year: 2013 end-page: 514 ident: b11 article-title: Scheduling flexible job shop problem subject to machine breakdown with route changing and right-shift strategies publication-title: Int J Adv Manuf Technol – start-page: 4898 year: 2016 end-page: 4902 ident: b12 article-title: A flexible job-shop rescheduling method by considering the machine equipment availability publication-title: 2016 Chinese control and decision conference – volume: 20 start-page: 481 year: 2009 end-page: 498 ident: b10 article-title: Integrating simulation and genetic algorithm to schedule a dynamic flexible job shop publication-title: J Intell Manuf – volume: 7 start-page: 19 year: 2016 end-page: 34 ident: b16 article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems publication-title: Int J Ind Eng Comput – volume: 41 start-page: 157 year: 1993 end-page: 183 ident: b65 article-title: Routing and scheduling in a flexible job shop by tabu search publication-title: Ann Oper Res – volume: 2021 start-page: 1 year: 2021 end-page: 22 ident: b22 article-title: Tuna swarm optimization: a novel swarm-based metaheuristic algorithm for global optimization publication-title: Comput Intell Neurosci – volume: 51 start-page: 5120 year: 2013 end-page: 5141 ident: b36 article-title: Reactive scheduling in a make-to-order flexible job shop with re-entrant process and assembly: a mathematical programming approach publication-title: Int J Prod Res – volume: 51 start-page: 5120 issue: 17 year: 2013 ident: 10.1016/j.jmsy.2024.03.002_b36 article-title: Reactive scheduling in a make-to-order flexible job shop with re-entrant process and assembly: a mathematical programming approach publication-title: Int J Prod Res doi: 10.1080/00207543.2013.793428 – volume: 158 year: 2020 ident: 10.1016/j.jmsy.2024.03.002_b19 article-title: Robust scheduling based on extreme learning machine for bi-objective flexible job-shop problems with machine breakdowns publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113545 – volume: 8 start-page: 86915 year: 2020 ident: 10.1016/j.jmsy.2024.03.002_b15 article-title: Improved jaya algorithm for flexible job shop rescheduling problem publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2992478 – volume: 60 start-page: 5675 issue: 18 year: 2022 ident: 10.1016/j.jmsy.2024.03.002_b33 article-title: Joint optimisation for dynamic flexible job-shop scheduling problem with transportation time and resource constraints publication-title: Int J Prod Res doi: 10.1080/00207543.2021.1968526 – volume: 20 start-page: 481 year: 2009 ident: 10.1016/j.jmsy.2024.03.002_b10 article-title: Integrating simulation and genetic algorithm to schedule a dynamic flexible job shop publication-title: J Intell Manuf doi: 10.1007/s10845-008-0150-0 – volume: 48 start-page: 1973 issue: 11 year: 2016 ident: 10.1016/j.jmsy.2024.03.002_b30 article-title: Robust scheduling for multi-objective flexible job-shop problems with flexible workdays publication-title: Eng Optim doi: 10.1080/0305215X.2016.1145216 – year: 2021 ident: 10.1016/j.jmsy.2024.03.002_b1 – start-page: 221 year: 2011 ident: 10.1016/j.jmsy.2024.03.002_b49 article-title: Chaotic particle swarm optimization algorithm based on tent mapping for dynamic origin–destination matrix estimation – volume: 67 start-page: 155 year: 2023 ident: 10.1016/j.jmsy.2024.03.002_b3 article-title: Flexible job shop scheduling problem under industry 5.0: A survey on human reintegration, environmental consideration and resilience improvement publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2023.01.004 – volume: 13 start-page: 3259 issue: 7 year: 2013 ident: 10.1016/j.jmsy.2024.03.002_b46 article-title: A hybrid harmony search algorithm for the flexible job shop scheduling problem publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.02.013 – volume: 59 start-page: 5790 issue: 19 year: 2021 ident: 10.1016/j.jmsy.2024.03.002_b27 article-title: Reactive scheduling approach for solving a realistic flexible job shop scheduling problem publication-title: Int J Prod Res doi: 10.1080/00207543.2020.1790686 – volume: 8 start-page: 99740 year: 2020 ident: 10.1016/j.jmsy.2024.03.002_b59 article-title: Improved salp swarm algorithm based on levy flight and sine cosine operator publication-title: Ieee Access doi: 10.1109/ACCESS.2020.2997783 – volume: 7 start-page: 721 year: 2016 ident: 10.1016/j.jmsy.2024.03.002_b38 article-title: A novel dynamic scheduling strategy for solving flexible job-shop problems publication-title: J. Ambient Intell Humaniz Comput doi: 10.1007/s12652-016-0370-7 – volume: 295 start-page: 85 issue: 1–2 year: 2001 ident: 10.1016/j.jmsy.2024.03.002_b56 article-title: Lévy flights search patterns of biological organisms publication-title: Physica A doi: 10.1016/S0378-4371(01)00057-7 – volume: 23 start-page: 551 issue: 3 year: 2016 ident: 10.1016/j.jmsy.2024.03.002_b2 article-title: A research survey: review of flexible job shop scheduling techniques publication-title: Int Trans Oper Res doi: 10.1111/itor.12199 – volume: 73 start-page: 56 year: 2016 ident: 10.1016/j.jmsy.2024.03.002_b31 article-title: A multi objective optimization approach for flexible job shop scheduling problem under random machine breakdown by evolutionary algorithms publication-title: Comput Oper Res doi: 10.1016/j.cor.2016.03.009 – start-page: 217 year: 2016 ident: 10.1016/j.jmsy.2024.03.002_b52 article-title: Modified discrete chaotic map based on chebyshev polynomial – volume: 141 start-page: 112 issue: 1 year: 2013 ident: 10.1016/j.jmsy.2024.03.002_b29 article-title: Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns publication-title: Int J Prod Econ doi: 10.1016/j.ijpe.2012.04.015 – volume: 54 start-page: 227 year: 2020 ident: 10.1016/j.jmsy.2024.03.002_b18 article-title: An approximate nondominated sorting genetic algorithm to integrate optimization of production scheduling and accurate maintenance based on reliability intervals publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2019.12.004 – start-page: 1 year: 2020 ident: 10.1016/j.jmsy.2024.03.002_b54 article-title: Motion control of a mobile robot based on a chaotic iterative map – volume: 100 start-page: 1419 year: 2019 ident: 10.1016/j.jmsy.2024.03.002_b14 article-title: Two-stage teaching-learning-based optimization method for flexible job-shop scheduling under machine breakdown publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-018-2805-0 – volume: 18 start-page: 331 year: 2007 ident: 10.1016/j.jmsy.2024.03.002_b66 article-title: Mathematical modeling and heuristic approaches to flexible job shop scheduling problems publication-title: J Intell Manuf doi: 10.1007/s10845-007-0026-8 – volume: 2017 year: 2017 ident: 10.1016/j.jmsy.2024.03.002_b25 article-title: A variable interval rescheduling strategy for dynamic flexible job shop scheduling problem by improved genetic algorithm publication-title: J Adv Transp doi: 10.1155/2017/1527858 – volume: 32 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.jmsy.2024.03.002_b63 article-title: Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems publication-title: IEEE Trans Syst Man Cybern C (Appl Rev) doi: 10.1109/TSMCC.2002.1009117 – year: 2022 ident: 10.1016/j.jmsy.2024.03.002_b8 article-title: A hyperheuristic with q-learning for the multiobjective energy-efficient distributed blocking flow shop scheduling problem publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2021.3086181 – volume: 83 year: 2023 ident: 10.1016/j.jmsy.2024.03.002_b7 article-title: Deep reinforcement learning assisted co-evolutionary differential evolution for constrained optimization publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2023.101387 – start-page: 1 year: 2009 ident: 10.1016/j.jmsy.2024.03.002_b51 article-title: Improved chaotic particle swarm optimization using circle map for training svm – volume: 104 start-page: 156 year: 2017 ident: 10.1016/j.jmsy.2024.03.002_b42 article-title: An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times publication-title: Comput Ind Eng doi: 10.1016/j.cie.2016.12.020 – volume: Vol. 2311 year: 2020 ident: 10.1016/j.jmsy.2024.03.002_b17 article-title: Two stage approach to address the flexible job shop scheduling problem using an evolutionary algorithm considering random machine breakdowns doi: 10.1063/5.0034006 – start-page: 1 year: 2022 ident: 10.1016/j.jmsy.2024.03.002_b21 article-title: An improved hybrid metaheuristics and rule-based approach for flexible job-shop scheduling subject to machine breakdowns publication-title: Eng Optim – volume: 61 start-page: 423 year: 2021 ident: 10.1016/j.jmsy.2024.03.002_b32 article-title: Real-time integrated production-scheduling and maintenance-planning in a flexible job shop with machine deterioration and condition-based maintenance publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2021.09.018 – volume: 277 year: 2023 ident: 10.1016/j.jmsy.2024.03.002_b6 article-title: Multi-strategy multi-objective differential evolutionary algorithm with reinforcement learning publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2023.110801 – volume: 36 start-page: 1173 issue: 5 year: 2021 ident: 10.1016/j.jmsy.2024.03.002_b55 article-title: Whale optimization algorithm for embedded circle mapping and onedimensional oppositional learning based small hole imaging publication-title: Control Decis – volume: 203 year: 2022 ident: 10.1016/j.jmsy.2024.03.002_b34 article-title: Robust scheduling for flexible machining job shop subject to machine breakdowns and new job arrivals considering system reusability and task recurrence publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.117489 – volume: 52 start-page: 3858 issue: 13 year: 2014 ident: 10.1016/j.jmsy.2024.03.002_b4 article-title: Scheduling flexible job shop problem subject to machine breakdown with game theory publication-title: Int J Prod Res doi: 10.1080/00207543.2013.784408 – volume: 55 start-page: 3173 issue: 11 year: 2017 ident: 10.1016/j.jmsy.2024.03.002_b13 article-title: Flexible job-shop scheduling/rescheduling in dynamic environment: a hybrid mas/aco approach publication-title: Int J Prod Res doi: 10.1080/00207543.2016.1267414 – volume: 2021 start-page: 1 year: 2021 ident: 10.1016/j.jmsy.2024.03.002_b22 article-title: Tuna swarm optimization: a novel swarm-based metaheuristic algorithm for global optimization publication-title: Comput Intell Neurosci doi: 10.1155/2021/9210050 – start-page: 4898 year: 2016 ident: 10.1016/j.jmsy.2024.03.002_b12 article-title: A flexible job-shop rescheduling method by considering the machine equipment availability – volume: 9 start-page: 1743 issue: 15 year: 2021 ident: 10.1016/j.jmsy.2024.03.002_b60 article-title: A chaotic krill herd optimization algorithm for global numerical estimation of the attraction domain for nonlinear systems publication-title: Mathematics doi: 10.3390/math9151743 – volume: 8 start-page: 77013 year: 2020 ident: 10.1016/j.jmsy.2024.03.002_b58 article-title: Improved whale optimization algorithm based on nonlinear adaptive weight and golden sine operator publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2989445 – volume: 42 start-page: 7652 issue: 21 year: 2015 ident: 10.1016/j.jmsy.2024.03.002_b37 article-title: A two-stage artificial bee colony algorithm scheduling flexible job-shop scheduling problem with new job insertion publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.06.004 – volume: 31 start-page: 645 