Neural collapse under cross-entropy loss

We consider the variational problem of cross-entropy loss with n feature vectors on a unit hypersphere in Rd. We prove that when d≥n−1, the global minimum is given by the simplex equiangular tight frame, which justifies the neural collapse behavior. We also prove that, as n→∞ with fixed d, the minim...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied and computational harmonic analysis Ročník 59; s. 224 - 241
Hlavní autori: Lu, Jianfeng, Steinerberger, Stefan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.07.2022
Predmet:
ISSN:1063-5203
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider the variational problem of cross-entropy loss with n feature vectors on a unit hypersphere in Rd. We prove that when d≥n−1, the global minimum is given by the simplex equiangular tight frame, which justifies the neural collapse behavior. We also prove that, as n→∞ with fixed d, the minimizing points will distribute uniformly on the hypersphere and show a connection with the frame potential of Benedetto & Fickus.
ISSN:1063-5203
DOI:10.1016/j.acha.2021.12.011