Flexible job shop scheduling with stochastic machine breakdowns by an improved tuna swarm optimization algorithm

In job-shop production environments, machine breakdowns are a significant factor in reducing productivity. Existing approaches seldom consider algorithm improvement and rescheduling scheme design in an integrated manner, and lack stability considerations. This paper addresses the flexible job shop s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of manufacturing systems Ročník 74; s. 180 - 197
Hlavní autoři: Fan, Chengshuai, Wang, Wentao, Tian, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.06.2024
Témata:
ISSN:0278-6125, 1878-6642
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In job-shop production environments, machine breakdowns are a significant factor in reducing productivity. Existing approaches seldom consider algorithm improvement and rescheduling scheme design in an integrated manner, and lack stability considerations. This paper addresses the flexible job shop scheduling problem with random machine breakdowns, aiming to produce a stable rescheduling scheme that minimizes a combined index of maximum completion time and stability. The paper innovatively applies the tuna swarm optimization algorithm to the flexible job shop scheduling problem, proposing an efficient and superior improved version called the genetic chaos levy nonlinear tuna swarm optimization (GCLNTSO) algorithm. Three stability metrics are designed to guide the generation of efficient and stable rescheduling schemes. A rescheduling scheme is proposed that combines right-shift rescheduling with complete rescheduling. The proposed scheme is benchmarked against Brandymalter and Kacem’s problems, and compared with other algorithms from the literature. The results demonstrate that the GCLNTSO algorithm outperforms other algorithms in terms of both performance and stability. •An improved TSO algorithm (GCLNTSO) is designed.•A hybrid rescheduling strategy and three stability indicators are designed.•Numerical experiments have demonstrated that the GCLNTSO is effective.
AbstractList In job-shop production environments, machine breakdowns are a significant factor in reducing productivity. Existing approaches seldom consider algorithm improvement and rescheduling scheme design in an integrated manner, and lack stability considerations. This paper addresses the flexible job shop scheduling problem with random machine breakdowns, aiming to produce a stable rescheduling scheme that minimizes a combined index of maximum completion time and stability. The paper innovatively applies the tuna swarm optimization algorithm to the flexible job shop scheduling problem, proposing an efficient and superior improved version called the genetic chaos levy nonlinear tuna swarm optimization (GCLNTSO) algorithm. Three stability metrics are designed to guide the generation of efficient and stable rescheduling schemes. A rescheduling scheme is proposed that combines right-shift rescheduling with complete rescheduling. The proposed scheme is benchmarked against Brandymalter and Kacem’s problems, and compared with other algorithms from the literature. The results demonstrate that the GCLNTSO algorithm outperforms other algorithms in terms of both performance and stability. •An improved TSO algorithm (GCLNTSO) is designed.•A hybrid rescheduling strategy and three stability indicators are designed.•Numerical experiments have demonstrated that the GCLNTSO is effective.
Author Fan, Chengshuai
Tian, Jun
Wang, Wentao
Author_xml – sequence: 1
  givenname: Chengshuai
  surname: Fan
  fullname: Fan, Chengshuai
– sequence: 2
  givenname: Wentao
  surname: Wang
  fullname: Wang, Wentao
– sequence: 3
  givenname: Jun
  surname: Tian
  fullname: Tian, Jun
  email: jtian@nankai.edu.cn
BookMark eNp9kMtOwzAQRS0EEqXwA6z8Aw0TJ2kTiQ2qeEmV2MDamjjjxiGxI9ttKV9PC6xYsJq7OVd3zgU7tc4SY9cpJCmk85su6YawTwSIPIEsARAnbJKWi3I2n-filE1AHHMqinN2EUIHkIocxISNDz19mLon3rmah9aNPKiWmk1v7JrvTGx5iE61GKJRfEDVGku89oTvjdvZwOs9R8vNMHq3pYbHjUUedugH7sZoBvOJ0TjLsV87f2gbLtmZxj7Q1e-dsreH-9fl02z18vi8vFvNVAYQZ7jIi6wSlSgWZYp6XmRlnZVNI0jopga9QEIsNOVIhQadV0WdZ1SJUosKqpqyKSt_epV3IXjSUpn4vSV6NL1MQR7NyU4ezcmjOQmZPJg7oOIPOnozoN__D93-QHR4amvIy6AMWUWN8aSibJz5D_8CUW6Nxg
CitedBy_id crossref_primary_10_1016_j_swevo_2025_102050
crossref_primary_10_3390_machines13080732
crossref_primary_10_1016_j_engappai_2024_109557
crossref_primary_10_1016_j_ejor_2025_08_039
crossref_primary_10_1016_j_jmsy_2025_04_007
crossref_primary_10_1007_s12065_024_00976_x
crossref_primary_10_1016_j_engappai_2024_108572
crossref_primary_10_1016_j_asoc_2025_112697
crossref_primary_10_3390_biomimetics9070388
crossref_primary_10_1016_j_swevo_2024_101836
crossref_primary_10_1016_j_swevo_2025_101979
crossref_primary_10_1109_ACCESS_2025_3589064
crossref_primary_10_3390_electronics14081663
crossref_primary_10_1016_j_cie_2024_110813
crossref_primary_10_1007_s10586_025_05456_0
crossref_primary_10_1007_s12293_025_00449_3
crossref_primary_10_1016_j_istruc_2025_109058
crossref_primary_10_1016_j_rcim_2025_103085
crossref_primary_10_3390_fractalfract8110625
crossref_primary_10_1016_j_eswa_2025_129183
crossref_primary_10_1016_j_asoc_2024_112124
crossref_primary_10_1016_j_jmsy_2025_06_001
crossref_primary_10_1016_j_cie_2025_111256
crossref_primary_10_1016_j_jmsy_2025_08_013
crossref_primary_10_3390_electronics13142844
crossref_primary_10_1016_j_jece_2025_117990
crossref_primary_10_1016_j_eswa_2025_128951
crossref_primary_10_1016_j_jmsy_2025_07_018
Cites_doi 10.1080/00207543.2013.793428
10.1016/j.eswa.2020.113545
10.1109/ACCESS.2020.2992478
10.1080/00207543.2021.1968526
10.1007/s10845-008-0150-0
10.1080/0305215X.2016.1145216
10.1016/j.jmsy.2023.01.004
10.1016/j.asoc.2013.02.013
10.1080/00207543.2020.1790686
10.1109/ACCESS.2020.2997783
10.1007/s12652-016-0370-7
10.1016/S0378-4371(01)00057-7
10.1111/itor.12199
10.1016/j.cor.2016.03.009
10.1016/j.ijpe.2012.04.015
10.1016/j.jmsy.2019.12.004
10.1007/s00170-018-2805-0
10.1007/s10845-007-0026-8
10.1155/2017/1527858
10.1109/TSMCC.2002.1009117
10.1109/TCYB.2021.3086181
10.1016/j.swevo.2023.101387
10.1016/j.cie.2016.12.020
10.1063/5.0034006
10.1016/j.jmsy.2021.09.018
10.1016/j.knosys.2023.110801
10.1016/j.eswa.2022.117489
10.1080/00207543.2013.784408
10.1080/00207543.2016.1267414
10.1155/2021/9210050
10.3390/math9151743
10.1109/ACCESS.2020.2989445
10.1016/j.eswa.2015.06.004
10.1007/s00170-005-0237-0
10.1016/j.procs.2012.09.039
10.1016/j.eswa.2022.117460
10.1142/S0217984918401115
10.1016/j.asoc.2020.106208
10.1080/0951192X.2017.1407455
10.1016/j.cie.2022.108786
10.1109/TEVC.2003.810067
10.1103/PhysRevE.49.4677
10.1016/S0378-4754(02)00019-8
10.1016/j.ijpe.2011.04.020
10.1007/BF02023073
10.1016/j.asoc.2019.02.011
10.1016/j.ifacol.2018.08.357
10.1007/s00170-012-4344-4
10.1007/s00170-013-5510-z
10.1016/j.cie.2017.03.006
10.1080/00207540802112652
10.1016/j.jmsy.2020.06.005
ContentType Journal Article
Copyright 2024 The Society of Manufacturing Engineers
Copyright_xml – notice: 2024 The Society of Manufacturing Engineers
DBID AAYXX
CITATION
DOI 10.1016/j.jmsy.2024.03.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-6642
EndPage 197
ExternalDocumentID 10_1016_j_jmsy_2024_03_002
S0278612524000517
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29K
3EH
3V.
4.4
457
4G.
5GY
5VS
7-5
71M
7WY
883
88I
8AO
8FE
8FG
8FL
8FW
8G5
8P~
8R4
8R5
9JN
9M8
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJCF
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKRA
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BENPR
BEZIV
BGLVJ
BJAXD
BKOJK
BKOMP
BLXMC
BPHCQ
C1A
CCPQU
CS3
D-I
DU5
DWQXO
E3Z
EBS
EFJIC
EJD
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FRNLG
FYGXN
G-2
GBLVA
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K60
K6V
K6~
K7-
KOM
L6V
LY7
M0C
M0F
M0N
M2O
M2P
M41
M7S
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PTHSS
Q2X
Q38
R2-
RIG
ROL
RPZ
RWL
S0X
SDF
SES
SET
SPC
SPCBC
SST
SSZ
T5K
TAE
TN5
U5U
WH7
WUQ
ZHY
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFFHD
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
PHGZM
PHGZT
PQGLB
~HD
ID FETCH-LOGICAL-c300t-a745392925781af6538b38dd2e2fdb0f7aeaa5fe4ae5f0f495b43e928f2909be3
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001223004000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-6125
IngestDate Tue Nov 18 22:36:11 EST 2025
Sat Nov 29 03:35:04 EST 2025
Sat Jul 13 15:32:46 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Flexible job-shop scheduling
Tuna swarm optimization algorithm
Machine breakdowns
Rescheduling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-a745392925781af6538b38dd2e2fdb0f7aeaa5fe4ae5f0f495b43e928f2909be3
PageCount 18
ParticipantIDs crossref_citationtrail_10_1016_j_jmsy_2024_03_002
crossref_primary_10_1016_j_jmsy_2024_03_002
elsevier_sciencedirect_doi_10_1016_j_jmsy_2024_03_002
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Journal of manufacturing systems
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Aloui, Hamidi, Jerbi, Omri, Popescu, Abbassi (b60) 2021; 9
Destouet, Tlahig, Bettayeb, Mazari (b3) 2023; 67
Baykasoğlu, Madenoğlu, Hamzadayı (b41) 2020; 56
Ghaleb, Taghipour, Zolfagharinia (b32) 2021; 61
Viswanathan, Afanasyev, Buldyrev, Havlin, Da Luz, Raposo, Stanley (b56) 2001; 295
Ziaee (b5) 2014; 71
Duan, Wang (b34) 2022; 203
Liu, Gu, Xi (b44) 2007; 31
Caldeira, Gnanavelbabu, Akkash, Avinash, Manojkumar, Shanjay (b17) 2020; Vol. 2311
Gao, Yang, Li, Sang, Luo (b15) 2020; 8
Al-Hinai, ElMekkawy (b35) 2011; 132
Gomes, Barbosa-Póvoa, Novais (b36) 2013; 51
Zhang, Wong (b13) 2017; 55
Han, Peng, Mei, Cao, Deng, Wang, Wu (b6) 2023; 277
Buddala, Mahapatra (b14) 2019; 100
Gao, Suganthan, Chua, Chong, Cai, Pan (b37) 2015; 42
Jensen (b28) 2003; 7
Lin, Gen, Liang, Ohno (b24) 2012; 12
Chen, An, Zhang, Li (b18) 2020; 54
Yuan, Xu, Yang (b46) 2013; 13
Nouiri, Bekrar, Jemai, Trentesaux, Ammari, Niar (b45) 2017; 112
Zhang, Wang (b59) 2020; 8
Zhang, Xu, Wang, Song, Wang (b55) 2021; 36
Gholami, Zandieh (b10) 2009; 20
Zhang, Lu, Liu, Zhang, Wei, Zhang (b20) 2022; 203
Wang, Luo, Cai (b25) 2017; 2017
Petavratzis, Moysis, Volos, Nistazakis, Munoz-Pacheco, Stouboulos (b54) 2020
Rao (b16) 2016; 7
Lu, Li, Gao, Liao, Yi (b42) 2017; 104
He, Sun (b11) 2013; 66
Vasuyta, Zakharchenko (b52) 2016
Pluhacek, Senkerik, Zelinka, Davendra (b48) 2013
Brandimarte (b65) 1993; 41
Jiteurtragool, Ketthong, Wannaboon, San-Um (b53) 2013
Wang, Liu (b47) 2008
Zhang, Wang (b58) 2020; 8
Luo (b43) 2020; 91
Xie, Han, Zhou, Zhang, Han, Tang (b22) 2021; 2021
Yang, Huang, Wang, Zhu (b19) 2020; 158
Li, Sun, Li, Wang (b51) 2009
Zhao, Di, Wang (b8) 2022
Xiong, Xing, Chen (b29) 2013; 141
Ning, Huang, Liang, Jin (b38) 2016; 7
Ahmadi, Zandieh, Farrokh, Emami (b31) 2016; 73
Mihoubi, Bouzouia, Gaham (b27) 2021; 59
Kacem, Hammadi, Borne (b63) 2002; 32
Mantegna (b57) 1994; 49
Tang, Chen, Li, Peng, Guo, Du (b61) 2019; 78
Sun, He, Zheng, Liao (b4) 2014; 52
Chen, Ji, Wang (b26) 2018; 32
Yao, Zhang, Li, Zhang (b39) 2018; 31
Zhang, Zhu, Zhu, Cheng (b50) 2017
Ren, Yan, Hu, Guan (b33) 2022; 60
Fahmy, Balakrishnan, ElMekkawy (b23) 2009; 47
Thi, Mai Anh, Van Hop (b21) 2022
Chaudhry, Khan (b2) 2016; 23
Zhao (b49) 2011
Li, Guo, Tang, Wu, Wang, Pang, Liu, Xu, Li (b9) 2022
Nouiri, Bekrar, Trentesaux (b40) 2018; 51
Kacem, Hammadi, Borne (b64) 2002; 60
Fattahi, Saidi Mehrabad, Jolai (b66) 2007; 18
Zhenyu, Linfeng, Jiajia, Guorong (b12) 2016
WorldBank (b1) 2021
Zhang, Yang, Zhou (b30) 2016; 48
Jieran, Aimin, Yan, Xinyi (b62) 2020
Hu, Gong, Pedrycz, Li (b7) 2023; 83
Chen (10.1016/j.jmsy.2024.03.002_b26) 2018; 32
Vasuyta (10.1016/j.jmsy.2024.03.002_b52) 2016
Caldeira (10.1016/j.jmsy.2024.03.002_b17) 2020; Vol. 2311
Al-Hinai (10.1016/j.jmsy.2024.03.002_b35) 2011; 132
Zhang (10.1016/j.jmsy.2024.03.002_b55) 2021; 36
Yao (10.1016/j.jmsy.2024.03.002_b39) 2018; 31
Kacem (10.1016/j.jmsy.2024.03.002_b63) 2002; 32
Zhang (10.1016/j.jmsy.2024.03.002_b50) 2017
Chaudhry (10.1016/j.jmsy.2024.03.002_b2) 2016; 23
Mantegna (10.1016/j.jmsy.2024.03.002_b57) 1994; 49
Ziaee (10.1016/j.jmsy.2024.03.002_b5) 2014; 71
Yang (10.1016/j.jmsy.2024.03.002_b19) 2020; 158
Gomes (10.1016/j.jmsy.2024.03.002_b36) 2013; 51
Nouiri (10.1016/j.jmsy.2024.03.002_b45) 2017; 112
Xiong (10.1016/j.jmsy.2024.03.002_b29) 2013; 141
Duan (10.1016/j.jmsy.2024.03.002_b34) 2022; 203
Tang (10.1016/j.jmsy.2024.03.002_b61) 2019; 78
Zhenyu (10.1016/j.jmsy.2024.03.002_b12) 2016
Rao (10.1016/j.jmsy.2024.03.002_b16) 2016; 7
Fahmy (10.1016/j.jmsy.2024.03.002_b23) 2009; 47
Sun (10.1016/j.jmsy.2024.03.002_b4) 2014; 52
Jensen (10.1016/j.jmsy.2024.03.002_b28) 2003; 7
Yuan (10.1016/j.jmsy.2024.03.002_b46) 2013; 13
Zhao (10.1016/j.jmsy.2024.03.002_b49) 2011
Liu (10.1016/j.jmsy.2024.03.002_b44) 2007; 31
Gholami (10.1016/j.jmsy.2024.03.002_b10) 2009; 20
Ren (10.1016/j.jmsy.2024.03.002_b33) 2022; 60
Pluhacek (10.1016/j.jmsy.2024.03.002_b48) 2013
Brandimarte (10.1016/j.jmsy.2024.03.002_b65) 1993; 41
Jiteurtragool (10.1016/j.jmsy.2024.03.002_b53) 2013
Nouiri (10.1016/j.jmsy.2024.03.002_b40) 2018; 51
Wang (10.1016/j.jmsy.2024.03.002_b47) 2008
Petavratzis (10.1016/j.jmsy.2024.03.002_b54) 2020
Zhang (10.1016/j.jmsy.2024.03.002_b30) 2016; 48
He (10.1016/j.jmsy.2024.03.002_b11) 2013; 66
Xie (10.1016/j.jmsy.2024.03.002_b22) 2021; 2021
Li (10.1016/j.jmsy.2024.03.002_b9) 2022
Wang (10.1016/j.jmsy.2024.03.002_b25) 2017; 2017
Zhang (10.1016/j.jmsy.2024.03.002_b20) 2022; 203
Buddala (10.1016/j.jmsy.2024.03.002_b14) 2019; 100
Lin (10.1016/j.jmsy.2024.03.002_b24) 2012; 12
Kacem (10.1016/j.jmsy.2024.03.002_b64) 2002; 60
Ahmadi (10.1016/j.jmsy.2024.03.002_b31) 2016; 73
Gao (10.1016/j.jmsy.2024.03.002_b37) 2015; 42
Jieran (10.1016/j.jmsy.2024.03.002_b62) 2020
Mihoubi (10.1016/j.jmsy.2024.03.002_b27) 2021; 59
Aloui (10.1016/j.jmsy.2024.03.002_b60) 2021; 9
Lu (10.1016/j.jmsy.2024.03.002_b42) 2017; 104
Luo (10.1016/j.jmsy.2024.03.002_b43) 2020; 91
Han (10.1016/j.jmsy.2024.03.002_b6) 2023; 277
Destouet (10.1016/j.jmsy.2024.03.002_b3) 2023; 67
Zhao (10.1016/j.jmsy.2024.03.002_b8) 2022
Gao (10.1016/j.jmsy.2024.03.002_b15) 2020; 8
Fattahi (10.1016/j.jmsy.2024.03.002_b66) 2007; 18
WorldBank (10.1016/j.jmsy.2024.03.002_b1) 2021
Ning (10.1016/j.jmsy.2024.03.002_b38) 2016; 7
Chen (10.1016/j.jmsy.2024.03.002_b18) 2020; 54
Viswanathan (10.1016/j.jmsy.2024.03.002_b56) 2001; 295
Zhang (10.1016/j.jmsy.2024.03.002_b58) 2020; 8
Ghaleb (10.1016/j.jmsy.2024.03.002_b32) 2021; 61
Zhang (10.1016/j.jmsy.2024.03.002_b59) 2020; 8
Zhang (10.1016/j.jmsy.2024.03.002_b13) 2017; 55
Baykasoğlu (10.1016/j.jmsy.2024.03.002_b41) 2020; 56
Thi (10.1016/j.jmsy.2024.03.002_b21) 2022
Hu (10.1016/j.jmsy.2024.03.002_b7) 2023; 83
Li (10.1016/j.jmsy.2024.03.002_b51) 2009
References_xml – volume: 141
  start-page: 112
  year: 2013
  end-page: 126
  ident: b29
  article-title: Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns
  publication-title: Int J Prod Econ
– volume: 132
  start-page: 279
  year: 2011
  end-page: 291
  ident: b35
  article-title: Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm
  publication-title: Int J Prod Econ
– volume: 36
  start-page: 1173
  year: 2021
  end-page: 1180
  ident: b55
  article-title: Whale optimization algorithm for embedded circle mapping and onedimensional oppositional learning based small hole imaging
  publication-title: Control Decis
– volume: 52
  start-page: 3858
  year: 2014
  end-page: 3876
  ident: b4
  article-title: Scheduling flexible job shop problem subject to machine breakdown with game theory
  publication-title: Int J Prod Res
– volume: 31
  start-page: 228
  year: 2018
  end-page: 242
  ident: b39
  article-title: Towards flexible rfid event-driven integrated manufacturing for make-to-order production
  publication-title: Int J Comput Integr Manuf
– volume: 7
  start-page: 721
  year: 2016
  end-page: 729
  ident: b38
  article-title: A novel dynamic scheduling strategy for solving flexible job-shop problems
  publication-title: J. Ambient Intell Humaniz Comput
– volume: 71
  start-page: 519
  year: 2014
  end-page: 528
  ident: b5
  article-title: A heuristic algorithm for solving flexible job shop scheduling problem
  publication-title: Int J Adv Manuf Technol
– volume: 32
  start-page: 1
  year: 2002
  end-page: 13
  ident: b63
  article-title: Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems
  publication-title: IEEE Trans Syst Man Cybern C (Appl Rev)
– start-page: 36
  year: 2008
  end-page: 56
  ident: b47
  article-title: Particle swarm optimization and scheduling algorithms
– start-page: 1090
  year: 2017
  end-page: 1093
  ident: b50
  article-title: Some improvements to logistic map for chaotic signal generator
  publication-title: 2017 3rd IEEE international conference on computer and communications
– volume: 158
  year: 2020
  ident: b19
  article-title: Robust scheduling based on extreme learning machine for bi-objective flexible job-shop problems with machine breakdowns
  publication-title: Expert Syst Appl
– volume: 49
  start-page: 4677
  year: 1994
  ident: b57
  article-title: Fast, accurate algorithm for numerical simulation of levy stable stochastic processes
  publication-title: Phys Rev E
– year: 2022
  ident: b9
  article-title: Survey of integrated flexible job shop scheduling problems
  publication-title: Comput Ind Eng
– volume: 83
  year: 2023
  ident: b7
  article-title: Deep reinforcement learning assisted co-evolutionary differential evolution for constrained optimization
  publication-title: Swarm Evol Comput
– volume: 60
  start-page: 245
  year: 2002
  end-page: 276
  ident: b64
  article-title: Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic
  publication-title: Math Comput Simul
– volume: 203
  year: 2022
  ident: b34
  article-title: Robust scheduling for flexible machining job shop subject to machine breakdowns and new job arrivals considering system reusability and task recurrence
  publication-title: Expert Syst Appl
– volume: 9
  start-page: 1743
  year: 2021
  ident: b60
  article-title: A chaotic krill herd optimization algorithm for global numerical estimation of the attraction domain for nonlinear systems
  publication-title: Mathematics
– volume: 59
  start-page: 5790
  year: 2021
  end-page: 5808
  ident: b27
  article-title: Reactive scheduling approach for solving a realistic flexible job shop scheduling problem
  publication-title: Int J Prod Res
– start-page: 217
  year: 2016
  end-page: 219
  ident: b52
  article-title: Modified discrete chaotic map based on chebyshev polynomial
  publication-title: 2016 third international scientific-practical conference problems of infocommunications science and technology (PIC s & t)
– volume: 51
  start-page: 1275
  year: 2018
  end-page: 1280
  ident: b40
  article-title: Towards energy efficient scheduling and rescheduling for dynamic flexible job shop problem
  publication-title: IFAC-PapersOnLine
– year: 2022
  ident: b8
  article-title: A hyperheuristic with q-learning for the multiobjective energy-efficient distributed blocking flow shop scheduling problem
  publication-title: IEEE Trans Cybern
– volume: Vol. 2311
  year: 2020
  ident: b17
  article-title: Two stage approach to address the flexible job shop scheduling problem using an evolutionary algorithm considering random machine breakdowns
  publication-title: AIP conference proceedings
– volume: 73
  start-page: 56
  year: 2016
  end-page: 66
  ident: b31
  article-title: A multi objective optimization approach for flexible job shop scheduling problem under random machine breakdown by evolutionary algorithms
  publication-title: Comput Oper Res
– volume: 8
  start-page: 77013
  year: 2020
  end-page: 77048
  ident: b58
  article-title: Improved whale optimization algorithm based on nonlinear adaptive weight and golden sine operator
  publication-title: IEEE Access
– year: 2021
  ident: b1
  article-title: Manufacturing, value added (
– volume: 8
  start-page: 86915
  year: 2020
  end-page: 86922
  ident: b15
  article-title: Improved jaya algorithm for flexible job shop rescheduling problem
  publication-title: IEEE Access
– volume: 203
  year: 2022
  ident: b20
  article-title: An effective two-stage algorithm based on convolutional neural network for the bi-objective flexible job shop scheduling problem with machine breakdown
  publication-title: Expert Syst Appl
– start-page: 19
  year: 2013
  end-page: 23
  ident: b48
  article-title: Designing pid controllers by means of pso algorithm enhanced by various chaotic maps
  publication-title: 2013 8th EUROSIm congress on modelling and simulation
– volume: 23
  start-page: 551
  year: 2016
  end-page: 591
  ident: b2
  article-title: A research survey: review of flexible job shop scheduling techniques
  publication-title: Int Trans Oper Res
– start-page: 1089
  year: 2013
  end-page: 1094
  ident: b53
  article-title: A topologically simple keyed hash function based on circular chaotic sinusoidal map network
  publication-title: 2013 15th international conference on advanced communications technology
– volume: 67
  start-page: 155
  year: 2023
  end-page: 173
  ident: b3
  article-title: Flexible job shop scheduling problem under industry 5.0: A survey on human reintegration, environmental consideration and resilience improvement
  publication-title: J Manuf Syst
– start-page: 221
  year: 2011
  end-page: 224
  ident: b49
  article-title: Chaotic particle swarm optimization algorithm based on tent mapping for dynamic origin–destination matrix estimation
  publication-title: 2011 international conference on electric information and control engineering
– volume: 32
  year: 2018
  ident: b26
  article-title: Nsga-ii applied to dynamic flexible job shop scheduling problems with machine breakdown
  publication-title: Modern Phys Lett B
– volume: 31
  start-page: 645
  year: 2007
  end-page: 654
  ident: b44
  article-title: Robust and stable scheduling of a single machine with random machine breakdowns
  publication-title: Int J Adv Manuf Technol
– volume: 100
  start-page: 1419
  year: 2019
  end-page: 1432
  ident: b14
  article-title: Two-stage teaching-learning-based optimization method for flexible job-shop scheduling under machine breakdown
  publication-title: Int J Adv Manuf Technol
– volume: 48
  start-page: 1973
  year: 2016
  end-page: 1989
  ident: b30
  article-title: Robust scheduling for multi-objective flexible job-shop problems with flexible workdays
  publication-title: Eng Optim
– volume: 55
  start-page: 3173
  year: 2017
  end-page: 3196
  ident: b13
  article-title: Flexible job-shop scheduling/rescheduling in dynamic environment: a hybrid mas/aco approach
  publication-title: Int J Prod Res
– volume: 104
  start-page: 156
  year: 2017
  end-page: 174
  ident: b42
  article-title: An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times
  publication-title: Comput Ind Eng
– volume: 112
  start-page: 595
  year: 2017
  end-page: 606
  ident: b45
  article-title: Two stage particle swarm optimization to solve the flexible job shop predictive scheduling problem considering possible machine breakdowns
  publication-title: Comput Ind Eng
– volume: 54
  start-page: 227
  year: 2020
  end-page: 241
  ident: b18
  article-title: An approximate nondominated sorting genetic algorithm to integrate optimization of production scheduling and accurate maintenance based on reliability intervals
  publication-title: J Manuf Syst
– volume: 277
  year: 2023
  ident: b6
  article-title: Multi-strategy multi-objective differential evolutionary algorithm with reinforcement learning
  publication-title: Knowl-Based Syst
– volume: 91
  year: 2020
  ident: b43
  article-title: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning
  publication-title: Appl Soft Comput
– volume: 12
  start-page: 110
  year: 2012
  end-page: 115
  ident: b24
  article-title: A hybrid ea for reactive flexible job-shop scheduling
  publication-title: Procedia Comput Sci
– volume: 61
  start-page: 423
  year: 2021
  end-page: 449
  ident: b32
  article-title: Real-time integrated production-scheduling and maintenance-planning in a flexible job shop with machine deterioration and condition-based maintenance
  publication-title: J Manuf Syst
– volume: 42
  start-page: 7652
  year: 2015
  end-page: 7663
  ident: b37
  article-title: A two-stage artificial bee colony algorithm scheduling flexible job-shop scheduling problem with new job insertion
  publication-title: Expert Syst Appl
– volume: 56
  start-page: 425
  year: 2020
  end-page: 451
  ident: b41
  article-title: Greedy randomized adaptive search for dynamic flexible job-shop scheduling
  publication-title: J Manuf Syst
– volume: 60
  start-page: 5675
  year: 2022
  end-page: 5696
  ident: b33
  article-title: Joint optimisation for dynamic flexible job-shop scheduling problem with transportation time and resource constraints
  publication-title: Int J Prod Res
– volume: 2017
  year: 2017
  ident: b25
  article-title: A variable interval rescheduling strategy for dynamic flexible job shop scheduling problem by improved genetic algorithm
  publication-title: J Adv Transp
– volume: 7
  start-page: 275
  year: 2003
  end-page: 288
  ident: b28
  article-title: Generating robust and flexible job shop schedules using genetic algorithms
  publication-title: IEEE Trans Evol Comput
– volume: 8
  start-page: 99740
  year: 2020
  end-page: 99771
  ident: b59
  article-title: Improved salp swarm algorithm based on levy flight and sine cosine operator
  publication-title: Ieee Access
– volume: 18
  start-page: 331
  year: 2007
  end-page: 342
  ident: b66
  article-title: Mathematical modeling and heuristic approaches to flexible job shop scheduling problems
  publication-title: J Intell Manuf
– volume: 47
  start-page: 5657
  year: 2009
  end-page: 5676
  ident: b23
  article-title: A generic deadlock-free reactive scheduling approach
  publication-title: Int J Prod Res
– start-page: 1
  year: 2020
  end-page: 4
  ident: b54
  article-title: Motion control of a mobile robot based on a chaotic iterative map
  publication-title: 2020 9th international conference on modern circuits and systems technologies
– start-page: 1
  year: 2022
  end-page: 21
  ident: b21
  article-title: An improved hybrid metaheuristics and rule-based approach for flexible job-shop scheduling subject to machine breakdowns
  publication-title: Eng Optim
– volume: 295
  start-page: 85
  year: 2001
  end-page: 88
  ident: b56
  article-title: Lévy flights search patterns of biological organisms
  publication-title: Physica A
– start-page: 213
  year: 2020
  end-page: 217
  ident: b62
  article-title: An improved grey wolf optimizer for flexible job-shop scheduling problem
  publication-title: 2020 IEEE 11th international conference on mechanical and intelligent manufacturing technologies
– volume: 78
  start-page: 176
  year: 2019
  end-page: 194
  ident: b61
  article-title: Flexible job-shop scheduling with tolerated time interval and limited starting time interval based on hybrid discrete pso-sa: An application from a casting workshop
  publication-title: Appl Soft Comput
– volume: 13
  start-page: 3259
  year: 2013
  end-page: 3272
  ident: b46
  article-title: A hybrid harmony search algorithm for the flexible job shop scheduling problem
  publication-title: Appl Soft Comput
– start-page: 1
  year: 2009
  end-page: 7
  ident: b51
  article-title: Improved chaotic particle swarm optimization using circle map for training svm
  publication-title: 2009 fourth international on conference on bio-inspired computing
– volume: 66
  start-page: 501
  year: 2013
  end-page: 514
  ident: b11
  article-title: Scheduling flexible job shop problem subject to machine breakdown with route changing and right-shift strategies
  publication-title: Int J Adv Manuf Technol
– start-page: 4898
  year: 2016
  end-page: 4902
  ident: b12
  article-title: A flexible job-shop rescheduling method by considering the machine equipment availability
  publication-title: 2016 Chinese control and decision conference
– volume: 20
  start-page: 481
  year: 2009
  end-page: 498
  ident: b10
  article-title: Integrating simulation and genetic algorithm to schedule a dynamic flexible job shop
  publication-title: J Intell Manuf
– volume: 7
  start-page: 19
  year: 2016
  end-page: 34
  ident: b16
  article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems
  publication-title: Int J Ind Eng Comput
– volume: 41
  start-page: 157
  year: 1993
  end-page: 183
  ident: b65
  article-title: Routing and scheduling in a flexible job shop by tabu search
  publication-title: Ann Oper Res
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 22
  ident: b22
  article-title: Tuna swarm optimization: a novel swarm-based metaheuristic algorithm for global optimization
  publication-title: Comput Intell Neurosci
– volume: 51
  start-page: 5120
  year: 2013
  end-page: 5141
  ident: b36
  article-title: Reactive scheduling in a make-to-order flexible job shop with re-entrant process and assembly: a mathematical programming approach
  publication-title: Int J Prod Res
– volume: 51
  start-page: 5120
  issue: 17
  year: 2013
  ident: 10.1016/j.jmsy.2024.03.002_b36
  article-title: Reactive scheduling in a make-to-order flexible job shop with re-entrant process and assembly: a mathematical programming approach
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2013.793428
– volume: 158
  year: 2020
  ident: 10.1016/j.jmsy.2024.03.002_b19
  article-title: Robust scheduling based on extreme learning machine for bi-objective flexible job-shop problems with machine breakdowns
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113545
– volume: 8
  start-page: 86915
  year: 2020
  ident: 10.1016/j.jmsy.2024.03.002_b15
  article-title: Improved jaya algorithm for flexible job shop rescheduling problem
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2992478
– volume: 60
  start-page: 5675
  issue: 18
  year: 2022
  ident: 10.1016/j.jmsy.2024.03.002_b33
  article-title: Joint optimisation for dynamic flexible job-shop scheduling problem with transportation time and resource constraints
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2021.1968526
– volume: 20
  start-page: 481
  year: 2009
  ident: 10.1016/j.jmsy.2024.03.002_b10
  article-title: Integrating simulation and genetic algorithm to schedule a dynamic flexible job shop
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-008-0150-0
– volume: 48
  start-page: 1973
  issue: 11
  year: 2016
  ident: 10.1016/j.jmsy.2024.03.002_b30
  article-title: Robust scheduling for multi-objective flexible job-shop problems with flexible workdays
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2016.1145216
– year: 2021
  ident: 10.1016/j.jmsy.2024.03.002_b1
– start-page: 221
  year: 2011
  ident: 10.1016/j.jmsy.2024.03.002_b49
  article-title: Chaotic particle swarm optimization algorithm based on tent mapping for dynamic origin–destination matrix estimation
– volume: 67
  start-page: 155
  year: 2023
  ident: 10.1016/j.jmsy.2024.03.002_b3
  article-title: Flexible job shop scheduling problem under industry 5.0: A survey on human reintegration, environmental consideration and resilience improvement
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2023.01.004
– volume: 13
  start-page: 3259
  issue: 7
  year: 2013
  ident: 10.1016/j.jmsy.2024.03.002_b46
  article-title: A hybrid harmony search algorithm for the flexible job shop scheduling problem
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.02.013
– volume: 59
  start-page: 5790
  issue: 19
  year: 2021
  ident: 10.1016/j.jmsy.2024.03.002_b27
  article-title: Reactive scheduling approach for solving a realistic flexible job shop scheduling problem
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2020.1790686
– volume: 8
  start-page: 99740
  year: 2020
  ident: 10.1016/j.jmsy.2024.03.002_b59
  article-title: Improved salp swarm algorithm based on levy flight and sine cosine operator
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2020.2997783
– volume: 7
  start-page: 721
  year: 2016
  ident: 10.1016/j.jmsy.2024.03.002_b38
  article-title: A novel dynamic scheduling strategy for solving flexible job-shop problems
  publication-title: J. Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-016-0370-7
– volume: 295
  start-page: 85
  issue: 1–2
  year: 2001
  ident: 10.1016/j.jmsy.2024.03.002_b56
  article-title: Lévy flights search patterns of biological organisms
  publication-title: Physica A
  doi: 10.1016/S0378-4371(01)00057-7
– volume: 23
  start-page: 551
  issue: 3
  year: 2016
  ident: 10.1016/j.jmsy.2024.03.002_b2
  article-title: A research survey: review of flexible job shop scheduling techniques
  publication-title: Int Trans Oper Res
  doi: 10.1111/itor.12199
– volume: 73
  start-page: 56
  year: 2016
  ident: 10.1016/j.jmsy.2024.03.002_b31
  article-title: A multi objective optimization approach for flexible job shop scheduling problem under random machine breakdown by evolutionary algorithms
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2016.03.009
– start-page: 217
  year: 2016
  ident: 10.1016/j.jmsy.2024.03.002_b52
  article-title: Modified discrete chaotic map based on chebyshev polynomial
– volume: 141
  start-page: 112
  issue: 1
  year: 2013
  ident: 10.1016/j.jmsy.2024.03.002_b29
  article-title: Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2012.04.015
– volume: 54
  start-page: 227
  year: 2020
  ident: 10.1016/j.jmsy.2024.03.002_b18
  article-title: An approximate nondominated sorting genetic algorithm to integrate optimization of production scheduling and accurate maintenance based on reliability intervals
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2019.12.004
– start-page: 1
  year: 2020
  ident: 10.1016/j.jmsy.2024.03.002_b54
  article-title: Motion control of a mobile robot based on a chaotic iterative map
– volume: 100
  start-page: 1419
  year: 2019
  ident: 10.1016/j.jmsy.2024.03.002_b14
  article-title: Two-stage teaching-learning-based optimization method for flexible job-shop scheduling under machine breakdown
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-018-2805-0
– volume: 18
  start-page: 331
  year: 2007
  ident: 10.1016/j.jmsy.2024.03.002_b66
  article-title: Mathematical modeling and heuristic approaches to flexible job shop scheduling problems
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-007-0026-8
– volume: 2017
  year: 2017
  ident: 10.1016/j.jmsy.2024.03.002_b25
  article-title: A variable interval rescheduling strategy for dynamic flexible job shop scheduling problem by improved genetic algorithm
  publication-title: J Adv Transp
  doi: 10.1155/2017/1527858
– volume: 32
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.jmsy.2024.03.002_b63
  article-title: Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems
  publication-title: IEEE Trans Syst Man Cybern C (Appl Rev)
  doi: 10.1109/TSMCC.2002.1009117
– year: 2022
  ident: 10.1016/j.jmsy.2024.03.002_b8
  article-title: A hyperheuristic with q-learning for the multiobjective energy-efficient distributed blocking flow shop scheduling problem
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2021.3086181
– volume: 83
  year: 2023
  ident: 10.1016/j.jmsy.2024.03.002_b7
  article-title: Deep reinforcement learning assisted co-evolutionary differential evolution for constrained optimization
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2023.101387
– start-page: 1
  year: 2009
  ident: 10.1016/j.jmsy.2024.03.002_b51
  article-title: Improved chaotic particle swarm optimization using circle map for training svm
– volume: 104
  start-page: 156
  year: 2017
  ident: 10.1016/j.jmsy.2024.03.002_b42
  article-title: An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2016.12.020
– volume: Vol. 2311
  year: 2020
  ident: 10.1016/j.jmsy.2024.03.002_b17
  article-title: Two stage approach to address the flexible job shop scheduling problem using an evolutionary algorithm considering random machine breakdowns
  doi: 10.1063/5.0034006
– start-page: 1
  year: 2022
  ident: 10.1016/j.jmsy.2024.03.002_b21
  article-title: An improved hybrid metaheuristics and rule-based approach for flexible job-shop scheduling subject to machine breakdowns
  publication-title: Eng Optim
– volume: 61
  start-page: 423
  year: 2021
  ident: 10.1016/j.jmsy.2024.03.002_b32
  article-title: Real-time integrated production-scheduling and maintenance-planning in a flexible job shop with machine deterioration and condition-based maintenance
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2021.09.018
– volume: 277
  year: 2023
  ident: 10.1016/j.jmsy.2024.03.002_b6
  article-title: Multi-strategy multi-objective differential evolutionary algorithm with reinforcement learning
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2023.110801
– volume: 36
  start-page: 1173
  issue: 5
  year: 2021
  ident: 10.1016/j.jmsy.2024.03.002_b55
  article-title: Whale optimization algorithm for embedded circle mapping and onedimensional oppositional learning based small hole imaging
  publication-title: Control Decis
– volume: 203
  year: 2022
  ident: 10.1016/j.jmsy.2024.03.002_b34
  article-title: Robust scheduling for flexible machining job shop subject to machine breakdowns and new job arrivals considering system reusability and task recurrence
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.117489
– volume: 52
  start-page: 3858
  issue: 13
  year: 2014
  ident: 10.1016/j.jmsy.2024.03.002_b4
  article-title: Scheduling flexible job shop problem subject to machine breakdown with game theory
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2013.784408
– volume: 55
  start-page: 3173
  issue: 11
  year: 2017
  ident: 10.1016/j.jmsy.2024.03.002_b13
  article-title: Flexible job-shop scheduling/rescheduling in dynamic environment: a hybrid mas/aco approach
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2016.1267414
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.jmsy.2024.03.002_b22
  article-title: Tuna swarm optimization: a novel swarm-based metaheuristic algorithm for global optimization
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2021/9210050
– start-page: 4898
  year: 2016
  ident: 10.1016/j.jmsy.2024.03.002_b12
  article-title: A flexible job-shop rescheduling method by considering the machine equipment availability
– volume: 9
  start-page: 1743
  issue: 15
  year: 2021
  ident: 10.1016/j.jmsy.2024.03.002_b60
  article-title: A chaotic krill herd optimization algorithm for global numerical estimation of the attraction domain for nonlinear systems
  publication-title: Mathematics
  doi: 10.3390/math9151743
– volume: 8
  start-page: 77013
  year: 2020
  ident: 10.1016/j.jmsy.2024.03.002_b58
  article-title: Improved whale optimization algorithm based on nonlinear adaptive weight and golden sine operator
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2989445
– volume: 42
  start-page: 7652
  issue: 21
  year: 2015
  ident: 10.1016/j.jmsy.2024.03.002_b37
  article-title: A two-stage artificial bee colony algorithm scheduling flexible job-shop scheduling problem with new job insertion
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.06.004
– volume: 31
  start-page: 645
  year: 2007
  ident: 10.1016/j.jmsy.2024.03.002_b44
  article-title: Robust and stable scheduling of a single machine with random machine breakdowns
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-005-0237-0
– start-page: 19
  year: 2013
  ident: 10.1016/j.jmsy.2024.03.002_b48
  article-title: Designing pid controllers by means of pso algorithm enhanced by various chaotic maps
– volume: 12
  start-page: 110
  year: 2012
  ident: 10.1016/j.jmsy.2024.03.002_b24
  article-title: A hybrid ea for reactive flexible job-shop scheduling
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2012.09.039
– volume: 203
  year: 2022
  ident: 10.1016/j.jmsy.2024.03.002_b20
  article-title: An effective two-stage algorithm based on convolutional neural network for the bi-objective flexible job shop scheduling problem with machine breakdown
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.117460
– volume: 32
  issue: 34n36
  year: 2018
  ident: 10.1016/j.jmsy.2024.03.002_b26
  article-title: Nsga-ii applied to dynamic flexible job shop scheduling problems with machine breakdown
  publication-title: Modern Phys Lett B
  doi: 10.1142/S0217984918401115
– volume: 91
  year: 2020
  ident: 10.1016/j.jmsy.2024.03.002_b43
  article-title: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106208
– start-page: 213
  year: 2020
  ident: 10.1016/j.jmsy.2024.03.002_b62
  article-title: An improved grey wolf optimizer for flexible job-shop scheduling problem
– volume: 31
  start-page: 228
  issue: 3
  year: 2018
  ident: 10.1016/j.jmsy.2024.03.002_b39
  article-title: Towards flexible rfid event-driven integrated manufacturing for make-to-order production
  publication-title: Int J Comput Integr Manuf
  doi: 10.1080/0951192X.2017.1407455
– year: 2022
  ident: 10.1016/j.jmsy.2024.03.002_b9
  article-title: Survey of integrated flexible job shop scheduling problems
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2022.108786
– volume: 7
  start-page: 275
  issue: 3
  year: 2003
  ident: 10.1016/j.jmsy.2024.03.002_b28
  article-title: Generating robust and flexible job shop schedules using genetic algorithms
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2003.810067
– volume: 49
  start-page: 4677
  issue: 5
  year: 1994
  ident: 10.1016/j.jmsy.2024.03.002_b57
  article-title: Fast, accurate algorithm for numerical simulation of levy stable stochastic processes
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.49.4677
– volume: 60
  start-page: 245
  issue: 3–5
  year: 2002
  ident: 10.1016/j.jmsy.2024.03.002_b64
  article-title: Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic
  publication-title: Math Comput Simul
  doi: 10.1016/S0378-4754(02)00019-8
– volume: 132
  start-page: 279
  issue: 2
  year: 2011
  ident: 10.1016/j.jmsy.2024.03.002_b35
  article-title: Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2011.04.020
– volume: 41
  start-page: 157
  issue: 3
  year: 1993
  ident: 10.1016/j.jmsy.2024.03.002_b65
  article-title: Routing and scheduling in a flexible job shop by tabu search
  publication-title: Ann Oper Res
  doi: 10.1007/BF02023073
– start-page: 1090
  year: 2017
  ident: 10.1016/j.jmsy.2024.03.002_b50
  article-title: Some improvements to logistic map for chaotic signal generator
– volume: 78
  start-page: 176
  year: 2019
  ident: 10.1016/j.jmsy.2024.03.002_b61
  article-title: Flexible job-shop scheduling with tolerated time interval and limited starting time interval based on hybrid discrete pso-sa: An application from a casting workshop
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.02.011
– volume: 51
  start-page: 1275
  issue: 11
  year: 2018
  ident: 10.1016/j.jmsy.2024.03.002_b40
  article-title: Towards energy efficient scheduling and rescheduling for dynamic flexible job shop problem
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.08.357
– volume: 66
  start-page: 501
  year: 2013
  ident: 10.1016/j.jmsy.2024.03.002_b11
  article-title: Scheduling flexible job shop problem subject to machine breakdown with route changing and right-shift strategies
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-012-4344-4
– start-page: 1089
  year: 2013
  ident: 10.1016/j.jmsy.2024.03.002_b53
  article-title: A topologically simple keyed hash function based on circular chaotic sinusoidal map network
– volume: 71
  start-page: 519
  year: 2014
  ident: 10.1016/j.jmsy.2024.03.002_b5
  article-title: A heuristic algorithm for solving flexible job shop scheduling problem
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-013-5510-z
– volume: 112
  start-page: 595
  year: 2017
  ident: 10.1016/j.jmsy.2024.03.002_b45
  article-title: Two stage particle swarm optimization to solve the flexible job shop predictive scheduling problem considering possible machine breakdowns
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2017.03.006
– volume: 7
  start-page: 19
  issue: 1
  year: 2016
  ident: 10.1016/j.jmsy.2024.03.002_b16
  article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems
  publication-title: Int J Ind Eng Comput
– volume: 47
  start-page: 5657
  issue: 20
  year: 2009
  ident: 10.1016/j.jmsy.2024.03.002_b23
  article-title: A generic deadlock-free reactive scheduling approach
  publication-title: Int J Prod Res
  doi: 10.1080/00207540802112652
– volume: 56
  start-page: 425
  year: 2020
  ident: 10.1016/j.jmsy.2024.03.002_b41
  article-title: Greedy randomized adaptive search for dynamic flexible job-shop scheduling
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2020.06.005
– start-page: 36
  year: 2008
  ident: 10.1016/j.jmsy.2024.03.002_b47
SSID ssj0012402
Score 2.524695
Snippet In job-shop production environments, machine breakdowns are a significant factor in reducing productivity. Existing approaches seldom consider algorithm...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 180
SubjectTerms Flexible job-shop scheduling
Machine breakdowns
Rescheduling
Tuna swarm optimization algorithm
Title Flexible job shop scheduling with stochastic machine breakdowns by an improved tuna swarm optimization algorithm
URI https://dx.doi.org/10.1016/j.jmsy.2024.03.002
Volume 74
WOSCitedRecordID wos001223004000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-6642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012402
  issn: 0278-6125
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGlgMcEKtaNvnALUqVOMkkPlaoFXCokChibpGd2J0ZJs5oMlPaH8F_5r3YWdgqQOISjazYY_l9eZvfQsirotRlLGXqMxmi60YXfhZiDw2QJYJPJZgMsm02kZ6dZbMZfz-ZfO1yYS5XqTHZ1RVf_1dSwxgQG1Nn_4Lc_aIwAL-B6PAEssPzjwh_iiUuMR9qWUuvmddrDwxYECir3u0K-l4xF1ig2avaWErlgWEsPpfoaUZ9FL75RetsAG10uzPCa76ITeXVwF4ql7fpidVFvYHVqt-ot5UwO8yasGmQzagwelv60d31K3PRzHdiMfj1Le_5hCHtde9WWAiXQmLGXgoWD9FU1nXWpc8MsUrI4RiYsKhiWWFkOXCGY9P4OxadxiMeG9rWT05chza89ydJYJ0Sy6Nl1Vwf4Y5sLVs2yL0-GvED7gO3gfG0WLPsFtlnacKBSe4fvz2ZveuvpfAqqnXauX27LCwbMPjjP_1a0xlpL-f3yT1HF3ps4fKATJR5SO6OilE-IusOOBSAQxE4dAAOReDQATjUAYcOwKHymgpDO-BQBA5tgUPHwKE9cB6Tj6cn56_f-K4fh19EQbD1RRonqE4jlw-FnoKslFFWlkwxXcpAp0IJkWgVC5XoQIPpLeNIcZZpxgMuVfSE7JnaqANCS1hpiqX2ilDFiiWZLNKAwzq8DJJMiUMSdmeXF65YPfZMWeVdVOIyx_PO8bzzIMrhvA-J189Z21ItN76ddCTJnbJplcgcEHTDvKf_OO8ZuTN8F8_J3nazUy_I7eJyu2g2Lx3QvgFGsqpe
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+job+shop+scheduling+with+stochastic+machine+breakdowns+by+an+improved+tuna+swarm+optimization+algorithm&rft.jtitle=Journal+of+manufacturing+systems&rft.au=Fan%2C+Chengshuai&rft.au=Wang%2C+Wentao&rft.au=Tian%2C+Jun&rft.date=2024-06-01&rft.pub=Elsevier+Ltd&rft.issn=0278-6125&rft.eissn=1878-6642&rft.volume=74&rft.spage=180&rft.epage=197&rft_id=info:doi/10.1016%2Fj.jmsy.2024.03.002&rft.externalDocID=S0278612524000517
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-6125&client=summon