year: 2007 ident: 10.1016/j.jmsy.2024.03.002_b44 article-title: Robust and stable scheduling of a single machine with random machine breakdowns publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-005-0237-0 – start-page: 19 year: 2013 ident: 10.1016/j.jmsy.2024.03.002_b48 article-title: Designing pid controllers by means of pso algorithm enhanced by various chaotic maps – volume: 12 start-page: 110 year: 2012 ident: 10.1016/j.jmsy.2024.03.002_b24 article-title: A hybrid ea for reactive flexible job-shop scheduling publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2012.09.039 – volume: 203 year: 2022 ident: 10.1016/j.jmsy.2024.03.002_b20 article-title: An effective two-stage algorithm based on convolutional neural network for the bi-objective flexible job shop scheduling problem with machine breakdown publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.117460 – volume: 32 issue: 34n36 year: 2018 ident: 10.1016/j.jmsy.2024.03.002_b26 article-title: Nsga-ii applied to dynamic flexible job shop scheduling problems with machine breakdown publication-title: Modern Phys Lett B doi: 10.1142/S0217984918401115 – volume: 91 year: 2020 ident: 10.1016/j.jmsy.2024.03.002_b43 article-title: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106208 – start-page: 213 year: 2020 ident: 10.1016/j.jmsy.2024.03.002_b62 article-title: An improved grey wolf optimizer for flexible job-shop scheduling problem – volume: 31 start-page: 228 issue: 3 year: 2018 ident: 10.1016/j.jmsy.2024.03.002_b39 article-title: Towards flexible rfid event-driven integrated manufacturing for make-to-order production publication-title: Int J Comput Integr Manuf doi: 10.1080/0951192X.2017.1407455 – year: 2022 ident: 10.1016/j.jmsy.2024.03.002_b9 article-title: Survey of integrated flexible job shop scheduling problems publication-title: Comput Ind Eng doi: 10.1016/j.cie.2022.108786 – volume: 7 start-page: 275 issue: 3 year: 2003 ident: 10.1016/j.jmsy.2024.03.002_b28 article-title: Generating robust and flexible job shop schedules using genetic algorithms publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2003.810067 – volume: 49 start-page: 4677 issue: 5 year: 1994 ident: 10.1016/j.jmsy.2024.03.002_b57 article-title: Fast, accurate algorithm for numerical simulation of levy stable stochastic processes publication-title: Phys Rev E doi: 10.1103/PhysRevE.49.4677 – volume: 60 start-page: 245 issue: 3–5 year: 2002 ident: 10.1016/j.jmsy.2024.03.002_b64 article-title: Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic publication-title: Math Comput Simul doi: 10.1016/S0378-4754(02)00019-8 – volume: 132 start-page: 279 issue: 2 year: 2011 ident: 10.1016/j.jmsy.2024.03.002_b35 article-title: Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm publication-title: Int J Prod Econ doi: 10.1016/j.ijpe.2011.04.020 – volume: 41 start-page: 157 issue: 3 year: 1993 ident: 10.1016/j.jmsy.2024.03.002_b65 article-title: Routing and scheduling in a flexible job shop by tabu search publication-title: Ann Oper Res doi: 10.1007/BF02023073 – start-page: 1090 year: 2017 ident: 10.1016/j.jmsy.2024.03.002_b50 article-title: Some improvements to logistic map for chaotic signal generator – volume: 78 start-page: 176 year: 2019 ident: 10.1016/j.jmsy.2024.03.002_b61 article-title: Flexible job-shop scheduling with tolerated time interval and limited starting time interval based on hybrid discrete pso-sa: An application from a casting workshop publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.02.011 – volume: 51 start-page: 1275 issue: 11 year: 2018 ident: 10.1016/j.jmsy.2024.03.002_b40 article-title: Towards energy efficient scheduling and rescheduling for dynamic flexible job shop problem publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.08.357 – volume: 66 start-page: 501 year: 2013 ident: 10.1016/j.jmsy.2024.03.002_b11 article-title: Scheduling flexible job shop problem subject to machine breakdown with route changing and right-shift strategies publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-012-4344-4 – start-page: 1089 year: 2013 ident: 10.1016/j.jmsy.2024.03.002_b53 article-title: A topologically simple keyed hash function based on circular chaotic sinusoidal map network – volume: 71 start-page: 519 year: 2014 ident: 10.1016/j.jmsy.2024.03.002_b5 article-title: A heuristic algorithm for solving flexible job shop scheduling problem publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-013-5510-z – volume: 112 start-page: 595 year: 2017 ident: 10.1016/j.jmsy.2024.03.002_b45 article-title: Two stage particle swarm optimization to solve the flexible job shop predictive scheduling problem considering possible machine breakdowns publication-title: Comput Ind Eng doi: 10.1016/j.cie.2017.03.006 – volume: 7 start-page: 19 issue: 1 year: 2016 ident: 10.1016/j.jmsy.2024.03.002_b16 article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems publication-title: Int J Ind Eng Comput – volume: 47 start-page: 5657 issue: 20 year: 2009 ident: 10.1016/j.jmsy.2024.03.002_b23 article-title: A generic deadlock-free reactive scheduling approach publication-title: Int J Prod Res doi: 10.1080/00207540802112652 – volume: 56 start-page: 425 year: 2020 ident: 10.1016/j.jmsy.2024.03.002_b41 article-title: Greedy randomized adaptive search for dynamic flexible job-shop scheduling publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2020.06.005 – start-page: 36 year: 2008 ident: 10.1016/j.jmsy.2024.03.002_b47 |
| SSID | ssj0012402 |
| Score | 2.524695 |
| Snippet | In job-shop production environments, machine breakdowns are a significant factor in reducing productivity. Existing approaches seldom consider algorithm... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 180 |
| SubjectTerms | Flexible job-shop scheduling Machine breakdowns Rescheduling Tuna swarm optimization algorithm |
| Title | Flexible job shop scheduling with stochastic machine breakdowns by an improved tuna swarm optimization algorithm |
| URI | https://dx.doi.org/10.1016/j.jmsy.2024.03.002 |
| Volume | 74 |
| WOSCitedRecordID | wos001223004000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-6642 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012402 issn: 0278-6125 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGlgMcEKtaNvnALUqVOMkkPlaoFXCokChibpGd2J0ZJs5oMlPaH8F_5r3YWdgqQOISjazYY_l9eZvfQsirotRlLGXqMxmi60YXfhZiDw2QJYJPJZgMsm02kZ6dZbMZfz-ZfO1yYS5XqTHZ1RVf_1dSwxgQG1Nn_4Lc_aIwAL-B6PAEssPzjwh_iiUuMR9qWUuvmddrDwxYECir3u0K-l4xF1ig2avaWErlgWEsPpfoaUZ9FL75RetsAG10uzPCa76ITeXVwF4ql7fpidVFvYHVqt-ot5UwO8yasGmQzagwelv60d31K3PRzHdiMfj1Le_5hCHtde9WWAiXQmLGXgoWD9FU1nXWpc8MsUrI4RiYsKhiWWFkOXCGY9P4OxadxiMeG9rWT05chza89ydJYJ0Sy6Nl1Vwf4Y5sLVs2yL0-GvED7gO3gfG0WLPsFtlnacKBSe4fvz2ZveuvpfAqqnXauX27LCwbMPjjP_1a0xlpL-f3yT1HF3ps4fKATJR5SO6OilE-IusOOBSAQxE4dAAOReDQATjUAYcOwKHymgpDO-BQBA5tgUPHwKE9cB6Tj6cn56_f-K4fh19EQbD1RRonqE4jlw-FnoKslFFWlkwxXcpAp0IJkWgVC5XoQIPpLeNIcZZpxgMuVfSE7JnaqANCS1hpiqX2ilDFiiWZLNKAwzq8DJJMiUMSdmeXF65YPfZMWeVdVOIyx_PO8bzzIMrhvA-J189Z21ItN76ddCTJnbJplcgcEHTDvKf_OO8ZuTN8F8_J3nazUy_I7eJyu2g2Lx3QvgFGsqpe |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+job+shop+scheduling+with+stochastic+machine+breakdowns+by+an+improved+tuna+swarm+optimization+algorithm&rft.jtitle=Journal+of+manufacturing+systems&rft.au=Fan%2C+Chengshuai&rft.au=Wang%2C+Wentao&rft.au=Tian%2C+Jun&rft.date=2024-06-01&rft.pub=Elsevier+Ltd&rft.issn=0278-6125&rft.eissn=1878-6642&rft.volume=74&rft.spage=180&rft.epage=197&rft_id=info:doi/10.1016%2Fj.jmsy.2024.03.002&rft.externalDocID=S0278612524000517 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-6125&client=summon |