A simple self-supervised learning framework with patch-based data augmentation in diagnosis of Alzheimer’s disease

Alzheimer’s disease (AD) stands as a prominent age-related disorder with significant global impact. Utilizing computer-aided diagnosis aids in the timely identification of mild cognitive impairment, facilitating early intervention and management. Self-supervised learning models have attracted much a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biomedical signal processing and control Ročník 96; s. 106572
Hlavní autori: Gong, Haoqiang, Wang, Zhiwen, Huang, Shuaihui, Wang, Jinfeng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.10.2024
Predmet:
ISSN:1746-8094
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Alzheimer’s disease (AD) stands as a prominent age-related disorder with significant global impact. Utilizing computer-aided diagnosis aids in the timely identification of mild cognitive impairment, facilitating early intervention and management. Self-supervised learning models have attracted much attention due to their advantages of no manual labeling, so they are very suitable for solving the problems of difficulty in data acquisition and high cost of manual labeling in medical image processing. However, the existing self-supervised algorithms applied to medical images often have poor diagnostic effects and consume large resources, as a consequence, the model’s ability to learn meaningful representations from medical images is hampered, leading to suboptimal performance. Subsequently, diverse patches extracted from the same brain are amalgamated to create contrast views, and attention weights are then employed to enhance the fitting and generalization capacity of the model. Experimental results on the ADNI dataset with 1365 subjects show that PD-SIM has been improved in the diagnosis of different diseases(such as the classification ACC of AD and CN reached 0.797, and the classification ACC of early cognitive impairment reached 0.7036), and also alleviates the problem of large consumption of computer resources, downstream tasks require only 52ms per image. The proposed method performs well in atrophic structure identification and AD diagnosis. Therefore, PD-SIM has a wide range of application prospects and is of great practical significance within the realm of medical image analysis. The data and code can be found at https://github.com/Z1Ting/PD-SIM. •A simple contrastive learning framework is proposed to recombine local microstructures into global features.•A patch-based strategy is introduced to filter the normal regions and generate multiple key local regions.•The spatial attention mechanism is integrated to make the model pay better attention to the lesion area.
AbstractList Alzheimer’s disease (AD) stands as a prominent age-related disorder with significant global impact. Utilizing computer-aided diagnosis aids in the timely identification of mild cognitive impairment, facilitating early intervention and management. Self-supervised learning models have attracted much attention due to their advantages of no manual labeling, so they are very suitable for solving the problems of difficulty in data acquisition and high cost of manual labeling in medical image processing. However, the existing self-supervised algorithms applied to medical images often have poor diagnostic effects and consume large resources, as a consequence, the model’s ability to learn meaningful representations from medical images is hampered, leading to suboptimal performance. Subsequently, diverse patches extracted from the same brain are amalgamated to create contrast views, and attention weights are then employed to enhance the fitting and generalization capacity of the model. Experimental results on the ADNI dataset with 1365 subjects show that PD-SIM has been improved in the diagnosis of different diseases(such as the classification ACC of AD and CN reached 0.797, and the classification ACC of early cognitive impairment reached 0.7036), and also alleviates the problem of large consumption of computer resources, downstream tasks require only 52ms per image. The proposed method performs well in atrophic structure identification and AD diagnosis. Therefore, PD-SIM has a wide range of application prospects and is of great practical significance within the realm of medical image analysis. The data and code can be found at https://github.com/Z1Ting/PD-SIM. •A simple contrastive learning framework is proposed to recombine local microstructures into global features.•A patch-based strategy is introduced to filter the normal regions and generate multiple key local regions.•The spatial attention mechanism is integrated to make the model pay better attention to the lesion area.
ArticleNumber 106572
Author Wang, Jinfeng
Huang, Shuaihui
Wang, Zhiwen
Gong, Haoqiang
Author_xml – sequence: 1
  givenname: Haoqiang
  surname: Gong
  fullname: Gong, Haoqiang
– sequence: 2
  givenname: Zhiwen
  surname: Wang
  fullname: Wang, Zhiwen
– sequence: 3
  givenname: Shuaihui
  surname: Huang
  fullname: Huang, Shuaihui
– sequence: 4
  givenname: Jinfeng
  orcidid: 0000-0002-1246-4617
  surname: Wang
  fullname: Wang, Jinfeng
  email: wangjinfeng@scau.edu.cn
BookMark eNp9kEtOwzAQQL0oEm3hAqx8gRQ7cZxEYlNV_KRKbGBtOfa4dUmcyHZbwYprcD1OQqKyYtHVaD5vNPNmaOI6BwjdULKghPLb3aIOvVqkJGVDgedFOkFTWjCelKRil2gWwo4QVhaUTVFc4mDbvgEcoDFJ2PfgDzaAxg1I76zbYONlC8fOv-OjjVvcy6i2SS3HGS2jxHK_acFFGW3nsHVYW7lxXbABdwYvm88t2Bb8z9d3GFoBBvAKXRjZBLj-i3P09nD_unpK1i-Pz6vlOlEZITGRKctzXRFas4xpzmtZlZpIXmpe1FylJCeZyXRV1LSoGa20GbKak4yZlGWpyeaoPO1VvgvBgxHKnu6MXtpGUCJGY2InRmNiNCZOxgY0_Yf23rbSf5yH7k4QDE8dLHgRlAWnQFsPKgrd2XP4L-N1jDE
CitedBy_id crossref_primary_10_1016_j_bspc_2025_108330
crossref_primary_10_1016_j_bspc_2025_108539
crossref_primary_10_3390_diagnostics15182348
crossref_primary_10_1016_j_compbiomed_2025_111028
Cites_doi 10.1016/j.neuroimage.2010.06.013
10.1016/j.neuroimage.2019.116459
10.1126/science.1127647
10.1016/j.media.2020.101694
10.1109/TPAMI.2012.142
10.3389/fnins.2019.00509
10.1109/MSP.2017.2765202
10.1016/j.neuroimage.2023.120485
10.1177/1533317508328602
10.1016/j.neucom.2020.01.053
10.1007/BF00308809
10.1016/j.neuroimage.2005.09.046
10.1109/CVPR.2018.00745
10.1016/j.compmedimag.2018.09.009
10.1016/j.compbiomed.2017.10.002
10.1109/CVPR46437.2021.01549
10.3390/fractalfract7080598
10.1006/nimg.2001.0848
10.1001/jama.2009.1064
10.1016/0730-725X(88)90401-8
10.1109/CVPR.2016.90
10.1016/j.neuroimage.2011.12.029
10.1109/CVPR.2019.00198
10.1016/j.jalz.2011.03.003
10.1016/j.neuroimage.2014.06.077
10.1093/brain/awaa137
10.1109/CVPR42600.2020.00975
10.1145/3422622
10.1097/00004728-199803000-00032
10.1109/TMI.2021.3077079
10.1007/978-3-030-01234-2_1
10.1016/S1474-4422(12)70291-0
10.1016/j.media.2018.10.012
10.1109/TMI.2021.3079709
10.1016/j.media.2021.102051
10.1038/nrneurol.2009.215
10.1016/S0197-4580(01)00230-5
10.1016/j.neuroimage.2010.04.241
10.1016/j.media.2022.102571
10.1016/j.neucom.2018.12.018
10.1109/TMI.2016.2582386
10.1109/TPAMI.2020.2992393
10.3390/technologies9010002
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2024.106572
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2024_106572
S174680942400630X
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-a2455d901b434d66ba98d0a68d67b6c20503f3d97b17b419dff3db6034f2432f3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001266619800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Sat Nov 29 02:51:27 EST 2025
Tue Nov 18 21:51:11 EST 2025
Sat Aug 17 15:43:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Attention mechanism
Data augmentation
Alzheimer’s disease
Self-supervised learning
MRI brain patch
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-a2455d901b434d66ba98d0a68d67b6c20503f3d97b17b419dff3db6034f2432f3
ORCID 0000-0002-1246-4617
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2024_106572
crossref_primary_10_1016_j_bspc_2024_106572
elsevier_sciencedirect_doi_10_1016_j_bspc_2024_106572
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, Momentum contrast for unsupervised visual representation learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9729–9738.
Gidaris, Singh, Komodakis (b44) 2018
Creswell, White, Dumoulin, Arulkumaran, Sengupta, Bharath (b38) 2018; 35
Özçelik, Altan (b10) 2023; 7
Devlin, Chang, Lee, Toutanova (b41) 2018
S. Woo, J. Park, J. Lee, I.S. Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19.
Liu, Li, Yan, Wang, Ma, Shen, Xu (b5) 2020; 208
Wang, Fan, Wang, Jiao, Schiele (b47) 2018
Cuingnet, Glaunès, Chupin, Benali, Colliot (b22) 2012; 35
Deng, Dong, Socher, Li, Li, Li (b20) 2009
De Santi, de Leon, Rusinek, Convit, Tarshish, Roche, Tsui, Kandil, Boppana, Daisley (b25) 2001; 22
Narayana, Brey, Kulkarni, Sievenpiper (b51) 1988; 6
Ouyang, Zhao, Adeli, Zaharchuk, Pohl (b56) 2022; 82
Masci, Meier, Ciresan, Schmidhuber (b13) 2011
Li, Lin, Chen (b24) 2020; 388
Baron, Chételat, Desgranges, Perchey, Landeau, de La Sayette, Eustache (b31) 2001; 14
Chen, Kornblith, Norouzi, Hinton (b17) 2020
Xu, Liu, Luo, Hu, Shen, Du, Kuang, Yang (b49) 2023
Holmes, Hoge, Collins, Woods, Toga, Evans (b52) 1998; 22
Huang, Xu, Zhou, Tong, Zhuang (b7) 2019; 13
Mattsson, Zetterberg, Hansson, Andreasen, Parnetti, Jonsson, Herukka, van der Flier, Blankenstein, Ewers (b26) 2009; 302
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b14) 2020; 63
Braak, Braak (b54) 1991; 82
Özçelik, Altan (b11) 2023
Sperling, Aisen, Beckett, Bennett, Craft, Fagan, Iwatsubo, Jack, Kaye, Montine (b27) 2011; 7
Ouyang, Biffi, Chen, Kart, Qiu, Rueckert (b19) 2020
Dhinagar, Thomopoulos, Rajagopalan, Stripelis, Ambite, Ver Steeg, Thompson (b58) 2023; Vol. 12567
Fang, Zhang, Nie, Cao, Rekik, Lee, He, Shen (b6) 2019; 51
Wang, Shen, Wang, Xiao, Deng, Wang, Zhao (b8) 2019; 333
Jiang, Miao (b18) 2022
Zhu, Sun, Huang, Han, Zhang (b15) 2021; 40
Y. Özçelik, A. Altan, Classification of diabetic retinopathy by machine learning algorithm using entorpy-based features.
Jaiswal, Babu, Zadeh, Banerjee, Makedon (b39) 2020; 9
Xu, Ba, Kiros, Cho, Courville, Salakhudinov, Zemel, Bengio (b45) 2015
Matsuda (b32) 2013; 4
X. Zhan, X. Pan, Z. Liu, D. Lin, C.C. Loy, Self-supervised learning via conditional motion propagation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 1881–1889.
X. Chen, K. He, Exploring simple siamese representation learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 15750–15758.
Wang, Jiang, Li, Xu, Deng, Dai, Xu, Li, Guo, Wang (b16) 2021; 40
J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
Aderghal, Khvostikov, Krylov, Benois-Pineau, Afdel, Catheline (b3) 2018
Vounou, Janousova, Wolz, Stein, Thompson, Rueckert, Montana (b29) 2012; 60
Jovicich, Czanner, Greve, Haley, van Der Kouwe, Gollub, Kennedy, Schmitt, Brown, MacFall (b50) 2006; 30
Polzehl, Voss, Tabelow (b53) 2010; 52
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
Ludovico, Trudi, MariaGrazia, Giorgio (b1) 2009; 24
Zhang, Gao, Gao, Munsell, Shen (b34) 2016; 35
Shangran, Joshi, Miller, Chonghua, Xiao, Cody, H, Joshi, Brigid, Shuhan (b35) 2020; 143
Cao, Liu, Yang, Zhao, Huang, Zhang, Zaiane (b33) 2017; 91
Wen, Elina, Mauricio, SamperGonzález, Colliot (b2) 2020; 63
Zhao, Liu, Adeli, Pohl (b57) 2021; 71
Cuingnet, Gerardin, Tessieras, Auzias, Lehéricy, Habert, Chupin, Benali, Colliot (b30) 2011; 56
Jing, Tian (b36) 2020; 43
ZhiPei, Lauterbur (b28) 2000
Suk, Lee, Shen (b9) 2014; 101
Frisoni, Fox, Jack, Scheltens, Thompson (b23) 2010; 6
Hinton, Salakhutdinov (b37) 2006; 313
Fedorov, Geenjaar, Wu, Sylvain, DeRamus, Luck, Misiura, Mittapalle, Hjelm, Plis (b59) 2024; 285
Li, Liu (b4) 2018; 70
Jack, Knopman, Jagust, Petersen, Weiner, Aisen, Shaw, Vemuri, Wiste, Weigand (b55) 2013; 12
Özçelik (10.1016/j.bspc.2024.106572_b10) 2023; 7
Wang (10.1016/j.bspc.2024.106572_b8) 2019; 333
10.1016/j.bspc.2024.106572_b12
Wang (10.1016/j.bspc.2024.106572_b47) 2018
Dhinagar (10.1016/j.bspc.2024.106572_b58) 2023; Vol. 12567
Zhang (10.1016/j.bspc.2024.106572_b34) 2016; 35
Xu (10.1016/j.bspc.2024.106572_b49) 2023
10.1016/j.bspc.2024.106572_b21
Jing (10.1016/j.bspc.2024.106572_b36) 2020; 43
Holmes (10.1016/j.bspc.2024.106572_b52) 1998; 22
Gidaris (10.1016/j.bspc.2024.106572_b44) 2018
Huang (10.1016/j.bspc.2024.106572_b7) 2019; 13
Cuingnet (10.1016/j.bspc.2024.106572_b30) 2011; 56
Xu (10.1016/j.bspc.2024.106572_b45) 2015
Zhao (10.1016/j.bspc.2024.106572_b57) 2021; 71
10.1016/j.bspc.2024.106572_b48
Braak (10.1016/j.bspc.2024.106572_b54) 1991; 82
10.1016/j.bspc.2024.106572_b46
Wen (10.1016/j.bspc.2024.106572_b2) 2020; 63
Deng (10.1016/j.bspc.2024.106572_b20) 2009
Suk (10.1016/j.bspc.2024.106572_b9) 2014; 101
Hinton (10.1016/j.bspc.2024.106572_b37) 2006; 313
Liu (10.1016/j.bspc.2024.106572_b5) 2020; 208
Jiang (10.1016/j.bspc.2024.106572_b18) 2022
Baron (10.1016/j.bspc.2024.106572_b31) 2001; 14
Fedorov (10.1016/j.bspc.2024.106572_b59) 2024; 285
Aderghal (10.1016/j.bspc.2024.106572_b3) 2018
Sperling (10.1016/j.bspc.2024.106572_b27) 2011; 7
Zhu (10.1016/j.bspc.2024.106572_b15) 2021; 40
Goodfellow (10.1016/j.bspc.2024.106572_b14) 2020; 63
Li (10.1016/j.bspc.2024.106572_b24) 2020; 388
Shangran (10.1016/j.bspc.2024.106572_b35) 2020; 143
Masci (10.1016/j.bspc.2024.106572_b13) 2011
Özçelik (10.1016/j.bspc.2024.106572_b11) 2023
Narayana (10.1016/j.bspc.2024.106572_b51) 1988; 6
Fang (10.1016/j.bspc.2024.106572_b6) 2019; 51
Cuingnet (10.1016/j.bspc.2024.106572_b22) 2012; 35
Devlin (10.1016/j.bspc.2024.106572_b41) 2018
Ouyang (10.1016/j.bspc.2024.106572_b56) 2022; 82
Jack (10.1016/j.bspc.2024.106572_b55) 2013; 12
Polzehl (10.1016/j.bspc.2024.106572_b53) 2010; 52
Wang (10.1016/j.bspc.2024.106572_b16) 2021; 40
Ouyang (10.1016/j.bspc.2024.106572_b19) 2020
10.1016/j.bspc.2024.106572_b42
10.1016/j.bspc.2024.106572_b43
Chen (10.1016/j.bspc.2024.106572_b17) 2020
De Santi (10.1016/j.bspc.2024.106572_b25) 2001; 22
10.1016/j.bspc.2024.106572_b40
Frisoni (10.1016/j.bspc.2024.106572_b23) 2010; 6
Li (10.1016/j.bspc.2024.106572_b4) 2018; 70
Creswell (10.1016/j.bspc.2024.106572_b38) 2018; 35
Mattsson (10.1016/j.bspc.2024.106572_b26) 2009; 302
Jaiswal (10.1016/j.bspc.2024.106572_b39) 2020; 9
Cao (10.1016/j.bspc.2024.106572_b33) 2017; 91
Jovicich (10.1016/j.bspc.2024.106572_b50) 2006; 30
Matsuda (10.1016/j.bspc.2024.106572_b32) 2013; 4
Ludovico (10.1016/j.bspc.2024.106572_b1) 2009; 24
ZhiPei (10.1016/j.bspc.2024.106572_b28) 2000
Vounou (10.1016/j.bspc.2024.106572_b29) 2012; 60
References_xml – start-page: 52
  year: 2011
  end-page: 59
  ident: b13
  article-title: Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction
– volume: 82
  start-page: 239
  year: 1991
  end-page: 259
  ident: b54
  article-title: Neuropathological stageing of Alzheimer-related changes
  publication-title: Acta Neuropathol.
– volume: 82
  year: 2022
  ident: b56
  article-title: Self-supervised learning of neighborhood embedding for longitudinal MRI
  publication-title: Med. Image Anal.
– volume: 35
  start-page: 53
  year: 2018
  end-page: 65
  ident: b38
  article-title: Generative adversarial networks: An overview
  publication-title: IEEE Signal Process. Mag.
– volume: 12
  start-page: 207
  year: 2013
  end-page: 216
  ident: b55
  article-title: Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers
  publication-title: Lancet Neurol.
– volume: 63
  start-page: 139
  year: 2020
  end-page: 144
  ident: b14
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
– volume: 40
  start-page: 2354
  year: 2021
  end-page: 2366
  ident: b15
  article-title: Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI
  publication-title: IEEE Trans. Med. Imaging
– start-page: 2048
  year: 2015
  end-page: 2057
  ident: b45
  article-title: Show, attend and tell: Neural image caption generation with visual attention
  publication-title: International Conference on Machine Learning
– volume: 40
  start-page: 2463
  year: 2021
  end-page: 2476
  ident: b16
  article-title: Joint learning of 3D lesion segmentation and classification for explainable COVID-19 diagnosis
  publication-title: IEEE Trans. Med. Imaging
– volume: 388
  start-page: 280
  year: 2020
  end-page: 287
  ident: b24
  article-title: Detecting Alzheimer’s disease based on 4D fMRI: An exploration under deep learning framework
  publication-title: Neurocomputing
– year: 2018
  ident: b41
  article-title: Bert: Pre-training of deep bidirectional transformers for language understanding
– volume: 22
  start-page: 529
  year: 2001
  end-page: 539
  ident: b25
  article-title: Hippocampal formation glucose metabolism and volume losses in MCI and AD
  publication-title: Neurobiol. Aging
– start-page: 1
  year: 2000
  end-page: 416
  ident: b28
  article-title: Principles of magnetic resonance imaging: A signal processing approach
– volume: 285
  year: 2024
  ident: b59
  article-title: Self-supervised multimodal learning for group inferences from MRI data: Discovering disorder-relevant brain regions and multimodal links
  publication-title: NeuroImage
– volume: 7
  start-page: 598
  year: 2023
  ident: b10
  article-title: Overcoming nonlinear dynamics in diabetic retinopathy classification: a robust AI-based model with chaotic swarm intelligence optimization and recurrent long short-term memory
  publication-title: Fractal Fract.
– volume: 56
  start-page: 766
  year: 2011
  end-page: 781
  ident: b30
  article-title: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: Neuroimage
– volume: 6
  start-page: 271
  year: 1988
  end-page: 274
  ident: b51
  article-title: Compensation for surface coil sensitivity variation in magnetic resonance imaging
  publication-title: Magn. Reson. Imaging
– volume: 51
  start-page: 157
  year: 2019
  end-page: 168
  ident: b6
  article-title: Automatic brain labeling via multi-atlas guided fully convolutional networks
  publication-title: Med. Image Anal.
– reference: X. Zhan, X. Pan, Z. Liu, D. Lin, C.C. Loy, Self-supervised learning via conditional motion propagation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 1881–1889.
– start-page: 345
  year: 2018
  end-page: 350
  ident: b3
  article-title: Classification of Alzheimer disease on imaging modalities with deep CNNs using cross-modal transfer learning
– volume: 14
  start-page: 298
  year: 2001
  end-page: 309
  ident: b31
  article-title: In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease
  publication-title: Neuroimage
– volume: Vol. 12567
  start-page: 504
  year: 2023
  end-page: 513
  ident: b58
  article-title: Evaluation of transfer learning methods for detecting alzheimer’s disease with brain MRI
  publication-title: 18th International Symposium on Medical Information Processing and Analysis
– volume: 6
  start-page: 67
  year: 2010
  end-page: 77
  ident: b23
  article-title: The clinical use of structural MRI in Alzheimer disease
  publication-title: Nat. Rev. Neurol.
– volume: 35
  start-page: 682
  year: 2012
  end-page: 696
  ident: b22
  article-title: Spatial and anatomical regularization of SVM: a general framework for neuroimaging data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 60
  start-page: 700
  year: 2012
  end-page: 716
  ident: b29
  article-title: Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer’s disease
  publication-title: Neuroimage
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– year: 2018
  ident: b47
  article-title: Parameter-free spatial attention network for person re-identification
– volume: 43
  start-page: 4037
  year: 2020
  end-page: 4058
  ident: b36
  article-title: Self-supervised visual feature learning with deep neural networks: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 13
  start-page: 509
  year: 2019
  ident: b7
  article-title: Diagnosis of Alzheimer’s disease via multi-modality 3D convolutional neural network
  publication-title: Front. Neurosci.
– volume: 30
  start-page: 436
  year: 2006
  end-page: 443
  ident: b50
  article-title: Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data
  publication-title: Neuroimage
– reference: K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, Momentum contrast for unsupervised visual representation learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9729–9738.
– volume: 71
  year: 2021
  ident: b57
  article-title: LSSL: Longitudinal self-supervised learning
  publication-title: Med. Image Anal.
– volume: 24
  start-page: 95
  year: 2009
  end-page: 121
  ident: b1
  article-title: Reviews: Current concepts in Alzheimer’s disease: A multidisciplinary review
  publication-title: Am. J. Alzheimer’s Dis. Other Dementias®
– volume: 35
  start-page: 2524
  year: 2016
  end-page: 2533
  ident: b34
  article-title: Detecting anatomical landmarks for fast Alzheimer’s disease diagnosis
  publication-title: IEEE Trans. Med. Imaging
– volume: 9
  start-page: 2
  year: 2020
  ident: b39
  article-title: A survey on contrastive self-supervised learning
  publication-title: Technologies
– start-page: 1
  year: 2022
  end-page: 8
  ident: b18
  article-title: Pre-training 3D convolutional neural networks for prodromal Alzheimer’s disease classification
  publication-title: 2022 International Joint Conference on Neural Networks
– volume: 52
  start-page: 515
  year: 2010
  end-page: 523
  ident: b53
  article-title: Structural adaptive segmentation for statistical parametric mapping
  publication-title: NeuroImage
– volume: 91
  start-page: 21
  year: 2017
  end-page: 37
  ident: b33
  article-title: Nonlinearity-aware based dimensionality reduction and over-sampling for AD/MCI classification from MRI measures
  publication-title: Comput. Biol. Med.
– reference: J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
– start-page: 762
  year: 2020
  end-page: 780
  ident: b19
  article-title: Self-supervision with superpixels: Training few-shot medical image segmentation without annotation
  publication-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIX 16
– volume: 70
  start-page: 101
  year: 2018
  end-page: 110
  ident: b4
  article-title: Alzheimer’s disease diagnosis based on multiple cluster dense convolutional networks
  publication-title: Comput. Med. Imaging Graph.
– volume: 7
  start-page: 280
  year: 2011
  end-page: 292
  ident: b27
  article-title: Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimer’s Dementia
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b37
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– start-page: 1597
  year: 2020
  end-page: 1607
  ident: b17
  article-title: A simple framework for contrastive learning of visual representations
  publication-title: International Conference on Machine Learning
– year: 2018
  ident: b44
  article-title: Unsupervised representation learning by predicting image rotations
– volume: 208
  year: 2020
  ident: b5
  article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease
  publication-title: Neuroimage
– volume: 22
  start-page: 324
  year: 1998
  end-page: 333
  ident: b52
  article-title: Enhancement of MR images using registration for signal averaging
  publication-title: J. Comput. Assist. Tomogr.
– volume: 4
  start-page: 29
  year: 2013
  ident: b32
  article-title: Voxel-based morphometry of brain MRI in normal aging and Alzheimer’s disease
  publication-title: Aging Dis.
– volume: 101
  start-page: 569
  year: 2014
  end-page: 582
  ident: b9
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
  publication-title: NeuroImage
– reference: S. Woo, J. Park, J. Lee, I.S. Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19.
– volume: 63
  year: 2020
  ident: b2
  article-title: Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation
  publication-title: Med. Image Anal.
– year: 2023
  ident: b49
  article-title: SGDA: Towards 3D universal pulmonary nodule detection via slice grouped domain attention
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 143
  start-page: 1920
  year: 2020
  end-page: 1933
  ident: b35
  article-title: Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification
  publication-title: Brain
– start-page: 1
  year: 2023
  end-page: 5
  ident: b11
  article-title: A comparative analysis of artificial intelligence optimization algorithms for the selection of entropy-based features in the early detection of epileptic seizures
  publication-title: 2023 14th International Conference on Electrical and Electronics Engineering
– reference: X. Chen, K. He, Exploring simple siamese representation learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 15750–15758.
– volume: 302
  start-page: 385
  year: 2009
  end-page: 393
  ident: b26
  article-title: CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment
  publication-title: Jama
– volume: 333
  start-page: 145
  year: 2019
  end-page: 156
  ident: b8
  article-title: Ensemble of 3D densely connected convolutional network for diagnosis of mild cognitive impairment and Alzheimer’s disease
  publication-title: Neurocomputing
– start-page: 248
  year: 2009
  end-page: 255
  ident: b20
  article-title: Imagenet: A Large-Scale Hierarchical Image Database
– reference: Y. Özçelik, A. Altan, Classification of diabetic retinopathy by machine learning algorithm using entorpy-based features.
– volume: 56
  start-page: 766
  issue: 2
  year: 2011
  ident: 10.1016/j.bspc.2024.106572_b30
  article-title: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.013
– volume: 208
  year: 2020
  ident: 10.1016/j.bspc.2024.106572_b5
  article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116459
– start-page: 1
  year: 2023
  ident: 10.1016/j.bspc.2024.106572_b11
  article-title: A comparative analysis of artificial intelligence optimization algorithms for the selection of entropy-based features in the early detection of epileptic seizures
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.bspc.2024.106572_b37
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 63
  year: 2020
  ident: 10.1016/j.bspc.2024.106572_b2
  article-title: Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101694
– volume: 35
  start-page: 682
  issue: 3
  year: 2012
  ident: 10.1016/j.bspc.2024.106572_b22
  article-title: Spatial and anatomical regularization of SVM: a general framework for neuroimaging data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.142
– volume: 13
  start-page: 509
  year: 2019
  ident: 10.1016/j.bspc.2024.106572_b7
  article-title: Diagnosis of Alzheimer’s disease via multi-modality 3D convolutional neural network
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00509
– start-page: 1597
  year: 2020
  ident: 10.1016/j.bspc.2024.106572_b17
  article-title: A simple framework for contrastive learning of visual representations
– volume: 35
  start-page: 53
  issue: 1
  year: 2018
  ident: 10.1016/j.bspc.2024.106572_b38
  article-title: Generative adversarial networks: An overview
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2765202
– volume: 285
  year: 2024
  ident: 10.1016/j.bspc.2024.106572_b59
  article-title: Self-supervised multimodal learning for group inferences from MRI data: Discovering disorder-relevant brain regions and multimodal links
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2023.120485
– volume: 24
  start-page: 95
  issue: 2
  year: 2009
  ident: 10.1016/j.bspc.2024.106572_b1
  article-title: Reviews: Current concepts in Alzheimer’s disease: A multidisciplinary review
  publication-title: Am. J. Alzheimer’s Dis. Other Dementias®
  doi: 10.1177/1533317508328602
– volume: 388
  start-page: 280
  year: 2020
  ident: 10.1016/j.bspc.2024.106572_b24
  article-title: Detecting Alzheimer’s disease based on 4D fMRI: An exploration under deep learning framework
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.053
– volume: 82
  start-page: 239
  issue: 4
  year: 1991
  ident: 10.1016/j.bspc.2024.106572_b54
  article-title: Neuropathological stageing of Alzheimer-related changes
  publication-title: Acta Neuropathol.
  doi: 10.1007/BF00308809
– volume: 30
  start-page: 436
  issue: 2
  year: 2006
  ident: 10.1016/j.bspc.2024.106572_b50
  article-title: Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.09.046
– ident: 10.1016/j.bspc.2024.106572_b48
  doi: 10.1109/CVPR.2018.00745
– volume: 70
  start-page: 101
  year: 2018
  ident: 10.1016/j.bspc.2024.106572_b4
  article-title: Alzheimer’s disease diagnosis based on multiple cluster dense convolutional networks
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2018.09.009
– volume: 91
  start-page: 21
  year: 2017
  ident: 10.1016/j.bspc.2024.106572_b33
  article-title: Nonlinearity-aware based dimensionality reduction and over-sampling for AD/MCI classification from MRI measures
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.10.002
– ident: 10.1016/j.bspc.2024.106572_b43
  doi: 10.1109/CVPR46437.2021.01549
– volume: 7
  start-page: 598
  issue: 8
  year: 2023
  ident: 10.1016/j.bspc.2024.106572_b10
  article-title: Overcoming nonlinear dynamics in diabetic retinopathy classification: a robust AI-based model with chaotic swarm intelligence optimization and recurrent long short-term memory
  publication-title: Fractal Fract.
  doi: 10.3390/fractalfract7080598
– volume: 14
  start-page: 298
  issue: 2
  year: 2001
  ident: 10.1016/j.bspc.2024.106572_b31
  article-title: In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0848
– volume: Vol. 12567
  start-page: 504
  year: 2023
  ident: 10.1016/j.bspc.2024.106572_b58
  article-title: Evaluation of transfer learning methods for detecting alzheimer’s disease with brain MRI
– volume: 302
  start-page: 385
  issue: 4
  year: 2009
  ident: 10.1016/j.bspc.2024.106572_b26
  article-title: CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment
  publication-title: Jama
  doi: 10.1001/jama.2009.1064
– year: 2018
  ident: 10.1016/j.bspc.2024.106572_b41
– volume: 6
  start-page: 271
  issue: 3
  year: 1988
  ident: 10.1016/j.bspc.2024.106572_b51
  article-title: Compensation for surface coil sensitivity variation in magnetic resonance imaging
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/0730-725X(88)90401-8
– start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2024.106572_b18
  article-title: Pre-training 3D convolutional neural networks for prodromal Alzheimer’s disease classification
– ident: 10.1016/j.bspc.2024.106572_b21
  doi: 10.1109/CVPR.2016.90
– volume: 60
  start-page: 700
  issue: 1
  year: 2012
  ident: 10.1016/j.bspc.2024.106572_b29
  article-title: Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.029
– ident: 10.1016/j.bspc.2024.106572_b40
  doi: 10.1109/CVPR.2019.00198
– volume: 7
  start-page: 280
  issue: 3
  year: 2011
  ident: 10.1016/j.bspc.2024.106572_b27
  article-title: Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimer’s Dementia
  doi: 10.1016/j.jalz.2011.03.003
– start-page: 52
  year: 2011
  ident: 10.1016/j.bspc.2024.106572_b13
– volume: 101
  start-page: 569
  year: 2014
  ident: 10.1016/j.bspc.2024.106572_b9
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.06.077
– volume: 143
  start-page: 1920
  issue: 6
  year: 2020
  ident: 10.1016/j.bspc.2024.106572_b35
  article-title: Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification
  publication-title: Brain
  doi: 10.1093/brain/awaa137
– start-page: 762
  year: 2020
  ident: 10.1016/j.bspc.2024.106572_b19
  article-title: Self-supervision with superpixels: Training few-shot medical image segmentation without annotation
– ident: 10.1016/j.bspc.2024.106572_b42
  doi: 10.1109/CVPR42600.2020.00975
– ident: 10.1016/j.bspc.2024.106572_b12
– volume: 63
  start-page: 139
  issue: 11
  year: 2020
  ident: 10.1016/j.bspc.2024.106572_b14
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– volume: 22
  start-page: 324
  issue: 2
  year: 1998
  ident: 10.1016/j.bspc.2024.106572_b52
  article-title: Enhancement of MR images using registration for signal averaging
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-199803000-00032
– year: 2018
  ident: 10.1016/j.bspc.2024.106572_b47
– year: 2023
  ident: 10.1016/j.bspc.2024.106572_b49
  article-title: SGDA: Towards 3D universal pulmonary nodule detection via slice grouped domain attention
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 40
  start-page: 2354
  issue: 9
  year: 2021
  ident: 10.1016/j.bspc.2024.106572_b15
  article-title: Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3077079
– ident: 10.1016/j.bspc.2024.106572_b46
  doi: 10.1007/978-3-030-01234-2_1
– volume: 12
  start-page: 207
  issue: 2
  year: 2013
  ident: 10.1016/j.bspc.2024.106572_b55
  article-title: Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(12)70291-0
– volume: 4
  start-page: 29
  issue: 1
  year: 2013
  ident: 10.1016/j.bspc.2024.106572_b32
  article-title: Voxel-based morphometry of brain MRI in normal aging and Alzheimer’s disease
  publication-title: Aging Dis.
– volume: 51
  start-page: 157
  year: 2019
  ident: 10.1016/j.bspc.2024.106572_b6
  article-title: Automatic brain labeling via multi-atlas guided fully convolutional networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.10.012
– volume: 40
  start-page: 2463
  issue: 9
  year: 2021
  ident: 10.1016/j.bspc.2024.106572_b16
  article-title: Joint learning of 3D lesion segmentation and classification for explainable COVID-19 diagnosis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3079709
– volume: 71
  year: 2021
  ident: 10.1016/j.bspc.2024.106572_b57
  article-title: LSSL: Longitudinal self-supervised learning
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102051
– volume: 6
  start-page: 67
  issue: 2
  year: 2010
  ident: 10.1016/j.bspc.2024.106572_b23
  article-title: The clinical use of structural MRI in Alzheimer disease
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2009.215
– volume: 22
  start-page: 529
  issue: 4
  year: 2001
  ident: 10.1016/j.bspc.2024.106572_b25
  article-title: Hippocampal formation glucose metabolism and volume losses in MCI and AD
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(01)00230-5
– volume: 52
  start-page: 515
  issue: 2
  year: 2010
  ident: 10.1016/j.bspc.2024.106572_b53
  article-title: Structural adaptive segmentation for statistical parametric mapping
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.04.241
– volume: 82
  year: 2022
  ident: 10.1016/j.bspc.2024.106572_b56
  article-title: Self-supervised learning of neighborhood embedding for longitudinal MRI
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102571
– start-page: 2048
  year: 2015
  ident: 10.1016/j.bspc.2024.106572_b45
  article-title: Show, attend and tell: Neural image caption generation with visual attention
– volume: 333
  start-page: 145
  year: 2019
  ident: 10.1016/j.bspc.2024.106572_b8
  article-title: Ensemble of 3D densely connected convolutional network for diagnosis of mild cognitive impairment and Alzheimer’s disease
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.12.018
– year: 2018
  ident: 10.1016/j.bspc.2024.106572_b44
– start-page: 248
  year: 2009
  ident: 10.1016/j.bspc.2024.106572_b20
– volume: 35
  start-page: 2524
  issue: 12
  year: 2016
  ident: 10.1016/j.bspc.2024.106572_b34
  article-title: Detecting anatomical landmarks for fast Alzheimer’s disease diagnosis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2582386
– volume: 43
  start-page: 4037
  issue: 11
  year: 2020
  ident: 10.1016/j.bspc.2024.106572_b36
  article-title: Self-supervised visual feature learning with deep neural networks: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2992393
– start-page: 345
  year: 2018
  ident: 10.1016/j.bspc.2024.106572_b3
– start-page: 1
  year: 2000
  ident: 10.1016/j.bspc.2024.106572_b28
– volume: 9
  start-page: 2
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2024.106572_b39
  article-title: A survey on contrastive self-supervised learning
  publication-title: Technologies
  doi: 10.3390/technologies9010002
SSID ssj0048714
Score 2.3666947
Snippet Alzheimer’s disease (AD) stands as a prominent age-related disorder with significant global impact. Utilizing computer-aided diagnosis aids in the timely...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106572
SubjectTerms Alzheimer’s disease
Attention mechanism
Data augmentation
MRI brain patch
Self-supervised learning
Title A simple self-supervised learning framework with patch-based data augmentation in diagnosis of Alzheimer’s disease
URI https://dx.doi.org/10.1016/j.bspc.2024.106572
Volume 96
WOSCitedRecordID wos001266619800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0048714
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaWlgMcEL-i5Uc-cItS5ceJnWOEipYKVRwKWnGJ7DjZTRWyodm0FSdegyfgvXgSxms7my5Q0QOXaNdyZqOdTzPjyTczCL2ilIeBEMItqMxdworSZbEUrlcEPmi5LPg6D_nxHT0-ZrNZ8n4y-WFrYc5r2jTs8jJp_6uqYQ2UrUpnb6DuQSgswGdQOlxB7XD9J8WnTleplr9OV9Sl2_WtsgYdxJW1zYKUlpCls7AtWOOFq9yZdBRh1OH9_LMpSVrzIKWm4-nOJWn9dVFUauaKoUkk3ZW3PPYF8bqsX9dcVnMV8ra6JMEWRRqO_MD_MdTgKV9-AcTON4l-vf5pUV1sqtamvU1zL3peLfpqe_uRIpkZKSanEZCBHWfNMCWqTbIef2ztdDI2tHCSjfTMn998gE5HnB6IrlU9KgNysNl8teH2liMc6ImW-XaaKRmZkpFpGbfQbkCjBDzAbvr2cHZknT4c-9Zt5IcHN_VZmkq4_SR_joFGcc3JfXTPHEhwqoH0AE2K5iG6O2pT-QitUqwhhbcghS2k8AAprCCFR5DCClJ4DClcNXiAFF6WeIDUz2_fO2zA9Bh9eHN48nrqmmkdbh563srlAYkiCeGlICGRcSx4wqTHYyZjKuI8UI2HylAmVPhUED-RJXwTsReSMiBhUIZP0E6zbIqnCIPTy5OwECEjHHb6gkYczuUsihjjjAd7yLf_X5abVvZqokqd_V1ze8gZ7ml1I5drd0dWLZkJRXWImQHKrrlv_0a_8gzd2aD_OdpZnfXFC3Q7P19V3dlLA7Ff7lWu0g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+self-supervised+learning+framework+with+patch-based+data+augmentation+in+diagnosis+of+Alzheimer%E2%80%99s+disease&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Gong%2C+Haoqiang&rft.au=Wang%2C+Zhiwen&rft.au=Huang%2C+Shuaihui&rft.au=Wang%2C+Jinfeng&rft.date=2024-10-01&rft.issn=1746-8094&rft.volume=96&rft.spage=106572&rft_id=info:doi/10.1016%2Fj.bspc.2024.106572&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2024_106572
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon