Approximation of analytic functions by generalized discrete shifts of the Lerch zeta-function
In the paper, we consider approximation of analytic functions by discrete shifts L ( λ , α , s + ψ ( k )), k ∈ N 0 = N ∪ 0 , of the Lerch zeta-function,where ψ is an increasing to +∞ real differentiable function with monotonic derivative satisfying some growth conditions and such that the sequence {...
Uložené v:
| Vydané v: | Lithuanian mathematical journal Ročník 65; číslo 2; s. 254 - 270 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.04.2025
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0363-1672, 1573-8825 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In the paper, we consider approximation of analytic functions by discrete shifts
L
(
λ
,
α
,
s
+
ψ
(
k
)),
k
∈
N
0
=
N
∪
0
, of the Lerch zeta-function,where
ψ
is an increasing to +∞ real differentiable function with monotonic derivative satisfying some growth conditions and such that the sequence {
aψ
(
k
):
k
∈
N
},
a
≠ 0, is uniformly distributed modulo 1. We obtain that the set of above shifts approximating every analytic function from a certain set has a positive lower density. |
|---|---|
| AbstractList | In the paper, we consider approximation of analytic functions by discrete shifts
L
(
λ
,
α
,
s
+
ψ
(
k
)),
k
∈
N
0
=
N
∪
0
, of the Lerch zeta-function,where
ψ
is an increasing to +∞ real differentiable function with monotonic derivative satisfying some growth conditions and such that the sequence {
aψ
(
k
):
k
∈
N
},
a
≠ 0, is uniformly distributed modulo 1. We obtain that the set of above shifts approximating every analytic function from a certain set has a positive lower density. In the paper, we consider approximation of analytic functions by discrete shifts L(λ, α, s + ψ(k)), k ∈ N0 = N∪0, of the Lerch zeta-function,where ψ is an increasing to +∞ real differentiable function with monotonic derivative satisfying some growth conditions and such that the sequence {aψ(k): k ∈ N}, a ≠ 0, is uniformly distributed modulo 1. We obtain that the set of above shifts approximating every analytic function from a certain set has a positive lower density. |
| Author | Laurinčikas, Antanas Mikalauskaitė, Toma Šiaučiūnas, Darius |
| Author_xml | – sequence: 1 givenname: Antanas orcidid: 0000-0002-7671-0282 surname: Laurinčikas fullname: Laurinčikas, Antanas organization: Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University – sequence: 2 givenname: Toma orcidid: 0000-0001-5105-5085 surname: Mikalauskaitė fullname: Mikalauskaitė, Toma organization: Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University – sequence: 3 givenname: Darius orcidid: 0000-0002-9248-8917 surname: Šiaučiūnas fullname: Šiaučiūnas, Darius email: darius.siauciunas@sa.vu.lt organization: Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University |
| BookMark | eNp9kMtKAzEUQINUsK3-gKuA6-hN0sljWYovKLjRpYRMJmmn1JmapND2602t4s5V4HLOJfeM0KDrO4_QNYVbCiDvEgWtBAFWEdBCarI7Q0NaSU6UYtUADYELTqiQ7AKNUloBFJ7CEL1PN5vY79oPm9u-w33AtrPrfW4dDtvOHYcJ13u88J2Pdt0efIObNrnos8dp2YacjlJeejz30S3xwWdLftVLdB7sOvmrn3eM3h7uX2dPZP7y-DybzonjAJnohlWuUnpitbWNVWzipaChDtQJVjsulLKNkI2vheWBCs4ZNLIOtZBK00rzMbo57S23fG59ymbVb2M5JBnOZEU1KK7-pyiT5S8wKRQ7US72KUUfzCaWPHFvKJhjbHOKbUps8x3b7IrET1IqcLfw8W_1P9YXeXSFBQ |
| Cites_doi | 10.3846/mma.2024.19493 10.3390/math11030752 10.3390/math10244650 10.1007/978-1-4615-9972-2 10.3846/mma.2025.21939 10.1016/j.jnt.2006.05.012 10.1007/BFb0060851 10.1016/j.jnt.2006.12.008 10.22405/2226-8383-2018-19-1-138-151 10.1007/978-94-017-6401-8 10.1080/10652460902742788 10.1007/s10986-024-09631-5 10.2969/jmsj/06910153 10.1007/BF02465359 10.1007/BF02421310 10.2969/jmsj/06641105 10.1007/BF02612318 10.1017/S002776300000725X |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2025 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2025 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s10986-025-09679-x |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1573-8825 |
| EndPage | 270 |
| ExternalDocumentID | 10_1007_s10986_025_09679_x |
| GroupedDBID | -Y2 -~X .86 .VR 06D 0R~ 0VY 1N0 2.D 203 29L 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFFNX AFGCZ AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ZWQNP ~A9 ~EX AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AHWEU AIXLP CITATION |
| ID | FETCH-LOGICAL-c300t-9d25c5894a9aada824e761fbf1c62bc3688ad67deb6a3f163320d7bfb67891593 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001483819300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0363-1672 |
| IngestDate | Tue Dec 02 10:03:59 EST 2025 Wed Nov 26 07:35:48 EST 2025 Sat Nov 29 07:52:43 EST 2025 Thu May 29 04:40:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | approximation of analytic functions weak convergence of probability measures Lerch zeta-function 11M35 universality of zeta-functions Hurwitz zeta-function |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-9d25c5894a9aada824e761fbf1c62bc3688ad67deb6a3f163320d7bfb67891593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9248-8917 0000-0002-7671-0282 0000-0001-5105-5085 |
| PQID | 3212730004 |
| PQPubID | 2043763 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_3275190838 proquest_journals_3212730004 crossref_primary_10_1007_s10986_025_09679_x springer_journals_10_1007_s10986_025_09679_x |
| PublicationCentury | 2000 |
| PublicationDate | 20250400 2025-04-00 20250401 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 4 year: 2025 text: 20250400 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Lithuanian mathematical journal |
| PublicationTitleAbbrev | Lith Math J |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | A Laurinčikas (9679_CR13) 2023; 11 J-P Gram (9679_CR5) 1903; 27 9679_CR12 9679_CR15 A Laurinčikas (9679_CR8) 2019; 24 Y Lee (9679_CR17) 2017; 69 H Mishou (9679_CR20) 2014; 66 P Billingsley (9679_CR3) 1968 A Laurinčikas (9679_CR14) 2024; 29 JB Conway (9679_CR4) 1973 A Laurinčikas (9679_CR11) 2000; 157 M Lerch (9679_CR18) 1887; 11 A Laurinčikas (9679_CR9) 2002 A Balčiūnas (9679_CR2) 2025; 30 T Nakamura (9679_CR23) 2007; 125 AA Lavrik (9679_CR16) 1994; 207 9679_CR26 A Laurinčikas (9679_CR7) 1997; 37 J Andersson (9679_CR1) 2024; 64 K Prachar (9679_CR24) 1967 A Laurinčikas (9679_CR10) 2009; 20 T Nakamura (9679_CR22) 2007; 123 A Rimkevičienė (9679_CR25) 2022; 10 SN Mergelyan (9679_CR19) 1952; 7 9679_CR6 9679_CR21 |
| References_xml | – volume: 29 start-page: 178 issue: 2 year: 2024 ident: 9679_CR14 publication-title: Math. Model. Anal. doi: 10.3846/mma.2024.19493 – volume-title: Distribution of Prime Numbers year: 1967 ident: 9679_CR24 – volume: 11 start-page: 752 issue: 3 year: 2023 ident: 9679_CR13 publication-title: Mathematics doi: 10.3390/math11030752 – volume: 10 start-page: 4650 issue: 24 year: 2022 ident: 9679_CR25 publication-title: Mathematics doi: 10.3390/math10244650 – ident: 9679_CR6 – volume-title: Functions of One Complex Variable year: 1973 ident: 9679_CR4 doi: 10.1007/978-1-4615-9972-2 – volume: 30 start-page: 142 issue: 1 year: 2025 ident: 9679_CR2 publication-title: Math. Model. Anal. doi: 10.3846/mma.2025.21939 – volume: 123 start-page: 1 issue: 1 year: 2007 ident: 9679_CR22 publication-title: J. Number Theory doi: 10.1016/j.jnt.2006.05.012 – ident: 9679_CR26 – ident: 9679_CR21 doi: 10.1007/BFb0060851 – volume: 125 start-page: 424 issue: 2 year: 2007 ident: 9679_CR23 publication-title: J. Number Theory doi: 10.1016/j.jnt.2006.12.008 – ident: 9679_CR15 doi: 10.22405/2226-8383-2018-19-1-138-151 – year: 2002 ident: 9679_CR9 publication-title: Dordrecht doi: 10.1007/978-94-017-6401-8 – volume: 20 start-page: 673 issue: 9 year: 2009 ident: 9679_CR10 publication-title: Integral Transforms Spec. Funct. doi: 10.1080/10652460902742788 – volume: 64 start-page: 125 issue: 2 year: 2024 ident: 9679_CR1 publication-title: Lith. Math. J. doi: 10.1007/s10986-024-09631-5 – volume: 69 start-page: 153 issue: 1 year: 2017 ident: 9679_CR17 publication-title: J. Math. Soc. Japan doi: 10.2969/jmsj/06910153 – volume: 37 start-page: 275 issue: 3 year: 1997 ident: 9679_CR7 publication-title: Lith. Math. J. doi: 10.1007/BF02465359 – volume-title: Convergence of Probability Measures year: 1968 ident: 9679_CR3 – volume: 27 start-page: 289 year: 1903 ident: 9679_CR5 publication-title: Acta Math. doi: 10.1007/BF02421310 – volume: 66 start-page: 1105 issue: 4 year: 2014 ident: 9679_CR20 publication-title: J. Math. Soc. Japan doi: 10.2969/jmsj/06641105 – ident: 9679_CR12 – volume: 11 start-page: 19 year: 1887 ident: 9679_CR18 publication-title: Acta Math. doi: 10.1007/BF02612318 – volume: 7 start-page: 31 issue: 2 year: 1952 ident: 9679_CR19 publication-title: Usp. Mat. Nauk – volume: 157 start-page: 211 year: 2000 ident: 9679_CR11 publication-title: Nagoya Math. J. doi: 10.1017/S002776300000725X – volume: 24 start-page: 107 issue: 1 year: 2019 ident: 9679_CR8 publication-title: Math. Commun. – volume: 207 start-page: 197 year: 1994 ident: 9679_CR16 publication-title: Tr. Mat. Inst. Steklova |
| SSID | ssj0009810 |
| Score | 2.3189192 |
| Snippet | In the paper, we consider approximation of analytic functions by discrete shifts
L
(
λ
,
α
,
s
+
ψ
(
k
)),
k
∈
N
0
=
N
∪
0
, of the Lerch zeta-function,where
ψ... In the paper, we consider approximation of analytic functions by discrete shifts L(λ, α, s + ψ(k)), k ∈ N0 = N∪0, of the Lerch zeta-function,where ψ is an... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 254 |
| SubjectTerms | Actuarial Sciences Analytic functions Approximation Estimates Hypotheses Inequality Mathematical analysis Mathematics Mathematics and Statistics Number Theory Ordinary Differential Equations Probability Theory and Stochastic Processes Theorems |
| Title | Approximation of analytic functions by generalized discrete shifts of the Lerch zeta-function |
| URI | https://link.springer.com/article/10.1007/s10986-025-09679-x https://www.proquest.com/docview/3212730004 https://www.proquest.com/docview/3275190838 |
| Volume | 65 |
| WOSCitedRecordID | wos001483819300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-8825 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009810 issn: 0363-1672 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQYYCBN6JQkAc2sNTEjh9jhagYACFe6oIiJ3agS4uagEp_PWcnIYDoAPPFTnR3zn2W7_uM0JGAsiQ5hb2JZBlhJtIkCaKMaGY0B4AsaGD8ZRPi6koOBuq6IoXldbd7fSTp_9RfyG5KuobZiADsFooAclyEcidcI9_N7UMjtSu9BoE_oQy4CCuqzO9zfC9HDcb8cSzqq01_7X_fuY5WK3SJe2U6bKAFO9pEK5ef0qz5FnrsORXx6bCkLOJxhrXTJQEjdjXOpyFO3vFTqUc9nFmDHXV3Auga58_DrMjdIJgRX1hYJHhmC03qodvovn92d3pOqjsWSEq73YIoE0ZpJBXTSmujZcis4EGWZEHKwySlXEptuDA24ZpmAN5o2DUiyRIocgqgEN1BrdF4ZHcR5prblMvAWkVZaJikOnUEJS4Y7MANbaPj2tXxSymlETeiyc5pMTgt9k6Lp23UqaMRV8sqj6nTo6cOh84xCwCkACplG53UwWnM81-297fH99Fy6OPrGng6qFVMXu0BWkrfimE-OfTZ-AE-gNqj |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MwDI3QQAIOfCMGA3LgBpHWJk3S44SYhtgmJAbaBVVpk8IuG1oLGvv1OFnLALEDnN2kle3Uz7L9gtCZgLAkOYXcRLKUMB0oEntBShTTigNAFtTT7rIJ0e3Kfj-8LYbCsrLbvSxJuj_1l2G3UNqG2YAA7BYhAeS4zHxA-DZHv3uYU-1Kx0HgKpQeF34xKvP7Ht_D0Rxj_iiLumjT3Pzfd26hjQJd4sbMHbbRkhnuoPXOJzVrtoseG5ZFfDKYjSziUYqV5SUBIbYxzrkhjt_x04yPejA1GtvR3TGga5w9D9I8s4tgR9w2cEjw1OSKlEv30H3zqnfZIsUdCySh9XpOQu0HSSBDpkKltJI-M4J7aZx6CffjhHIpleZCm5grmgJ4o35diziNIciFAIXoPqoMR0NzgDBX3CRcesaElPmaSaoSO6DEBYMMXNMqOi9VHb3MqDSiOWmyVVoESouc0qJJFdVKa0TFscoiavnoqcWhC8QCACmASllFF6Vx5uLFLzv82-OnaLXV67Sj9nX35git-c7Wtpmnhir5-NUco5XkLR9k4xPnmR-HM92H |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA6iInrwtzidmoM3DVubNEmPQx2Kcwz8wS5S0ibRXbqxVpn7603S1U1xB_GcJinvvfC-R973BYBTZtISp9jUJpxoRGQgUOwFGgkiBTUAmWFPuscmWLvNu92wM8Pid93u5ZVkwWmwKk1pXhtIXZshvoXcNs8GyEBwFiKDIpeIbZez9fr901R2lzs9Andb6VHmT2gzv6_xPTVN8eaPK1KXeZob___nTbA-QZ2wUYTJFlhQ6TZYu_uSbM12wHPDqouPegWVEfY1FFavxAxCm_tceML4A74UOtW9sZLQUnqHBnXD7LWn88xOMivCljKHB45VLlA5dRc8Nq8eLq7R5O0FlOB6PUeh9IMk4CERoRBScJ8oRj0day-hfpxgyrmQlEkVU4G1AXXYr0sW69gkv9BAJLwHFtN-qvYBpIKqhHJPqRATXxKORWKJS5QRU5lLXAFnpdmjQSGxEU3FlK3RImO0yBktGlVAtfRMNDluWYStTj22-HTOMDNA1YBNXgHnpaOmw_M3O_jb5ydgpXPZjFo37dtDsOo7V9senypYzIdv6ggsJ-95LxseuyD9BF8a5mI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+of+analytic+functions+by+generalized+discrete+shifts+of+the+Lerch+zeta-function&rft.jtitle=Lithuanian+mathematical+journal&rft.au=Laurin%C4%8Dikas%2C+Antanas&rft.au=Mikalauskait%C4%97%2C+Toma&rft.au=%C5%A0iau%C4%8Di%C5%ABnas%2C+Darius&rft.date=2025-04-01&rft.pub=Springer+US&rft.issn=0363-1672&rft.eissn=1573-8825&rft.volume=65&rft.issue=2&rft.spage=254&rft.epage=270&rft_id=info:doi/10.1007%2Fs10986-025-09679-x&rft.externalDocID=10_1007_s10986_025_09679_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-1672&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-1672&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-1672&client=summon |