Intelligent vehicle driving decision-making model based on variational AutoEncoder network and deep reinforcement learning

In this paper, an end-to-end driving decision-making model is proposed for intelligent vehicle, utilizing a Variational AutoEncoder (VAE) network and Deep Reinforcement Learning to address the challenges in complex and dynamical driving environments. Firstly, the traffic environment image features a...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 268; p. 126319
Main Authors: Wang, Shufeng, Wang, Zhengli, Wang, Xinkai, Liang, Qingwei, Meng, Lingyi
Format: Journal Article
Language:English
Published: Elsevier Ltd 05.04.2025
Subjects:
ISSN:0957-4174
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, an end-to-end driving decision-making model is proposed for intelligent vehicle, utilizing a Variational AutoEncoder (VAE) network and Deep Reinforcement Learning to address the challenges in complex and dynamical driving environments. Firstly, the traffic environment image features are extracted by VAE network, which can effectively reduce the amount of data input and improve the learning efficiency. Secondly, the Soft Actor-Critic (SAC) algorithm is improved through the application of TD error value constraints, N-step learning, etc. Then driving risk field and rule constraints are introduced into the improve SAC algorithm. Based on the real-time driving risk field, the skipping frame method can enhance learning efficiency, and the rule constraints can reduce the dangerous actions in the output of the algorithm. In order to verify the effectiveness of the model, in the CARLA simulation platform the models of scenario and algorithm are established, and the simulations are carried out. The results show that using decision-making model built by the proposed algorithm, the average driving distance by the intelligent vehicle has been improved by 91.37%, the average reward value of the task has been increased by 132.04%, the average success rate of the task has been improved by 46.56%, the training time is also significantly reduced. It demonstrated that the proposed decision-making model provides a significant improvement in driving safety and learning efficiency.
AbstractList In this paper, an end-to-end driving decision-making model is proposed for intelligent vehicle, utilizing a Variational AutoEncoder (VAE) network and Deep Reinforcement Learning to address the challenges in complex and dynamical driving environments. Firstly, the traffic environment image features are extracted by VAE network, which can effectively reduce the amount of data input and improve the learning efficiency. Secondly, the Soft Actor-Critic (SAC) algorithm is improved through the application of TD error value constraints, N-step learning, etc. Then driving risk field and rule constraints are introduced into the improve SAC algorithm. Based on the real-time driving risk field, the skipping frame method can enhance learning efficiency, and the rule constraints can reduce the dangerous actions in the output of the algorithm. In order to verify the effectiveness of the model, in the CARLA simulation platform the models of scenario and algorithm are established, and the simulations are carried out. The results show that using decision-making model built by the proposed algorithm, the average driving distance by the intelligent vehicle has been improved by 91.37%, the average reward value of the task has been increased by 132.04%, the average success rate of the task has been improved by 46.56%, the training time is also significantly reduced. It demonstrated that the proposed decision-making model provides a significant improvement in driving safety and learning efficiency.
ArticleNumber 126319
Author Wang, Xinkai
Wang, Zhengli
Liang, Qingwei
Meng, Lingyi
Wang, Shufeng
Author_xml – sequence: 1
  givenname: Shufeng
  orcidid: 0000-0002-1169-6790
  surname: Wang
  fullname: Wang, Shufeng
  email: shufengwang@sdust.edu.cn
  organization: Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao, Shandong Province, 266590, PR China
– sequence: 2
  givenname: Zhengli
  orcidid: 0009-0009-1098-2937
  surname: Wang
  fullname: Wang, Zhengli
  organization: Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao, Shandong Province, 266590, PR China
– sequence: 3
  givenname: Xinkai
  surname: Wang
  fullname: Wang, Xinkai
  organization: Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao, Shandong Province, 266590, PR China
– sequence: 4
