Neural collapse under cross-entropy loss
We consider the variational problem of cross-entropy loss with n feature vectors on a unit hypersphere in Rd. We prove that when d≥n−1, the global minimum is given by the simplex equiangular tight frame, which justifies the neural collapse behavior. We also prove that, as n→∞ with fixed d, the minim...
Uložené v:
| Vydané v: | Applied and computational harmonic analysis Ročník 59; s. 224 - 241 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.07.2022
|
| Predmet: | |
| ISSN: | 1063-5203 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We consider the variational problem of cross-entropy loss with n feature vectors on a unit hypersphere in Rd. We prove that when d≥n−1, the global minimum is given by the simplex equiangular tight frame, which justifies the neural collapse behavior. We also prove that, as n→∞ with fixed d, the minimizing points will distribute uniformly on the hypersphere and show a connection with the frame potential of Benedetto & Fickus. |
|---|---|
| ISSN: | 1063-5203 |
| DOI: | 10.1016/j.acha.2021.12.011 |