Approximation of analytic functions by generalized discrete shifts of the Lerch zeta-function

In the paper, we consider approximation of analytic functions by discrete shifts L ( λ , α , s + ψ ( k )), k ∈ N 0 = N ∪ 0 , of the Lerch zeta-function,where ψ is an increasing to +∞ real differentiable function with monotonic derivative satisfying some growth conditions and such that the sequence {...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Lithuanian mathematical journal Ročník 65; číslo 2; s. 254 - 270
Hlavní autori: Laurinčikas, Antanas, Mikalauskaitė, Toma, Šiaučiūnas, Darius
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.04.2025
Springer Nature B.V
Predmet:
ISSN:0363-1672, 1573-8825
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the paper, we consider approximation of analytic functions by discrete shifts L ( λ , α , s + ψ ( k )), k ∈ N 0 = N ∪ 0 , of the Lerch zeta-function,where ψ is an increasing to +∞ real differentiable function with monotonic derivative satisfying some growth conditions and such that the sequence { aψ ( k ): k ∈ N }, a ≠ 0, is uniformly distributed modulo 1. We obtain that the set of above shifts approximating every analytic function from a certain set has a positive lower density.
AbstractList In the paper, we consider approximation of analytic functions by discrete shifts L ( λ , α , s + ψ ( k )), k ∈ N 0 = N ∪ 0 , of the Lerch zeta-function,where ψ is an increasing to +∞ real differentiable function with monotonic derivative satisfying some growth conditions and such that the sequence { aψ ( k ): k ∈ N }, a ≠ 0, is uniformly distributed modulo 1. We obtain that the set of above shifts approximating every analytic function from a certain set has a positive lower density.
In the paper, we consider approximation of analytic functions by discrete shifts L(λ, α, s + ψ(k)), k ∈ N0 = N∪0, of the Lerch zeta-function,where ψ is an increasing to +∞ real differentiable function with monotonic derivative satisfying some growth conditions and such that the sequence {aψ(k): k ∈ N}, a ≠ 0, is uniformly distributed modulo 1. We obtain that the set of above shifts approximating every analytic function from a certain set has a positive lower density.
Author Laurinčikas, Antanas
Mikalauskaitė, Toma
Šiaučiūnas, Darius
Author_xml – sequence: 1
  givenname: Antanas
  orcidid: 0000-0002-7671-0282
  surname: Laurinčikas
  fullname: Laurinčikas, Antanas
  organization: Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University
– sequence: 2
  givenname: Toma
  orcidid: 0000-0001-5105-5085
  surname: Mikalauskaitė
  fullname: Mikalauskaitė, Toma
  organization: Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University
– sequence: 3
  givenname: Darius
  orcidid: 0000-0002-9248-8917
  surname: Šiaučiūnas
  fullname: Šiaučiūnas, Darius
  email: darius.siauciunas@sa.vu.lt
  organization: Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University
BookMark eNp9kMtKAzEUQINUsK3-gKuA6-hN0sljWYovKLjRpYRMJmmn1JmapND2602t4s5V4HLOJfeM0KDrO4_QNYVbCiDvEgWtBAFWEdBCarI7Q0NaSU6UYtUADYELTqiQ7AKNUloBFJ7CEL1PN5vY79oPm9u-w33AtrPrfW4dDtvOHYcJ13u88J2Pdt0efIObNrnos8dp2YacjlJeejz30S3xwWdLftVLdB7sOvmrn3eM3h7uX2dPZP7y-DybzonjAJnohlWuUnpitbWNVWzipaChDtQJVjsulLKNkI2vheWBCs4ZNLIOtZBK00rzMbo57S23fG59ymbVb2M5JBnOZEU1KK7-pyiT5S8wKRQ7US72KUUfzCaWPHFvKJhjbHOKbUps8x3b7IrET1IqcLfw8W_1P9YXeXSFBQ
Cites_doi 10.3846/mma.2024.19493
10.3390/math11030752
10.3390/math10244650
10.1007/978-1-4615-9972-2
10.3846/mma.2025.21939
10.1016/j.jnt.2006.05.012
10.1007/BFb0060851
10.1016/j.jnt.2006.12.008
10.22405/2226-8383-2018-19-1-138-151
10.1007/978-94-017-6401-8
10.1080/10652460902742788
10.1007/s10986-024-09631-5
10.2969/jmsj/06910153
10.1007/BF02465359
10.1007/BF02421310
10.2969/jmsj/06641105
10.1007/BF02612318
10.1017/S002776300000725X
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2025
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2025
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1007/s10986-025-09679-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8825
EndPage 270
ExternalDocumentID 10_1007_s10986_025_09679_x
GroupedDBID -Y2
-~X
.86
.VR
06D
0R~
0VY
1N0
2.D
203
29L
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
ZWQNP
~A9
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
ID FETCH-LOGICAL-c300t-9d25c5894a9aada824e761fbf1c62bc3688ad67deb6a3f163320d7bfb67891593
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001483819300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0363-1672
IngestDate Tue Dec 02 10:03:59 EST 2025
Wed Nov 26 07:35:48 EST 2025
Sat Nov 29 07:52:43 EST 2025
Thu May 29 04:40:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords approximation of analytic functions
weak convergence of probability measures
Lerch zeta-function
11M35
universality of zeta-functions
Hurwitz zeta-function
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-9d25c5894a9aada824e761fbf1c62bc3688ad67deb6a3f163320d7bfb67891593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9248-8917
0000-0002-7671-0282
0000-0001-5105-5085
PQID 3212730004
PQPubID 2043763
PageCount 17
ParticipantIDs proquest_journals_3275190838
proquest_journals_3212730004
crossref_primary_10_1007_s10986_025_09679_x
springer_journals_10_1007_s10986_025_09679_x
PublicationCentury 2000
PublicationDate 20250400
2025-04-00
20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 4
  year: 2025
  text: 20250400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Lithuanian mathematical journal
PublicationTitleAbbrev Lith Math J
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References A Laurinčikas (9679_CR13) 2023; 11
J-P Gram (9679_CR5) 1903; 27
9679_CR12
9679_CR15
A Laurinčikas (9679_CR8) 2019; 24
Y Lee (9679_CR17) 2017; 69
H Mishou (9679_CR20) 2014; 66
P Billingsley (9679_CR3) 1968
A Laurinčikas (9679_CR14) 2024; 29
JB Conway (9679_CR4) 1973
A Laurinčikas (9679_CR11) 2000; 157
M Lerch (9679_CR18) 1887; 11
A Laurinčikas (9679_CR9) 2002
A Balčiūnas (9679_CR2) 2025; 30
T Nakamura (9679_CR23) 2007; 125
AA Lavrik (9679_CR16) 1994; 207
9679_CR26
A Laurinčikas (9679_CR7) 1997; 37
J Andersson (9679_CR1) 2024; 64
K Prachar (9679_CR24) 1967
A Laurinčikas (9679_CR10) 2009; 20
T Nakamura (9679_CR22) 2007; 123
A Rimkevičienė (9679_CR25) 2022; 10
SN Mergelyan (9679_CR19) 1952; 7
9679_CR6
9679_CR21
References_xml – volume: 29
  start-page: 178
  issue: 2
  year: 2024
  ident: 9679_CR14
  publication-title: Math. Model. Anal.
  doi: 10.3846/mma.2024.19493
– volume-title: Distribution of Prime Numbers
  year: 1967
  ident: 9679_CR24
– volume: 11
  start-page: 752
  issue: 3
  year: 2023
  ident: 9679_CR13
  publication-title: Mathematics
  doi: 10.3390/math11030752
– volume: 10
  start-page: 4650
  issue: 24
  year: 2022
  ident: 9679_CR25
  publication-title: Mathematics
  doi: 10.3390/math10244650
– ident: 9679_CR6
– volume-title: Functions of One Complex Variable
  year: 1973
  ident: 9679_CR4
  doi: 10.1007/978-1-4615-9972-2
– volume: 30
  start-page: 142
  issue: 1
  year: 2025
  ident: 9679_CR2
  publication-title: Math. Model. Anal.
  doi: 10.3846/mma.2025.21939
– volume: 123
  start-page: 1
  issue: 1
  year: 2007
  ident: 9679_CR22
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2006.05.012
– ident: 9679_CR26
– ident: 9679_CR21
  doi: 10.1007/BFb0060851
– volume: 125
  start-page: 424
  issue: 2
  year: 2007
  ident: 9679_CR23
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2006.12.008
– ident: 9679_CR15
  doi: 10.22405/2226-8383-2018-19-1-138-151
– year: 2002
  ident: 9679_CR9
  publication-title: Dordrecht
  doi: 10.1007/978-94-017-6401-8
– volume: 20
  start-page: 673
  issue: 9
  year: 2009
  ident: 9679_CR10
  publication-title: Integral Transforms Spec. Funct.
  doi: 10.1080/10652460902742788
– volume: 64
  start-page: 125
  issue: 2
  year: 2024
  ident: 9679_CR1
  publication-title: Lith. Math. J.
  doi: 10.1007/s10986-024-09631-5
– volume: 69
  start-page: 153
  issue: 1
  year: 2017
  ident: 9679_CR17
  publication-title: J. Math. Soc. Japan
  doi: 10.2969/jmsj/06910153
– volume: 37
  start-page: 275
  issue: 3
  year: 1997
  ident: 9679_CR7
  publication-title: Lith. Math. J.
  doi: 10.1007/BF02465359
– volume-title: Convergence of Probability Measures
  year: 1968
  ident: 9679_CR3
– volume: 27
  start-page: 289
  year: 1903
  ident: 9679_CR5
  publication-title: Acta Math.
  doi: 10.1007/BF02421310
– volume: 66
  start-page: 1105
  issue: 4
  year: 2014
  ident: 9679_CR20
  publication-title: J. Math. Soc. Japan
  doi: 10.2969/jmsj/06641105
– ident: 9679_CR12
– volume: 11
  start-page: 19
  year: 1887
  ident: 9679_CR18
  publication-title: Acta Math.
  doi: 10.1007/BF02612318
– volume: 7
  start-page: 31
  issue: 2
  year: 1952
  ident: 9679_CR19
  publication-title: Usp. Mat. Nauk
– volume: 157
  start-page: 211
  year: 2000
  ident: 9679_CR11
  publication-title: Nagoya Math. J.
  doi: 10.1017/S002776300000725X
– volume: 24
  start-page: 107
  issue: 1
  year: 2019
  ident: 9679_CR8
  publication-title: Math. Commun.
– volume: 207
  start-page: 197
  year: 1994
  ident: 9679_CR16
  publication-title: Tr. Mat. Inst. Steklova
SSID ssj0009810
Score 2.3189192
Snippet In the paper, we consider approximation of analytic functions by discrete shifts L ( λ , α , s + ψ ( k )), k ∈ N 0 = N ∪ 0 , of the Lerch zeta-function,where ψ...
In the paper, we consider approximation of analytic functions by discrete shifts L(λ, α, s + ψ(k)), k ∈ N0 = N∪0, of the Lerch zeta-function,where ψ is an...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 254
SubjectTerms Actuarial Sciences
Analytic functions
Approximation
Estimates
Hypotheses
Inequality
Mathematical analysis
Mathematics
Mathematics and Statistics
Number Theory
Ordinary Differential Equations
Probability Theory and Stochastic Processes
Theorems
Title Approximation of analytic functions by generalized discrete shifts of the Lerch zeta-function
URI https://link.springer.com/article/10.1007/s10986-025-09679-x
https://www.proquest.com/docview/3212730004
https://www.proquest.com/docview/3275190838
Volume 65
WOSCitedRecordID wos001483819300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-8825
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009810
  issn: 0363-1672
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQYYCBN6JQkAc2sNTEjh9jhagYACFe6oIiJ3agS4uagEp_PWcnIYDoAPPFTnR3zn2W7_uM0JGAsiQ5hb2JZBlhJtIkCaKMaGY0B4AsaGD8ZRPi6koOBuq6IoXldbd7fSTp_9RfyG5KuobZiADsFooAclyEcidcI9_N7UMjtSu9BoE_oQy4CCuqzO9zfC9HDcb8cSzqq01_7X_fuY5WK3SJe2U6bKAFO9pEK5ef0qz5FnrsORXx6bCkLOJxhrXTJQEjdjXOpyFO3vFTqUc9nFmDHXV3Auga58_DrMjdIJgRX1hYJHhmC03qodvovn92d3pOqjsWSEq73YIoE0ZpJBXTSmujZcis4EGWZEHKwySlXEptuDA24ZpmAN5o2DUiyRIocgqgEN1BrdF4ZHcR5prblMvAWkVZaJikOnUEJS4Y7MANbaPj2tXxSymlETeiyc5pMTgt9k6Lp23UqaMRV8sqj6nTo6cOh84xCwCkACplG53UwWnM81-297fH99Fy6OPrGng6qFVMXu0BWkrfimE-OfTZ-AE-gNqj
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MwDI3QQAIOfCMGA3LgBpHWJk3S44SYhtgmJAbaBVVpk8IuG1oLGvv1OFnLALEDnN2kle3Uz7L9gtCZgLAkOYXcRLKUMB0oEntBShTTigNAFtTT7rIJ0e3Kfj-8LYbCsrLbvSxJuj_1l2G3UNqG2YAA7BYhAeS4zHxA-DZHv3uYU-1Kx0HgKpQeF34xKvP7Ht_D0Rxj_iiLumjT3Pzfd26hjQJd4sbMHbbRkhnuoPXOJzVrtoseG5ZFfDKYjSziUYqV5SUBIbYxzrkhjt_x04yPejA1GtvR3TGga5w9D9I8s4tgR9w2cEjw1OSKlEv30H3zqnfZIsUdCySh9XpOQu0HSSBDpkKltJI-M4J7aZx6CffjhHIpleZCm5grmgJ4o35diziNIciFAIXoPqoMR0NzgDBX3CRcesaElPmaSaoSO6DEBYMMXNMqOi9VHb3MqDSiOWmyVVoESouc0qJJFdVKa0TFscoiavnoqcWhC8QCACmASllFF6Vx5uLFLzv82-OnaLXV67Sj9nX35git-c7Wtpmnhir5-NUco5XkLR9k4xPnmR-HM92H
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA6iInrwtzidmoM3DVubNEmPQx2Kcwz8wS5S0ibRXbqxVpn7603S1U1xB_GcJinvvfC-R973BYBTZtISp9jUJpxoRGQgUOwFGgkiBTUAmWFPuscmWLvNu92wM8Pid93u5ZVkwWmwKk1pXhtIXZshvoXcNs8GyEBwFiKDIpeIbZez9fr901R2lzs9Andb6VHmT2gzv6_xPTVN8eaPK1KXeZob___nTbA-QZ2wUYTJFlhQ6TZYu_uSbM12wHPDqouPegWVEfY1FFavxAxCm_tceML4A74UOtW9sZLQUnqHBnXD7LWn88xOMivCljKHB45VLlA5dRc8Nq8eLq7R5O0FlOB6PUeh9IMk4CERoRBScJ8oRj0day-hfpxgyrmQlEkVU4G1AXXYr0sW69gkv9BAJLwHFtN-qvYBpIKqhHJPqRATXxKORWKJS5QRU5lLXAFnpdmjQSGxEU3FlK3RImO0yBktGlVAtfRMNDluWYStTj22-HTOMDNA1YBNXgHnpaOmw_M3O_jb5ydgpXPZjFo37dtDsOo7V9senypYzIdv6ggsJ-95LxseuyD9BF8a5mI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+of+analytic+functions+by+generalized+discrete+shifts+of+the+Lerch+zeta-function&rft.jtitle=Lithuanian+mathematical+journal&rft.au=Laurin%C4%8Dikas%2C+Antanas&rft.au=Mikalauskait%C4%97%2C+Toma&rft.au=%C5%A0iau%C4%8Di%C5%ABnas%2C+Darius&rft.date=2025-04-01&rft.pub=Springer+US&rft.issn=0363-1672&rft.eissn=1573-8825&rft.volume=65&rft.issue=2&rft.spage=254&rft.epage=270&rft_id=info:doi/10.1007%2Fs10986-025-09679-x&rft.externalDocID=10_1007_s10986_025_09679_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-1672&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-1672&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-1672&client=summon