  givenname: Qingwei
  surname: Liang
  fullname: Liang, Qingwei
  organization: Zhongtong Bus Holding Co., Ltd, No. 261 Huanghe Road, Economic Development Zone, Liaocheng, Shandong Province, 252000, PR China
– sequence: 5
  givenname: Lingyi
  surname: Meng
  fullname: Meng, Lingyi
  organization: Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao, Shandong Province, 266590, PR China
BookMark eNp9kM1OwzAQhH0oEi3wApz8Agl2nF-JS1UVqFSJC5wtx94Ut45d2SYVPD0J5cShp9Fq95vVzALNrLOA0D0lKSW0fNinEE4izUiWpzQrGW1maE6aokpyWuXXaBHCnhBaEVLN0ffGRjBG78BGPMCHlgaw8nrQdocVSB20s0kvDtPcOwUGtyKAws7iQXgt4rgXBi8_o1tbOR54bCGenD9gYdVoAUfsQdvOeQn99MWA8Ha0u0VXnTAB7v70Br0_rd9WL8n29XmzWm4TyQiJiWBlVpSEMSXaTGUdAFSSVnWd56pmTJZAG2hJW3VN2ZVtnatRO2AFKTopSspuUHb2ld6F4KHjR6974b84JXxqjO_51BifGuPnxkao_gdJHX_DRi-0uYw-nlEYQw0aPA9Sg5WgtAcZuXL6Ev4Dz0yO5w
CitedBy_id crossref_primary_10_1007_s12239_025_00328_3
crossref_primary_10_3390_app15126838
crossref_primary_10_1016_j_eswa_2025_128736
crossref_primary_10_1016_j_eswa_2025_128423
Cites_doi 10.1016/j.conengprac.2021.104751
10.1016/j.iatssr.2023.11.002
10.1109/TNNLS.2022.3142822
10.1109/ACCESS.2019.2900416
10.3390/s22218148
10.14569/IJACSA.2021.0120789
10.1109/ACCESS.2023.3249144
10.1109/ACCESS.2020.3022755
10.1038/s42256-019-0025-4
10.1177/03611981211018461
10.1016/j.jsr.2019.02.002
10.1109/TVT.2023.3268500
10.1016/j.eng.2022.05.017
10.1109/LRA.2020.2967299
10.3390/electronics12163490
10.1038/nature14236
10.1177/00027642221127250
10.1109/TIV.2023.3257962
10.1142/S0218488516500227
10.1109/ACCESS.2023.3330665
10.1109/TITS.2023.3239114
10.1109/JSEN.2020.3003121
10.1016/j.imavis.2020.103873
10.1109/TVT.2020.3026111
10.1109/TITS.2021.3059261
10.23919/ICN.2020.0009
10.3390/en16031512
10.1109/TIV.2022.3227921
10.1126/science.aar6404
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2024.126319
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2024_126319
S0957417424031865
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAYWO
AAYXX
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY1
LY7
M41
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-a36256033dab2d2feee7c178844d833c6e19eb0b7f96f6b84d96ffe3505fca613
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001402217900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 03:07:47 EST 2025
Tue Nov 18 22:36:16 EST 2025
Sat Feb 15 15:52:42 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Rule constraints
Soft Actor-Critic algorithm
AutoEncoder Network
Intelligent Vehicle
Driving Decision-making
Driving risk field
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-a36256033dab2d2feee7c178844d833c6e19eb0b7f96f6b84d96ffe3505fca613
ORCID 0000-0002-1169-6790
0009-0009-1098-2937
ParticipantIDs crossref_primary_10_1016_j_eswa_2024_126319
crossref_citationtrail_10_1016_j_eswa_2024_126319
elsevier_sciencedirect_doi_10_1016_j_eswa_2024_126319
PublicationCentury 2000
PublicationDate 2025-04-05
PublicationDateYYYYMMDD 2025-04-05
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-05
  day: 05
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Bai (b0030) 2020; 94
Zhang, Sun (b0210) 2024
Zhou, Liu, Tenenboim, Agrawal, Peeta (b0225) 2023; 8
Zhang, Liu, Wang (b0220) 2021
Wang, Wang, Wang (b0180) 2023; 09
Guan, Ren, Li, Sun, Luo, Li (b0060) 2020; 69
Negash, Yang (b0145) 2023; 11
Wang, Wu, Fan, Fan, Zhu, Wang (b0175) 2024; 12
Barman, Kanjilal, Mukhopadhyay (b0015) 2016; 24
Huang, Lv, Xing, Wu (b0070) 2021; 21
Wang, Cui, Yu (b0185) 2019
Ziakopoulos, Telidou, Anagnostopoulos, Kehagia, Yannis (b0230) 2023; 47
Chib, Singh (b0040) 2023
Neftci, Averbeck (b0140) 2019; 1
K. Sivamayil E. Rajasekar B. Aljafari S. Nikolovski S. Vairavasundaram I. Vairavasundaram A Systematic Study on Reinforcement Learning Based Applications 2023 10.3390/en16031512.
Xing, Zhou, Chen, Xiong, Yu (b0195) 2021
Cui, Ding, Wei, Zhou (b0045) 2021; 109
Gao, Chang (b0055) 2021
Mirchevska, Pek, Werling, Althoff, Boedecker (b0125) 2018
He, Zhao, Wang (b0065) 2020; 33
Mesch, Dodel (b0120) 2023; 67
Ashraf, Dey, Mishra, Rahman (b0010) 2021; 2675
Wu, Huang, Hu, Lv (b0190) 2023; 21
Li, Qiu, Yang, Li, Li, Chu, Green, Li (b0100) 2023; 8
Siboo, Bhattacharyya, Raj, Ashwin (b0160) 2023; 11
Yang, Tang, Qiu, Jin, Wei, Wang (b0205) 2023; 72
Zhang, Yu, Xu, Yan (b0215) 2023; 12
Cai, Mei, Tai, Sun, Liu (b0025) 2020; 5
V. Mnih K. Kavukcuoglu D. Silver A.A. Rusu J. Veness M.G. Bellemare D. Hassabis Human-level control through deep reinforcement learning nature, 518 2015 529–533.https://doi.org/10.1038/nature14236.
Niu, Shen, Zhang, Tang (b0150) 2020; 1
Rane, Mallick, Kaya, Rane (b0155) 2024
Nees (b0135) 2019; 69
Khosravi, Rezaee, Moghimi, Wan, Menon (b0095) 2023; 24
FTAIMI, S., & Mazri, T. Risk assessment of attack in autonomous vehicle based on a decision tree. Risk 2021 12.
Silver, Hubert, Schrittwieser, Antonoglou, Lai, Guez, Hassabis (b0165) 2018; 362
Karmakar, Chowdhury, Das, Kamruzzaman, Islam (b0080) 2021; 22
Liu, Wang, Li, Cheng, Chen (b0110) 2019; 7
Bhaggiaraj, Priyadharsini, Karuppasamy, Snegha (b0020) 2023
Liao, Liu, Tang, Mu, Huang, Cao (b0105) 2020; 8
Kendall, Hawke, Janz, Mazur, Reda, Allen, Shah (b0085) 2019
Xu, Pei, Yang, Fang (b0200) 2022; 13
Huang, Wu, Lv (b0075) 2023; 34
Chen, Yuan, Tomizuka (b0035) 2019
Amin, Vincent, Ahmed, Moussa (b0005) 2022; 22
Khare, Jain (b0090) 2023; 6
Bhaggiaraj (10.1016/j.eswa.2024.126319_b0020) 2023
Neftci (10.1016/j.eswa.2024.126319_b0140) 2019; 1
Siboo (10.1016/j.eswa.2024.126319_b0160) 2023; 11
He (10.1016/j.eswa.2024.126319_b0065) 2020; 33
Gao (10.1016/j.eswa.2024.126319_b0055) 2021
Silver (10.1016/j.eswa.2024.126319_b0165) 2018; 362
Cai (10.1016/j.eswa.2024.126319_b0025) 2020; 5
Amin (10.1016/j.eswa.2024.126319_b0005) 2022; 22
Ziakopoulos (10.1016/j.eswa.2024.126319_b0230) 2023; 47
Khare (10.1016/j.eswa.2024.126319_b0090) 2023; 6
Negash (10.1016/j.eswa.2024.126319_b0145) 2023; 11
Wu (10.1016/j.eswa.2024.126319_b0190) 2023; 21
Chib (10.1016/j.eswa.2024.126319_b0040) 2023
Barman (10.1016/j.eswa.2024.126319_b0015) 2016; 24
Liu (10.1016/j.eswa.2024.126319_b0110) 2019; 7
Zhang (10.1016/j.eswa.2024.126319_b0210) 2024
Wang (10.1016/j.eswa.2024.126319_b0180) 2023; 09
Zhang (10.1016/j.eswa.2024.126319_b0220) 2021
Xing (10.1016/j.eswa.2024.126319_b0195) 2021
Karmakar (10.1016/j.eswa.2024.126319_b0080) 2021; 22
Niu (10.1016/j.eswa.2024.126319_b0150) 2020; 1
Chen (10.1016/j.eswa.2024.126319_b0030) 2020; 94
Nees (10.1016/j.eswa.2024.126319_b0135) 2019; 69
Wang (10.1016/j.eswa.2024.126319_b0185) 2019
Khosravi (10.1016/j.eswa.2024.126319_b0095) 2023; 24
Chen (10.1016/j.eswa.2024.126319_b0035) 2019
Guan (10.1016/j.eswa.2024.126319_b0060) 2020; 69
Kendall (10.1016/j.eswa.2024.126319_b0085) 2019
Wang (10.1016/j.eswa.2024.126319_b0175) 2024; 12
Zhang (10.1016/j.eswa.2024.126319_b0215) 2023; 12
Mesch (10.1016/j.eswa.2024.126319_b0120) 2023; 67
Yang (10.1016/j.eswa.2024.126319_b0205) 2023; 72
Huang (10.1016/j.eswa.2024.126319_b0070) 2021; 21
Ashraf (10.1016/j.eswa.2024.126319_b0010) 2021; 2675
Mirchevska (10.1016/j.eswa.2024.126319_b0125) 2018
Huang (10.1016/j.eswa.2024.126319_b0075) 2023; 34
Liao (10.1016/j.eswa.2024.126319_b0105) 2020; 8
Rane (10.1016/j.eswa.2024.126319_b0155) 2024
Cui (10.1016/j.eswa.2024.126319_b0045) 2021; 109
10.1016/j.eswa.2024.126319_b0170
10.1016/j.eswa.2024.126319_b0050
Li (10.1016/j.eswa.2024.126319_b0100) 2023; 8
Zhou (10.1016/j.eswa.2024.126319_b0225) 2023; 8
Xu (10.1016/j.eswa.2024.126319_b0200) 2022; 13
10.1016/j.eswa.2024.126319_b0130
References_xml – year: 2023
  ident: b0020
  article-title: Deep Learning Based Self Driving Cars Using Computer Vision
  publication-title: 2023 International Conference on Networking and Communications (ICNWC)
– volume: 12
  year: 2024
  ident: b0175
  article-title: Vehicle selection for c-v2x mode 4-based federated edge learning systems
  publication-title: IEEE Systems Journal
– volume: 24
  start-page: 433
  year: 2016
  end-page: 449
  ident: b0015
  article-title: Neuro-Fuzzy Controller Design to Navigate Unmanned Vehicle with Construction of Traffic Rules to Avoid Obstacles
  publication-title: International Journal of Uncertainty Fuzziness and Knowledge-Based Systems
– volume: 21
  start-page: 11781
  year: 2021
  end-page: 11790
  ident: b0070
  article-title: Multi-Modal Sensor Fusion-Based Deep Neural Network for End-to-End Autonomous Driving With Scene Understanding
  publication-title: IEEE Sensors Journal
– volume: 8
  start-page: 2197
  year: 2023
  end-page: 2211
  ident: b0100
  article-title: Lane Change Strategies for Autonomous Vehicles: A Deep Reinforcement Learning Approach Based on Transformer
  publication-title: IEEE Transactions on Intelligent Vehicles
– year: 2019
  ident: b0185
  article-title: Automatic lane change control for intelligent connected vehicles
  publication-title: In 2019 4th International Conference on Electromechanical Control Technology and Transportation (ICECTT).https://doi.org/10.1109/icectt.2019.00072
– volume: 21
  start-page: 75
  year: 2023
  end-page: 91
  ident: b0190
  article-title: Toward Human-in-the-Loop AI: Enhancing Deep Reinforcement Learning via Real-Time Human Guidance for Autonomous Driving
  publication-title: Engineering
– volume: 1
  start-page: 133
  year: 2019
  end-page: 143
  ident: b0140
  article-title: Reinforcement learning in artificial and biological systems
  publication-title: Nature Machine Intelligence
– reference: FTAIMI, S., & Mazri, T. Risk assessment of attack in autonomous vehicle based on a decision tree. Risk 2021 12.
– start-page: 80
  year: 2024
  end-page: 95
  ident: b0155
  article-title: Tools and frameworks for machine learning and deep learning: A review
  publication-title: Applied Machine Learning and Deep Learning: Architectures and Techniques
– volume: 2675
  start-page: 522
  year: 2021
  end-page: 533
  ident: b0010
  article-title: Extracting rules from autonomous-vehicle-involved crashes by applying decision tree and association rule methods
  publication-title: Transportation Research Record
– volume: 8
  start-page: 177804
  year: 2020
  end-page: 177814
  ident: b0105
  article-title: Decision-Making Strategy on Highway for Autonomous Vehicles Using Deep Reinforcement Learning
  publication-title: IEEE Access
– volume: 362
  start-page: 1140
  year: 2018
  ident: b0165
  article-title: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play
  publication-title: Science
– volume: 47
  start-page: 499
  year: 2023
  end-page: 513
  ident: b0230
  article-title: Perceptions towards autonomous vehicle acceptance: Information mining from self-organizing maps and random forests
  publication-title: IATSS research
– year: 2018
  ident: b0125
  article-title: High-level decision making for safe and reasonable autonomous lane changing using reinforcement learning
  publication-title: In 2018 21st International Conference on Intelligent Transportation Systems (ITSC)
– volume: 72
  start-page: 11251
  year: 2023
  end-page: 11263
  ident: b0205
  article-title: Towards Robust Decision-Making for Autonomous Driving on Highway
  publication-title: IEEE Transactions on Vehicular Technology
– reference: V. Mnih K. Kavukcuoglu D. Silver A.A. Rusu J. Veness M.G. Bellemare D. Hassabis Human-level control through deep reinforcement learning nature, 518 2015 529–533.https://doi.org/10.1038/nature14236.
– year: 2023
  ident: b0040
  article-title: Recent advancements in end-to-end autonomous driving using deep learning: A survey
  publication-title: IEEE Transactions on Intelligent Vehicles
– volume: 1
  start-page: 142
  year: 2020
  end-page: 169
  ident: b0150
  article-title: Space-air-ground integrated vehicular network for connected and automated vehicles: Challenges and solutions
  publication-title: Intelligent and Converged Networks
– volume: 12
  start-page: 3490
  year: 2023
  ident: b0215
  article-title: Research on Automatic Emergency Braking System Based on Target Recognition and Fusion Control Strategy in Curved Road
  publication-title: Electronics
– volume: 11
  start-page: 22788
  year: 2023
  end-page: 22821
  ident: b0145
  article-title: Driver behavior modeling toward autonomous vehicles: Comprehensive review
  publication-title: IEEE Access
– volume: 109
  year: 2021
  ident: b0045
  article-title: A hierarchical framework of emergency collision avoidance amid surrounding vehicles in highway driving
  publication-title: Control Engineering Practice
– volume: 22
  start-page: 4457
  year: 2021
  end-page: 4466
  ident: b0080
  article-title: Assessing trust level of a driverless car using deep learning
  publication-title: IEEE transactions on intelligent transportation systems
– volume: 7
  start-page: 26543
  year: 2019
  end-page: 26550
  ident: b0110
  article-title: A novel lane change decision-making model of autonomous vehicle based on support vector machine
  publication-title: IEEE Access
– volume: 09
  start-page: 18
  year: 2023
  end-page: 26
  ident: b0180
  article-title: Rule-Based Constrained Deep Reinforcement Learning for Intelligent Vehicle Driving Decisions in Highway Scenarios
  publication-title: Automobile Technology
– year: 2019
  ident: b0035
  article-title: Model-free deep reinforcement learning for urban autonomous driving
  publication-title: In 2019 IEEE intelligent transportation systems conference (ITSC)
– year: 2024
  ident: b0210
  article-title: Bayesian calibration of the intelligent driver model
  publication-title: IEEE transactions on intelligent transportation systems
– volume: 69
  start-page: 61
  year: 2019
  end-page: 68
  ident: b0135
  article-title: Safer than the average human driver (who is less safe than me)? Examining a popular safety benchmark for self-driving cars
  publication-title: Journal of safety research
– year: 2021
  ident: b0220
  article-title: Cognitive Computing and Decision-Making of Traffic Intersection Based on Rule Set
  publication-title: In 2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)
– volume: 33
  start-page: 236
  year: 2020
  ident: b0065
  article-title: Modeling of driver risk impact under human-vehicle-road interaction
  publication-title: China Journal of Highway and Transport
– volume: 6
  start-page: 1
  year: 2023
  end-page: 10
  ident: b0090
  article-title: Predict the performance of driverless car through the cognitive data analysis and reliability analysis based approach. e-Prime-Advances in Electrical Engineering
  publication-title: Electronics and Energy
– reference: K. Sivamayil E. Rajasekar B. Aljafari S. Nikolovski S. Vairavasundaram I. Vairavasundaram A Systematic Study on Reinforcement Learning Based Applications 2023 10.3390/en16031512.
– year: 2021
  ident: b0195
  article-title: A hazard analysis approach based on STPA and finite state machine for autonomous vehicles
  publication-title: In 2021 IEEE Intelligent Vehicles Symposium (IV)
– volume: 8
  start-page: 2661
  year: 2023
  ident: b0225
  article-title: Car-following behavior of human-driven vehicles in mixed-flow traffic: A driving simulator study
  publication-title: IEEE Transactions on Intelligent Vehicles
– volume: 67
  start-page: 1736
  year: 2023
  end-page: 1754
  ident: b0120
  article-title: The Acceptance of Driverless Cars: The Roles of Perceived Outcomes and Technology Usefulness
  publication-title: American behavioral scientist
– volume: 69
  start-page: 12597
  year: 2020
  end-page: 12608
  ident: b0060
  article-title: Centralized Cooperation for Connected and Automated Vehicles at Intersections by Proximal Policy Optimization
  publication-title: IEEE Transactions on Vehicular Technology
– volume: 34
  start-page: 7391
  year: 2023
  end-page: 7403
  ident: b0075
  article-title: Efficient deep reinforcement learning with imitative expert priors for autonomous driving
  publication-title: IEEE Transactions On Neural Networks And Learning Systems
– volume: 13
  start-page: 317
  year: 2022
  end-page: 324
  ident: b0200
  article-title: Learning-based Autonomous Driving Decision-Making Integrated with Vehicle Trajectory Prediction
  publication-title: Journal of Automotive Safety and Energy
– volume: 94
  year: 2020
  ident: b0030
  article-title: SAANet: Spatial adaptive alignment network for object detection in automatic driving
  publication-title: Image and Vision Computing
– volume: 11
  start-page: 125094
  year: 2023
  end-page: 125108
  ident: b0160
  article-title: An Empirical Study of DDPG and PPO-Based Reinforcement Learning Algorithms for Autonomous Driving
  publication-title: IEEE Access
– volume: 5
  start-page: 1247
  year: 2020
  end-page: 1254
  ident: b0025
  article-title: High-speed autonomous drifting with deep reinforcement learning
  publication-title: IEEE Robotics and Automation Letters
– volume: 24
  start-page: 15752
  year: 2023
  end-page: 15761
  ident: b0095
  article-title: Crowd emotion prediction for human-vehicle interaction through modified transfer learning and fuzzy logic ranking
  publication-title: IEEE transactions on intelligent transportation systems
– year: 2021
  ident: b0055
  article-title: Autonomous driving based on modified sac algorithm through imitation learning pretraining
  publication-title: In 2021 21st international conference on control, automation and systems (ICCAS)
– volume: 22
  start-page: 8148
  year: 2022
  ident: b0005
  article-title: Detection and Risk Analysis with Lane-Changing Decision Algorithms for Autonomous Vehicles
  publication-title: Sensors
– year: 2019
  ident: b0085
  article-title: Learning to drive in a day
  publication-title: In 2019 international conference on robotics and automation (ICRA)
– volume: 109
  year: 2021
  ident: 10.1016/j.eswa.2024.126319_b0045
  article-title: A hierarchical framework of emergency collision avoidance amid surrounding vehicles in highway driving
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2021.104751
– year: 2019
  ident: 10.1016/j.eswa.2024.126319_b0035
  article-title: Model-free deep reinforcement learning for urban autonomous driving
– year: 2023
  ident: 10.1016/j.eswa.2024.126319_b0040
  article-title: Recent advancements in end-to-end autonomous driving using deep learning: A survey
  publication-title: IEEE Transactions on Intelligent Vehicles
– volume: 47
  start-page: 499
  year: 2023
  ident: 10.1016/j.eswa.2024.126319_b0230
  article-title: Perceptions towards autonomous vehicle acceptance: Information mining from self-organizing maps and random forests
  publication-title: IATSS research
  doi: 10.1016/j.iatssr.2023.11.002
– year: 2018
  ident: 10.1016/j.eswa.2024.126319_b0125
  article-title: High-level decision making for safe and reasonable autonomous lane changing using reinforcement learning
– volume: 34
  start-page: 7391
  year: 2023
  ident: 10.1016/j.eswa.2024.126319_b0075
  article-title: Efficient deep reinforcement learning with imitative expert priors for autonomous driving
  publication-title: IEEE Transactions On Neural Networks And Learning Systems
  doi: 10.1109/TNNLS.2022.3142822
– volume: 7
  start-page: 26543
  year: 2019
  ident: 10.1016/j.eswa.2024.126319_b0110
  article-title: A novel lane change decision-making model of autonomous vehicle based on support vector machine
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2900416
– volume: 22
  start-page: 8148
  year: 2022
  ident: 10.1016/j.eswa.2024.126319_b0005
  article-title: Detection and Risk Analysis with Lane-Changing Decision Algorithms for Autonomous Vehicles
  publication-title: Sensors
  doi: 10.3390/s22218148
– ident: 10.1016/j.eswa.2024.126319_b0050
  doi: 10.14569/IJACSA.2021.0120789
– volume: 11
  start-page: 22788
  year: 2023
  ident: 10.1016/j.eswa.2024.126319_b0145
  article-title: Driver behavior modeling toward autonomous vehicles: Comprehensive review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3249144
– year: 2021
  ident: 10.1016/j.eswa.2024.126319_b0195
  article-title: A hazard analysis approach based on STPA and finite state machine for autonomous vehicles
– volume: 6
  start-page: 1
  year: 2023
  ident: 10.1016/j.eswa.2024.126319_b0090
  article-title: Predict the performance of driverless car through the cognitive data analysis and reliability analysis based approach. e-Prime-Advances in Electrical Engineering
  publication-title: Electronics and Energy
– volume: 8
  start-page: 177804
  year: 2020
  ident: 10.1016/j.eswa.2024.126319_b0105
  article-title: Decision-Making Strategy on Highway for Autonomous Vehicles Using Deep Reinforcement Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3022755
– volume: 33
  start-page: 236
  year: 2020
  ident: 10.1016/j.eswa.2024.126319_b0065
  article-title: Modeling of driver risk impact under human-vehicle-road interaction
  publication-title: China Journal of Highway and Transport
– volume: 1
  start-page: 133
  year: 2019
  ident: 10.1016/j.eswa.2024.126319_b0140
  article-title: Reinforcement learning in artificial and biological systems
  publication-title: Nature Machine Intelligence
  doi: 10.1038/s42256-019-0025-4
– volume: 2675
  start-page: 522
  year: 2021
  ident: 10.1016/j.eswa.2024.126319_b0010
  article-title: Extracting rules from autonomous-vehicle-involved crashes by applying decision tree and association rule methods
  publication-title: Transportation Research Record
  doi: 10.1177/03611981211018461
– volume: 69
  start-page: 61
  year: 2019
  ident: 10.1016/j.eswa.2024.126319_b0135
  article-title: Safer than the average human driver (who is less safe than me)? Examining a popular safety benchmark for self-driving cars
  publication-title: Journal of safety research
  doi: 10.1016/j.jsr.2019.02.002
– volume: 72
  start-page: 11251
  year: 2023
  ident: 10.1016/j.eswa.2024.126319_b0205
  article-title: Towards Robust Decision-Making for Autonomous Driving on Highway
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2023.3268500
– volume: 21
  start-page: 75
  year: 2023
  ident: 10.1016/j.eswa.2024.126319_b0190
  article-title: Toward Human-in-the-Loop AI: Enhancing Deep Reinforcement Learning via Real-Time Human Guidance for Autonomous Driving
  publication-title: Engineering
  doi: 10.1016/j.eng.2022.05.017
– year: 2019
  ident: 10.1016/j.eswa.2024.126319_b0085
  article-title: Learning to drive in a day
– start-page: 80
  year: 2024
  ident: 10.1016/j.eswa.2024.126319_b0155
  article-title: Tools and frameworks for machine learning and deep learning: A review
  publication-title: Applied Machine Learning and Deep Learning: Architectures and Techniques
– year: 2024
  ident: 10.1016/j.eswa.2024.126319_b0210
  article-title: Bayesian calibration of the intelligent driver model
  publication-title: IEEE transactions on intelligent transportation systems
– year: 2021
  ident: 10.1016/j.eswa.2024.126319_b0055
  article-title: Autonomous driving based on modified sac algorithm through imitation learning pretraining
– year: 2019
  ident: 10.1016/j.eswa.2024.126319_b0185
  article-title: Automatic lane change control for intelligent connected vehicles
– volume: 5
  start-page: 1247
  year: 2020
  ident: 10.1016/j.eswa.2024.126319_b0025
  article-title: High-speed autonomous drifting with deep reinforcement learning
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2020.2967299
– volume: 12
  start-page: 3490
  year: 2023
  ident: 10.1016/j.eswa.2024.126319_b0215
  article-title: Research on Automatic Emergency Braking System Based on Target Recognition and Fusion Control Strategy in Curved Road
  publication-title: Electronics
  doi: 10.3390/electronics12163490
– ident: 10.1016/j.eswa.2024.126319_b0130
  doi: 10.1038/nature14236
– volume: 67
  start-page: 1736
  year: 2023
  ident: 10.1016/j.eswa.2024.126319_b0120
  article-title: The Acceptance of Driverless Cars: The Roles of Perceived Outcomes and Technology Usefulness
  publication-title: American behavioral scientist
  doi: 10.1177/00027642221127250
– volume: 8
  start-page: 2661
  year: 2023
  ident: 10.1016/j.eswa.2024.126319_b0225
  article-title: Car-following behavior of human-driven vehicles in mixed-flow traffic: A driving simulator study
  publication-title: IEEE Transactions on Intelligent Vehicles
  doi: 10.1109/TIV.2023.3257962
– volume: 09
  start-page: 18
  year: 2023
  ident: 10.1016/j.eswa.2024.126319_b0180
  article-title: Rule-Based Constrained Deep Reinforcement Learning for Intelligent Vehicle Driving Decisions in Highway Scenarios
  publication-title: Automobile Technology
– volume: 24
  start-page: 433
  year: 2016
  ident: 10.1016/j.eswa.2024.126319_b0015
  article-title: Neuro-Fuzzy Controller Design to Navigate Unmanned Vehicle with Construction of Traffic Rules to Avoid Obstacles
  publication-title: International Journal of Uncertainty Fuzziness and Knowledge-Based Systems
  doi: 10.1142/S0218488516500227
– volume: 11
  start-page: 125094
  year: 2023
  ident: 10.1016/j.eswa.2024.126319_b0160
  article-title: An Empirical Study of DDPG and PPO-Based Reinforcement Learning Algorithms for Autonomous Driving
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3330665
– volume: 24
  start-page: 15752
  year: 2023
  ident: 10.1016/j.eswa.2024.126319_b0095
  article-title: Crowd emotion prediction for human-vehicle interaction through modified transfer learning and fuzzy logic ranking
  publication-title: IEEE transactions on intelligent transportation systems
  doi: 10.1109/TITS.2023.3239114
– volume: 12
  year: 2024
  ident: 10.1016/j.eswa.2024.126319_b0175
  article-title: Vehicle selection for c-v2x mode 4-based federated edge learning systems
  publication-title: IEEE Systems Journal
– volume: 21
  start-page: 11781
  year: 2021
  ident: 10.1016/j.eswa.2024.126319_b0070
  article-title: Multi-Modal Sensor Fusion-Based Deep Neural Network for End-to-End Autonomous Driving With Scene Understanding
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2020.3003121
– volume: 13
  start-page: 317
  year: 2022
  ident: 10.1016/j.eswa.2024.126319_b0200
  article-title: Learning-based Autonomous Driving Decision-Making Integrated with Vehicle Trajectory Prediction
  publication-title: Journal of Automotive Safety and Energy
– volume: 94
  year: 2020
  ident: 10.1016/j.eswa.2024.126319_b0030
  article-title: SAANet: Spatial adaptive alignment network for object detection in automatic driving
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2020.103873
– volume: 69
  start-page: 12597
  year: 2020
  ident: 10.1016/j.eswa.2024.126319_b0060
  article-title: Centralized Cooperation for Connected and Automated Vehicles at Intersections by Proximal Policy Optimization
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2020.3026111
– volume: 22
  start-page: 4457
  year: 2021
  ident: 10.1016/j.eswa.2024.126319_b0080
  article-title: Assessing trust level of a driverless car using deep learning
  publication-title: IEEE transactions on intelligent transportation systems
  doi: 10.1109/TITS.2021.3059261
– volume: 1
  start-page: 142
  year: 2020
  ident: 10.1016/j.eswa.2024.126319_b0150
  article-title: Space-air-ground integrated vehicular network for connected and automated vehicles: Challenges and solutions
  publication-title: Intelligent and Converged Networks
  doi: 10.23919/ICN.2020.0009
– year: 2021
  ident: 10.1016/j.eswa.2024.126319_b0220
  article-title: Cognitive Computing and Decision-Making of Traffic Intersection Based on Rule Set
– ident: 10.1016/j.eswa.2024.126319_b0170
  doi: 10.3390/en16031512
– year: 2023
  ident: 10.1016/j.eswa.2024.126319_b0020
  article-title: Deep Learning Based Self Driving Cars Using Computer Vision
– volume: 8
  start-page: 2197
  year: 2023
  ident: 10.1016/j.eswa.2024.126319_b0100
  article-title: Lane Change Strategies for Autonomous Vehicles: A Deep Reinforcement Learning Approach Based on Transformer
  publication-title: IEEE Transactions on Intelligent Vehicles
  doi: 10.1109/TIV.2022.3227921
– volume: 362
  start-page: 1140
  year: 2018
  ident: 10.1016/j.eswa.2024.126319_b0165
  article-title: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play
  publication-title: Science
  doi: 10.1126/science.aar6404
SSID ssj0017007
Score 2.4814603
Snippet In this paper, an end-to-end driving decision-making model is proposed for intelligent vehicle, utilizing a Variational AutoEncoder (VAE) network and Deep...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126319
SubjectTerms AutoEncoder Network
Driving Decision-making
Driving risk field
Intelligent Vehicle
Rule constraints
Soft Actor-Critic algorithm
Title Intelligent vehicle driving decision-making model based on variational AutoEncoder network and deep reinforcement learning
URI https://dx.doi.org/10.1016/j.eswa.2024.126319
Volume 268
WOSCitedRecordID wos001402217900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMX3ojlJR-4RVk1zsPOsUJFLEIrEItUcYkSe0y72k2rbtpdceSXM47tNC1oBUhc0mgaO5Hnkz0ez8xHyGuJppDUzBCaZBDiElCFpZJJiIt7IipeoU1ftWQT_ORETKf5x8Hgh8-F2ZzzuhbX1_nyv6oaZahskzr7F-ruOkUB3qPS8Ypqx-sfKf64K7LZBBuYmb8DtZq3jgPlGHXCi5aEyvLgBGYlU-bUYIMbZ-8cHK-bxaQ2Ge-roLax4u1BgwJYBitoC67K1rfomSe-7Xj5TQnlxhWK9il0vcPyrSPf-atnaw2ui5746wxMnvG-eIo76LKTfpg78Sf8iCuY9z0ZLG0DYNKte82n2GzjmayfkodJZKl8_JTNLBXPL9O_9UScHcHllakpxZKjiGWxm5N3y2p_Nh2bfk1Bwkhk6S1ywHiaiyE5GB9Ppu-7syg-skn3_kNc6pWNEtx_0-_Nm57Jcnqf3HV7DTq2GHlABlA_JPc8jwd10_oj8r0HGeogQx1k6B5kaAsZ2kKGLmragwztQYY6yFCEDDWQoTuQoR4yj8mXt5PTN-9Cx8kRyng0asISDR40kuNYlRVTTAMAlxEXIkmUiGOZQZRDNaq4zjOdVSJR-KshRkNbyxJtxydkWC9qeEoolFHEtdAJbpmSDHBhUJKlrDLFtspSy0MS-aEspCtYb3hTzgsfmXhWmOEvzPAXdvgPSdC1WdpyLTc-nXoNFc7gtIZkgYC6od2zf2z3nNzZ4v4FGTarNbwkt-WmmV-uXjnc_QRlXq1W
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+vehicle+driving+decision-making+model+based+on+variational+AutoEncoder+network+and+deep+reinforcement+learning&rft.jtitle=Expert+systems+with+applications&rft.au=Wang%2C+Shufeng&rft.au=Wang%2C+Zhengli&rft.au=Wang%2C+Xinkai&rft.au=Liang%2C+Qingwei&rft.date=2025-04-05&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=268&rft_id=info:doi/10.1016%2Fj.eswa.2024.126319&rft.externalDocID=S0957417424031865
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon