Embedded stacked group sparse autoencoder ensemble with L1 regularization and manifold reduction

Learning useful representations from original features is a key issue in classification tasks. Stacked autoencoders (SAEs) are easy to understand and realize, and they are powerful tools that learn deep features from original features, so they are popular for classification problems. The deep featur...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 101; s. 107003
Hlavní autoři: Li, Yongming, Lei, Yan, Wang, Pin, Jiang, Mingfeng, Liu, Yuchuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.03.2021
Témata:
ISSN:1568-4946, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Learning useful representations from original features is a key issue in classification tasks. Stacked autoencoders (SAEs) are easy to understand and realize, and they are powerful tools that learn deep features from original features, so they are popular for classification problems. The deep features can further combine the original features to construct more representative features for classification. However, existing SAEs do not consider the original features within the network structure and during training, so the deep features have low complementarity with the original features. To solve the problem, this paper proposes an embedded stacked group sparse autoencoder (ESGSAE) for more effective feature learning. Different from traditional stacked autoencoders, the ESGSAE model considers the complementarity between the original feature and the hidden outputs by embedding the original features into hidden layers. To alleviate the impact of the small sample problem on the generalization of the proposed ESGSAE model, an L1 regularization-based feature selection strategy is designed to further improve the feature quality. After that, an ensemble model with support vector machine (SVM) and weighted local discriminant preservation projection (w_LPPD) is designed to further enhance the feature quality. Based on the designs above, an embedded stacked group sparse autoencoder ensemble with L1 regularization and manifold reduction is proposed to obtain deep features with high complementarity in the context of the small sample problem. At the end of this paper, several representative public datasets are used for verification of the proposed algorithm. The results demonstrate that the ESGSAE ensemble model with L1 regularization and manifold reduction yields superior performance compared to other existing and state-of-the-art feature learning algorithms, including some representative deep stacked autoencoder methods. Specifically, compared with the original features, the representative feature extraction algorithms and the improved autoencoders, the algorithm proposed in this paper can improve the classification accuracy by up to 13.33%, 7.33%, and 9.55%, respectively. The data and codes can be found in: https://share.weiyun.com/Jt7qeORm •A hybrid feature is embedded into the training process to construct a novel deep model.•A group sparsity constraint is introduced to obtain the sparse representations.•The ESGSAE ensemble model is constructed to obtain high complementary features.•A three-step feature learning mechanism is realized.
AbstractList Learning useful representations from original features is a key issue in classification tasks. Stacked autoencoders (SAEs) are easy to understand and realize, and they are powerful tools that learn deep features from original features, so they are popular for classification problems. The deep features can further combine the original features to construct more representative features for classification. However, existing SAEs do not consider the original features within the network structure and during training, so the deep features have low complementarity with the original features. To solve the problem, this paper proposes an embedded stacked group sparse autoencoder (ESGSAE) for more effective feature learning. Different from traditional stacked autoencoders, the ESGSAE model considers the complementarity between the original feature and the hidden outputs by embedding the original features into hidden layers. To alleviate the impact of the small sample problem on the generalization of the proposed ESGSAE model, an L1 regularization-based feature selection strategy is designed to further improve the feature quality. After that, an ensemble model with support vector machine (SVM) and weighted local discriminant preservation projection (w_LPPD) is designed to further enhance the feature quality. Based on the designs above, an embedded stacked group sparse autoencoder ensemble with L1 regularization and manifold reduction is proposed to obtain deep features with high complementarity in the context of the small sample problem. At the end of this paper, several representative public datasets are used for verification of the proposed algorithm. The results demonstrate that the ESGSAE ensemble model with L1 regularization and manifold reduction yields superior performance compared to other existing and state-of-the-art feature learning algorithms, including some representative deep stacked autoencoder methods. Specifically, compared with the original features, the representative feature extraction algorithms and the improved autoencoders, the algorithm proposed in this paper can improve the classification accuracy by up to 13.33%, 7.33%, and 9.55%, respectively. The data and codes can be found in: https://share.weiyun.com/Jt7qeORm •A hybrid feature is embedded into the training process to construct a novel deep model.•A group sparsity constraint is introduced to obtain the sparse representations.•The ESGSAE ensemble model is constructed to obtain high complementary features.•A three-step feature learning mechanism is realized.
ArticleNumber 107003
Author Li, Yongming
Liu, Yuchuan
Lei, Yan
Jiang, Mingfeng
Wang, Pin
Author_xml – sequence: 1
  givenname: Yongming
  surname: Li
  fullname: Li, Yongming
  email: yongmingli@cqu.edu.cn
  organization: School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, China
– sequence: 2
  givenname: Yan
  surname: Lei
  fullname: Lei, Yan
  organization: School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, China
– sequence: 3
  givenname: Pin
  surname: Wang
  fullname: Wang, Pin
  organization: School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, China
– sequence: 4
  givenname: Mingfeng
  surname: Jiang
  fullname: Jiang, Mingfeng
  organization: School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
– sequence: 5
  givenname: Yuchuan
  surname: Liu
  fullname: Liu, Yuchuan
  organization: School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, China
BookMark eNp9kEtPwzAMgCM0JMbgD3DKH-hImvQlcUHTeEiTuMA55OGMjLaZkhYEv56UceKwky3bn2V_52jW-x4QuqJkSQktr3dLGb1e5iSfChUh7ATNaV3lWVPWdJbyoqwz3vDyDJ3HuCMJavJ6jl7XnQJjwOA4SP2e4jb4cY_jXoYIWI6Dh157AwFDH6FTLeBPN7zhDcUBtmMrg_uWg_M9lr3Bneyd9a1JPTPqqXyBTq1sI1z-xQV6uVs_rx6yzdP94-p2k2lGyJA1urCKWqWLmitmQatGW0OrvFJSW02kbFjFGGWUllzWjDeV5FVBCVeQRjhboPqwVwcfYwArtBt-DxuCdK2gREymxE5MpsRkShxMJTT_h-6D62T4Og7dHCBIT304CCJql1SBcQH0IIx3x_Afr9mGaA
CitedBy_id crossref_primary_10_1007_s11760_021_01939_w
crossref_primary_10_3390_app13127055
crossref_primary_10_1016_j_apenergy_2024_124960
crossref_primary_10_1109_ACCESS_2023_3289909
crossref_primary_10_1016_j_ins_2023_01_133
crossref_primary_10_1109_TAI_2023_3266190
crossref_primary_10_1007_s11063_021_10659_8
crossref_primary_10_1016_j_future_2024_107630
crossref_primary_10_1016_j_renene_2021_04_102
crossref_primary_10_3233_JIFS_212873
crossref_primary_10_1016_j_neunet_2025_107843
crossref_primary_10_1007_s10812_023_01491_0
Cites_doi 10.1016/j.engappai.2016.12.012
10.1016/j.asoc.2018.07.029
10.1016/j.neucom.2014.08.092
10.1016/j.compbiomed.2018.05.027
10.1109/72.977291
10.1007/s00429-013-0687-3
10.1016/j.isprsjprs.2013.05.008
10.1109/TNNLS.2015.2404823
10.1016/j.neucom.2020.04.057
10.1109/LSP.2014.2384196
10.1109/TIFS.2017.2668221
10.1186/s12938-018-0489-1
10.1109/TNNLS.2016.2603784
10.1109/TIP.2017.2725580
10.1109/JSTARS.2019.2892951
10.1109/TIP.2019.2901407
10.1016/j.procs.2017.09.066
10.1126/science.1127647
10.1109/ACCESS.2019.2951526
10.1093/bioinformatics/btz505
10.1109/LA-CCI.2017.8285680
10.1016/j.neunet.2018.04.016
10.1073/pnas.0807471105
10.1016/S0893-6080(05)80056-5
10.1109/ACCESS.2018.2884827
10.1109/TPAMI.2014.2301163
10.1162/NECO_a_00537
10.1109/TASLP.2016.2530401
10.1007/BF00332918
10.1109/TMM.2017.2766843
10.1109/TNSRE.2013.2293575
10.1016/j.neucom.2019.05.050
10.1007/s00521-016-2758-x
10.1561/2200000006
10.1109/TNNLS.2017.2783384
10.1109/JBHI.2013.2245674
10.1016/j.knosys.2019.04.022
10.1109/TSM.2017.2648856
10.1016/j.asoc.2019.106060
10.1109/TFUZZ.2010.2089631
10.1016/j.patcog.2003.08.004
10.1109/TMM.2016.2638204
10.1109/TPWRS.2016.2628873
10.1016/0169-7439(87)80084-9
10.1109/ACCESS.2017.2706363
10.1109/LGRS.2019.2901019
10.1109/ACCESS.2019.2927384
10.1016/j.patrec.2016.05.018
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.107003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_107003
S156849462030942X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-9c5fb1fbc584b3fecb9cfd1727bacfc0aa93733131164a83497a475104be7ba43
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621420900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:03:55 EST 2025
Tue Nov 18 22:36:52 EST 2025
Fri Feb 23 02:41:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Embedded stacked group sparse autoencoder (ESGSAE)
Embedded deep learning
Feature fusion
Ensemble learning
Weighted local discriminant preservation projection (w_LPPD)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-9c5fb1fbc584b3fecb9cfd1727bacfc0aa93733131164a83497a475104be7ba43
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2020_107003
crossref_primary_10_1016_j_asoc_2020_107003
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_107003
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Kuo, Lin (b10) 2011; 19
Luo, Yang, Xu, Fu (b39) 2015; 22
Yu (b43) 2019; 178
Jiang, Fu, Tao, Lei, Zhao (b15) 2019; 7
Lei, Yuan, Wang, Wenhu, Bo (b33) 2017; 19
Goswami, Vatsa, Singh (b26) 2017; 12
Kwak, Choi (b5) 2002; 13
Kan, Cen, He, Zhang, Zhang, Wang (b50) 2019; 28
Yao, Han, Nie, Xiao, Li (b1) 2018; 29
Raulf, Butke, Küpper, Großerüschkamp, Gerwert, Mosig, Wren (b31) 2020; 36
M. Gutoski, M. Ribeiro, N.M. Romero Aquino, A.E. Lazzaretti, H.S. Lopes, A clustering-based deep autoencoder for one-class image classification, in: 2017 IEEE Latin American Conference on Computational Intelligence, LA-CCI, Arequipa, 2017, pp. 1–6.
Li, Struzik, Zhang, Cichocki (b3) 2015; 165
Ferles, Papanikolaou, Naidoo (b32) 2018; 105
Zhu, Cheng, Zhang, Wu, Shao (b42) 2020; 88
Møller (b51) 1993; 6
Dua, Taniskidou (b54) 2017
Sutskever, Vinyals, Le (b17) 2014
Fan, Lin, Han (b41) 2019; 12
Mei, Yang, Yin (b49) 2017; 30
Yamada, Jitkrittum, Sigal, Xing, Sugiyama (b6) 2014; 26
Lee, Kwon (b12) 2017; 26
Sakar, Isenkul, Sakar, Sertbas, Gurgen, Delil, Apaydin, Kursun (b53) 2013; 17
He (b11) 2005
Wang, Zhang, Chen (b35) 2017; 32
Hoti, Holmström (b55) 2004; 37
Majtner, Yildirim-Yayilgan, Hardeberg (b46) 2016
Bakhti, Fezza, Hamidouche, Deforges (b30) 2019; 7
Hinton (b23) 2006; 313
Bourlard, Kamp (b24) 1988; 59
Tan, Liu, Li, Wang, Zeng, Yan, Li (b52) 2018; 17
Liu, Xie, Yu, Niu, Sun (b47) 2017
Wold, Esbensen, Geladi (b9) 1987; 2
Kim, Kim, Noh, Kim (b22) 2018; 6
Tsanas, Little, Fox, Ramig (b56) 2014; 22
Praveen, Agrawal, Sundaram, Sardesai (b28) 2018; 99
Tran, d’Avila Garcez (b20) 2018; 29
Charte, Charte, del Jesus, Herrera (b37) 2020; 404
Lv, Han, Qiu (b25) 2017; 5
Lin, Kai, Sun (b7) 2013; 8
Shi, Lei, Yin, Cao, Li, Chang (b40) 2019; 16
Grozdić, Jovičić, Subotić (b29) 2017; 59
Zhang, Zhang, Huang, Gao (b16) 2018; 20
Johnson, Xie (b57) 2013; 83
Donoho, Jin (b8) 2008; 105
Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (b18) 2014
Simonyan, Vedaldi, Zisserman (b2) 2014; 36
Bengio (b45) 2009; 2
Uzair, Shafait, Ghanem, Mian (b13) 2016; 30
Görgel, Simsek (b27) 2019; 355
Yu (b44) 2019; 358
Chandra (b21) 2015; 26
Suk, Lee, Shen (b48) 2015; 220
Potapov, Potapova, Peterson (b34) 2016; 80
Dizaji, Herandi, Deng, Cai, Huang (b36) 2017
Kampffmeyer, Løkse, Bianchi, Jenssen, Livi (b38) 2018; 71
Phan, Hertel, Maass, Mazur, Mertins (b4) 2016; 24
Mehdiyev, Lahann, Emrich, Enke, Fettke, Loos (b19) 2017; 114
Yu (10.1016/j.asoc.2020.107003_b44) 2019; 358
Lin (10.1016/j.asoc.2020.107003_b7) 2013; 8
Zhang (10.1016/j.asoc.2020.107003_b16) 2018; 20
Sutskever (10.1016/j.asoc.2020.107003_b17) 2014
Tsanas (10.1016/j.asoc.2020.107003_b56) 2014; 22
Li (10.1016/j.asoc.2020.107003_b3) 2015; 165
Wang (10.1016/j.asoc.2020.107003_b35) 2017; 32
Kan (10.1016/j.asoc.2020.107003_b50) 2019; 28
Ferles (10.1016/j.asoc.2020.107003_b32) 2018; 105
Phan (10.1016/j.asoc.2020.107003_b4) 2016; 24
Hinton (10.1016/j.asoc.2020.107003_b23) 2006; 313
Bengio (10.1016/j.asoc.2020.107003_b45) 2009; 2
Sakar (10.1016/j.asoc.2020.107003_b53) 2013; 17
Fan (10.1016/j.asoc.2020.107003_b41) 2019; 12
Bakhti (10.1016/j.asoc.2020.107003_b30) 2019; 7
Lei (10.1016/j.asoc.2020.107003_b33) 2017; 19
Zhu (10.1016/j.asoc.2020.107003_b42) 2020; 88
Tan (10.1016/j.asoc.2020.107003_b52) 2018; 17
Hoti (10.1016/j.asoc.2020.107003_b55) 2004; 37
Tran (10.1016/j.asoc.2020.107003_b20) 2018; 29
Dua (10.1016/j.asoc.2020.107003_b54) 2017
Kwak (10.1016/j.asoc.2020.107003_b5) 2002; 13
Grozdić (10.1016/j.asoc.2020.107003_b29) 2017; 59
Yu (10.1016/j.asoc.2020.107003_b43) 2019; 178
Lv (10.1016/j.asoc.2020.107003_b25) 2017; 5
Simonyan (10.1016/j.asoc.2020.107003_b2) 2014; 36
10.1016/j.asoc.2020.107003_b14
Shi (10.1016/j.asoc.2020.107003_b40) 2019; 16
Mei (10.1016/j.asoc.2020.107003_b49) 2017; 30
Goswami (10.1016/j.asoc.2020.107003_b26) 2017; 12
Potapov (10.1016/j.asoc.2020.107003_b34) 2016; 80
Suk (10.1016/j.asoc.2020.107003_b48) 2015; 220
Raulf (10.1016/j.asoc.2020.107003_b31) 2020; 36
Lee (10.1016/j.asoc.2020.107003_b12) 2017; 26
Møller (10.1016/j.asoc.2020.107003_b51) 1993; 6
Liu (10.1016/j.asoc.2020.107003_b47) 2017
Uzair (10.1016/j.asoc.2020.107003_b13) 2016; 30
Bourlard (10.1016/j.asoc.2020.107003_b24) 1988; 59
Yao (10.1016/j.asoc.2020.107003_b1) 2018; 29
Jiang (10.1016/j.asoc.2020.107003_b15) 2019; 7
Kim (10.1016/j.asoc.2020.107003_b22) 2018; 6
Luo (10.1016/j.asoc.2020.107003_b39) 2015; 22
Chandra (10.1016/j.asoc.2020.107003_b21) 2015; 26
Donoho (10.1016/j.asoc.2020.107003_b8) 2008; 105
Charte (10.1016/j.asoc.2020.107003_b37) 2020; 404
Mehdiyev (10.1016/j.asoc.2020.107003_b19) 2017; 114
Yamada (10.1016/j.asoc.2020.107003_b6) 2014; 26
Kampffmeyer (10.1016/j.asoc.2020.107003_b38) 2018; 71
Görgel (10.1016/j.asoc.2020.107003_b27) 2019; 355
Praveen (10.1016/j.asoc.2020.107003_b28) 2018; 99
Johnson (10.1016/j.asoc.2020.107003_b57) 2013; 83
Li (10.1016/j.asoc.2020.107003_b10) 2011; 19
He (10.1016/j.asoc.2020.107003_b11) 2005
Dizaji (10.1016/j.asoc.2020.107003_b36) 2017
Cho (10.1016/j.asoc.2020.107003_b18) 2014
Wold (10.1016/j.asoc.2020.107003_b9) 1987; 2
Majtner (10.1016/j.asoc.2020.107003_b46) 2016
References_xml – volume: 7
  start-page: 160397
  year: 2019
  end-page: 160407
  ident: b30
  article-title: DDSA: a defense against adversarial attacks using deep denoising sparse autoencoder
  publication-title: IEEE Access
– start-page: 5747
  year: 2017
  end-page: 5756
  ident: b36
  article-title: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization
  publication-title: Proc. IEEE Int. Conf. Comput. Vis.
– start-page: 1724
  year: 2014
  end-page: 1734
  ident: b18
  article-title: Learning phrase representations using RNN encoder–decoder for statistical machine translation
  publication-title: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
– volume: 7
  start-page: 90368
  year: 2019
  end-page: 90377
  ident: b15
  article-title: Parallelized convolutional recurrent neural network with spectral features for speech emotion recognition
  publication-title: IEEE Access
– volume: 8
  start-page: 3921
  year: 2013
  end-page: 3929
  ident: b7
  article-title: A novel relief feature selection algorithm based on mean–variance model
  publication-title: Syst. Simul. Technol.
– volume: 12
  start-page: 1686
  year: 2017
  end-page: 1698
  ident: b26
  article-title: Face verification via learned representation on feature-rich video frames
  publication-title: IEEE Trans. Inf. Forensics Secur.
– start-page: 919
  year: 2017
  end-page: 923
  ident: b47
  article-title: Classification of thyroid nodules in ultrasound images using deep model based transfer learning and hybrid features
  publication-title: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 59
  start-page: 291
  year: 1988
  end-page: 294
  ident: b24
  article-title: Auto-association by multilayer perceptrons and singular value decomposition
  publication-title: Biol. Cybernet.
– volume: 6
  start-page: 75216
  year: 2018
  end-page: 75228
  ident: b22
  article-title: Stable forecasting of environmental time series via long short term memory recurrent neural network
  publication-title: IEEE Access
– volume: 30
  start-page: 1211
  year: 2016
  end-page: 1223
  ident: b13
  article-title: Representation learning with deep extreme learning machines for efficient image set classification
  publication-title: Neural Comput. Appl.
– volume: 24
  start-page: 807
  year: 2016
  end-page: 822
  ident: b4
  article-title: Learning representations for nonspeech audio events through their similarities to speech patterns
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
– volume: 28
  start-page: 5809
  year: 2019
  end-page: 5823
  ident: b50
  article-title: Supervised deep feature embedding with handcrafted feature
  publication-title: IEEE Trans. Image Process.
– volume: 22
  start-page: 181
  year: 2014
  end-page: 190
  ident: b56
  article-title: Objective automatic assessment of rehabilitative speech treatment in Parkinson’s disease
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 3104
  year: 2014
  end-page: 3112
  ident: b17
  article-title: Sequence to sequence learning with neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 6
  start-page: 4
  year: 1993
  ident: b51
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Netw.
– volume: 26
  start-page: 3123
  year: 2015
  end-page: 3136
  ident: b21
  article-title: Competition and collaboration in cooperative coevolution of elman recurrent neural networks for time-series prediction
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2005
  ident: b11
  article-title: Locality Preserving Projections
– volume: 355
  start-page: 325
  year: 2019
  end-page: 342
  ident: b27
  article-title: Face recognition via deep stacked denoising sparse autoencoders (DSDSA)
  publication-title: Appl. Math. Comput.
– volume: 32
  start-page: 2673
  year: 2017
  end-page: 2681
  ident: b35
  article-title: Short-term electricity price forecasting with stacked denoising autoencoders
  publication-title: IEEE Trans. Power Syst.
– volume: 165
  start-page: 23
  year: 2015
  end-page: 31
  ident: b3
  article-title: Feature learning from incomplete EEG with denoising autoencoder
  publication-title: Neurocomputing
– volume: 26
  start-page: 4843
  year: 2017
  end-page: 4855
  ident: b12
  article-title: Going deeper with contextual CNN for hyperspectral image classification
  publication-title: IEEE Trans. Image Process.
– volume: 19
  start-page: 740
  year: 2017
  end-page: 749
  ident: b33
  article-title: A skin segmentation algorithm based on stacked autoencoders
  publication-title: IEEE Trans. Multimed.
– volume: 13
  start-page: 143
  year: 2002
  end-page: 159
  ident: b5
  article-title: Input feature selection for classification problems
  publication-title: IEEE Trans. Neural Netw.
– start-page: 1
  year: 2016
  end-page: 6
  ident: b46
  article-title: Combining deep learning and hand-crafted features for skin lesion classification
  publication-title: 2016 Sixth International Conference on Image Processing Theory, Tools and Applications
– volume: 36
  start-page: 287
  year: 2020
  end-page: 294
  ident: b31
  article-title: Deep representation learning for domain adaptable classification of infrared spectral imaging data
  publication-title: Bioinformatics
– volume: 88
  year: 2020
  ident: b42
  article-title: Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings
  publication-title: Appl. Soft Comput.
– volume: 16
  start-page: 1462
  year: 2019
  end-page: 1466
  ident: b40
  article-title: Discriminative feature learning with distance constrained stacked sparse autoencoder for hyperspectral target detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 404
  start-page: 93
  year: 2020
  end-page: 107
  ident: b37
  article-title: An analysis on the use of autoencoders for representation learning: fundamentals, learning task case studies, explainability and challenges
  publication-title: Neurocomputing
– volume: 17
  start-page: 828
  year: 2013
  end-page: 834
  ident: b53
  article-title: Collection and analysis of a parkinson speech dataset with multiple types of sound recordings
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 114
  start-page: 242
  year: 2017
  end-page: 249
  ident: b19
  article-title: Time series classification using deep learning for process planning: A case from the process industry
  publication-title: Procedia Comput. Sci.
– volume: 12
  start-page: 685
  year: 2019
  end-page: 699
  ident: b41
  article-title: A novel joint change detection approach based on weight-clustering sparse autoencoders
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 99
  start-page: 38
  year: 2018
  end-page: 52
  ident: b28
  article-title: Ischemic stroke lesion segmentation using stacked sparse autoencoder
  publication-title: Comput. Biol. Med.
– volume: 29
  start-page: 4882
  year: 2018
  end-page: 4893
  ident: b1
  article-title: Local regression and global information-embedded dimension reduction
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b23
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 358
  start-page: 235
  year: 2019
  end-page: 245
  ident: b44
  article-title: Manifold regularized stacked denoising autoencoders with feature selection
  publication-title: Neurocomputing
– volume: 105
  start-page: 112
  year: 2018
  end-page: 131
  ident: b32
  article-title: Denoising autoencoder self-organizing map (DASOM)
  publication-title: Neural Netw.
– volume: 71
  start-page: 816
  year: 2018
  end-page: 825
  ident: b38
  article-title: The deep kernelized autoencoder
  publication-title: Appl. Soft Comput.
– volume: 19
  start-page: 152
  year: 2011
  end-page: 163
  ident: b10
  article-title: LDA-based clustering algorithm and its application to an unsupervised feature extraction
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 30
  start-page: 105
  year: 2017
  end-page: 113
  ident: b49
  article-title: Unsupervised-learning-based feature-level fusion method for mura defect recognition
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 80
  start-page: 24
  year: 2016
  end-page: 29
  ident: b34
  article-title: A feasibility study of an autoencoder meta-model for improving generalization capabilities on training sets of small sizes
  publication-title: Pattern Recognit. Lett.
– volume: 26
  start-page: 185
  year: 2014
  end-page: 207
  ident: b6
  article-title: High-dimensional feature selection by feature-wise kernelized lasso
  publication-title: Neural Comput.
– year: 2017
  ident: b54
  article-title: UCI Machine Learning Repository
– volume: 178
  start-page: 111
  year: 2019
  end-page: 122
  ident: b43
  article-title: Evolutionary manifold regularized stacked denoising autoencoders for gearbox fault diagnosis
  publication-title: Knowl.-Based Syst.
– volume: 17
  start-page: 49
  year: 2018
  ident: b52
  article-title: Localized instance fusion of MRI data of Alzheimer’s disease for classification based on instance transfer ensemble learning
  publication-title: Biomed. Eng. Online
– volume: 36
  start-page: 1573
  year: 2014
  end-page: 1585
  ident: b2
  article-title: Learning local feature descriptors using convex optimisation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: M. Gutoski, M. Ribeiro, N.M. Romero Aquino, A.E. Lazzaretti, H.S. Lopes, A clustering-based deep autoencoder for one-class image classification, in: 2017 IEEE Latin American Conference on Computational Intelligence, LA-CCI, Arequipa, 2017, pp. 1–6.
– volume: 220
  start-page: 841
  year: 2015
  end-page: 859
  ident: b48
  article-title: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
  publication-title: Brain Struct. Funct.
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: b45
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
– volume: 20
  start-page: 1576
  year: 2018
  end-page: 1590
  ident: b16
  article-title: Speech emotion recognition using deep convolutional neural network and discriminant temporal pyramid matching
  publication-title: IEEE Trans. Multimed.
– volume: 105
  start-page: 14790
  year: 2008
  end-page: 14795
  ident: b8
  article-title: Higher criticism thresholding: optimal feature selection when useful features are rare and weak
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 22
  start-page: 1070
  year: 2015
  end-page: 1073
  ident: b39
  article-title: Locality-constrained sparse auto-encoder for image classification
  publication-title: IEEE Signal Process. Lett.
– volume: 37
  start-page: 409
  year: 2004
  end-page: 419
  ident: b55
  article-title: A semiparametric density estimation approach to pattern classification
  publication-title: Pattern Recognit.
– volume: 5
  start-page: 9021
  year: 2017
  end-page: 9031
  ident: b25
  article-title: Remote sensing image classification based on ensemble extreme learning machine with stacked autoencoder
  publication-title: IEEE Access
– volume: 29
  start-page: 246
  year: 2018
  end-page: 258
  ident: b20
  article-title: Deep logic networks: inserting and extracting knowledge from deep belief networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 83
  start-page: 40
  year: 2013
  end-page: 49
  ident: b57
  article-title: Classifying a high resolution image of an urban area using super-object information
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 2
  start-page: 37
  year: 1987
  end-page: 52
  ident: b9
  article-title: Principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 59
  start-page: 15
  year: 2017
  end-page: 22
  ident: b29
  article-title: Whispered speech recognition using deep denoising autoencoder
  publication-title: Eng. Appl. Artif. Intell.
– volume: 59
  start-page: 15
  year: 2017
  ident: 10.1016/j.asoc.2020.107003_b29
  article-title: Whispered speech recognition using deep denoising autoencoder
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.12.012
– volume: 71
  start-page: 816
  year: 2018
  ident: 10.1016/j.asoc.2020.107003_b38
  article-title: The deep kernelized autoencoder
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.07.029
– year: 2017
  ident: 10.1016/j.asoc.2020.107003_b54
– volume: 165
  start-page: 23
  year: 2015
  ident: 10.1016/j.asoc.2020.107003_b3
  article-title: Feature learning from incomplete EEG with denoising autoencoder
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.092
– volume: 99
  start-page: 38
  year: 2018
  ident: 10.1016/j.asoc.2020.107003_b28
  article-title: Ischemic stroke lesion segmentation using stacked sparse autoencoder
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.05.027
– year: 2005
  ident: 10.1016/j.asoc.2020.107003_b11
– volume: 13
  start-page: 143
  year: 2002
  ident: 10.1016/j.asoc.2020.107003_b5
  article-title: Input feature selection for classification problems
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.977291
– volume: 8
  start-page: 3921
  year: 2013
  ident: 10.1016/j.asoc.2020.107003_b7
  article-title: A novel relief feature selection algorithm based on mean–variance model
  publication-title: Syst. Simul. Technol.
– volume: 220
  start-page: 841
  year: 2015
  ident: 10.1016/j.asoc.2020.107003_b48
  article-title: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-013-0687-3
– volume: 83
  start-page: 40
  year: 2013
  ident: 10.1016/j.asoc.2020.107003_b57
  article-title: Classifying a high resolution image of an urban area using super-object information
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.05.008
– volume: 26
  start-page: 3123
  year: 2015
  ident: 10.1016/j.asoc.2020.107003_b21
  article-title: Competition and collaboration in cooperative coevolution of elman recurrent neural networks for time-series prediction
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2404823
– volume: 404
  start-page: 93
  year: 2020
  ident: 10.1016/j.asoc.2020.107003_b37
  article-title: An analysis on the use of autoencoders for representation learning: fundamentals, learning task case studies, explainability and challenges
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.057
– volume: 22
  start-page: 1070
  year: 2015
  ident: 10.1016/j.asoc.2020.107003_b39
  article-title: Locality-constrained sparse auto-encoder for image classification
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2014.2384196
– volume: 12
  start-page: 1686
  year: 2017
  ident: 10.1016/j.asoc.2020.107003_b26
  article-title: Face verification via learned representation on feature-rich video frames
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2017.2668221
– start-page: 5747
  year: 2017
  ident: 10.1016/j.asoc.2020.107003_b36
  article-title: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization
  publication-title: Proc. IEEE Int. Conf. Comput. Vis.
– start-page: 3104
  year: 2014
  ident: 10.1016/j.asoc.2020.107003_b17
  article-title: Sequence to sequence learning with neural networks
– volume: 17
  start-page: 49
  year: 2018
  ident: 10.1016/j.asoc.2020.107003_b52
  article-title: Localized instance fusion of MRI data of Alzheimer’s disease for classification based on instance transfer ensemble learning
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-018-0489-1
– volume: 29
  start-page: 246
  year: 2018
  ident: 10.1016/j.asoc.2020.107003_b20
  article-title: Deep logic networks: inserting and extracting knowledge from deep belief networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2603784
– start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2020.107003_b46
  article-title: Combining deep learning and hand-crafted features for skin lesion classification
– volume: 26
  start-page: 4843
  year: 2017
  ident: 10.1016/j.asoc.2020.107003_b12
  article-title: Going deeper with contextual CNN for hyperspectral image classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2725580
– volume: 12
  start-page: 685
  year: 2019
  ident: 10.1016/j.asoc.2020.107003_b41
  article-title: A novel joint change detection approach based on weight-clustering sparse autoencoders
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2892951
– volume: 28
  start-page: 5809
  year: 2019
  ident: 10.1016/j.asoc.2020.107003_b50
  article-title: Supervised deep feature embedding with handcrafted feature
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2901407
– volume: 114
  start-page: 242
  year: 2017
  ident: 10.1016/j.asoc.2020.107003_b19
  article-title: Time series classification using deep learning for process planning: A case from the process industry
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.09.066
– volume: 313
  start-page: 504
  year: 2006
  ident: 10.1016/j.asoc.2020.107003_b23
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 7
  start-page: 160397
  year: 2019
  ident: 10.1016/j.asoc.2020.107003_b30
  article-title: DDSA: a defense against adversarial attacks using deep denoising sparse autoencoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2951526
– volume: 36
  start-page: 287
  year: 2020
  ident: 10.1016/j.asoc.2020.107003_b31
  article-title: Deep representation learning for domain adaptable classification of infrared spectral imaging data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz505
– ident: 10.1016/j.asoc.2020.107003_b14
  doi: 10.1109/LA-CCI.2017.8285680
– volume: 105
  start-page: 112
  year: 2018
  ident: 10.1016/j.asoc.2020.107003_b32
  article-title: Denoising autoencoder self-organizing map (DASOM)
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.04.016
– volume: 105
  start-page: 14790
  year: 2008
  ident: 10.1016/j.asoc.2020.107003_b8
  article-title: Higher criticism thresholding: optimal feature selection when useful features are rare and weak
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0807471105
– volume: 6
  start-page: 4
  year: 1993
  ident: 10.1016/j.asoc.2020.107003_b51
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80056-5
– volume: 6
  start-page: 75216
  year: 2018
  ident: 10.1016/j.asoc.2020.107003_b22
  article-title: Stable forecasting of environmental time series via long short term memory recurrent neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2884827
– volume: 36
  start-page: 1573
  year: 2014
  ident: 10.1016/j.asoc.2020.107003_b2
  article-title: Learning local feature descriptors using convex optimisation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2301163
– volume: 26
  start-page: 185
  year: 2014
  ident: 10.1016/j.asoc.2020.107003_b6
  article-title: High-dimensional feature selection by feature-wise kernelized lasso
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00537
– volume: 355
  start-page: 325
  year: 2019
  ident: 10.1016/j.asoc.2020.107003_b27
  article-title: Face recognition via deep stacked denoising sparse autoencoders (DSDSA)
  publication-title: Appl. Math. Comput.
– volume: 24
  start-page: 807
  year: 2016
  ident: 10.1016/j.asoc.2020.107003_b4
  article-title: Learning representations for nonspeech audio events through their similarities to speech patterns
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2016.2530401
– volume: 59
  start-page: 291
  year: 1988
  ident: 10.1016/j.asoc.2020.107003_b24
  article-title: Auto-association by multilayer perceptrons and singular value decomposition
  publication-title: Biol. Cybernet.
  doi: 10.1007/BF00332918
– volume: 20
  start-page: 1576
  year: 2018
  ident: 10.1016/j.asoc.2020.107003_b16
  article-title: Speech emotion recognition using deep convolutional neural network and discriminant temporal pyramid matching
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2017.2766843
– volume: 22
  start-page: 181
  year: 2014
  ident: 10.1016/j.asoc.2020.107003_b56
  article-title: Objective automatic assessment of rehabilitative speech treatment in Parkinson’s disease
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2293575
– volume: 358
  start-page: 235
  year: 2019
  ident: 10.1016/j.asoc.2020.107003_b44
  article-title: Manifold regularized stacked denoising autoencoders with feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.05.050
– volume: 30
  start-page: 1211
  year: 2016
  ident: 10.1016/j.asoc.2020.107003_b13
  article-title: Representation learning with deep extreme learning machines for efficient image set classification
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2758-x
– volume: 2
  start-page: 1
  year: 2009
  ident: 10.1016/j.asoc.2020.107003_b45
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000006
– volume: 29
  start-page: 4882
  year: 2018
  ident: 10.1016/j.asoc.2020.107003_b1
  article-title: Local regression and global information-embedded dimension reduction
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2783384
– volume: 17
  start-page: 828
  year: 2013
  ident: 10.1016/j.asoc.2020.107003_b53
  article-title: Collection and analysis of a parkinson speech dataset with multiple types of sound recordings
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2013.2245674
– volume: 178
  start-page: 111
  year: 2019
  ident: 10.1016/j.asoc.2020.107003_b43
  article-title: Evolutionary manifold regularized stacked denoising autoencoders for gearbox fault diagnosis
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.04.022
– volume: 30
  start-page: 105
  year: 2017
  ident: 10.1016/j.asoc.2020.107003_b49
  article-title: Unsupervised-learning-based feature-level fusion method for mura defect recognition
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2017.2648856
– start-page: 1724
  year: 2014
  ident: 10.1016/j.asoc.2020.107003_b18
  article-title: Learning phrase representations using RNN encoder–decoder for statistical machine translation
– volume: 88
  year: 2020
  ident: 10.1016/j.asoc.2020.107003_b42
  article-title: Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.106060
– volume: 19
  start-page: 152
  year: 2011
  ident: 10.1016/j.asoc.2020.107003_b10
  article-title: LDA-based clustering algorithm and its application to an unsupervised feature extraction
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2010.2089631
– start-page: 919
  year: 2017
  ident: 10.1016/j.asoc.2020.107003_b47
  article-title: Classification of thyroid nodules in ultrasound images using deep model based transfer learning and hybrid features
– volume: 37
  start-page: 409
  year: 2004
  ident: 10.1016/j.asoc.2020.107003_b55
  article-title: A semiparametric density estimation approach to pattern classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2003.08.004
– volume: 19
  start-page: 740
  year: 2017
  ident: 10.1016/j.asoc.2020.107003_b33
  article-title: A skin segmentation algorithm based on stacked autoencoders
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2016.2638204
– volume: 32
  start-page: 2673
  year: 2017
  ident: 10.1016/j.asoc.2020.107003_b35
  article-title: Short-term electricity price forecasting with stacked denoising autoencoders
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2016.2628873
– volume: 2
  start-page: 37
  year: 1987
  ident: 10.1016/j.asoc.2020.107003_b9
  article-title: Principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(87)80084-9
– volume: 5
  start-page: 9021
  year: 2017
  ident: 10.1016/j.asoc.2020.107003_b25
  article-title: Remote sensing image classification based on ensemble extreme learning machine with stacked autoencoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2706363
– volume: 16
  start-page: 1462
  year: 2019
  ident: 10.1016/j.asoc.2020.107003_b40
  article-title: Discriminative feature learning with distance constrained stacked sparse autoencoder for hyperspectral target detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2901019
– volume: 7
  start-page: 90368
  year: 2019
  ident: 10.1016/j.asoc.2020.107003_b15
  article-title: Parallelized convolutional recurrent neural network with spectral features for speech emotion recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927384
– volume: 80
  start-page: 24
  year: 2016
  ident: 10.1016/j.asoc.2020.107003_b34
  article-title: A feasibility study of an autoencoder meta-model for improving generalization capabilities on training sets of small sizes
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2016.05.018
SSID ssj0016928
Score 2.3848033
Snippet Learning useful representations from original features is a key issue in classification tasks. Stacked autoencoders (SAEs) are easy to understand and realize,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107003
SubjectTerms Embedded deep learning
Embedded stacked group sparse autoencoder (ESGSAE)
Ensemble learning
Feature fusion
Weighted local discriminant preservation projection (w_LPPD)
Title Embedded stacked group sparse autoencoder ensemble with L1 regularization and manifold reduction
URI https://dx.doi.org/10.1016/j.asoc.2020.107003
Volume 101
WOSCitedRecordID wos000621420900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgy4ELb0R5yQduUVAS20l8rNAiqEpViSKWU7ATG23VzVbZLOrPZ8Z2soGiCpC4RNEojiPPl_HMeB6EvOKmNIwJMFNhf8eUHBnrzKhYp7k1VjSFyhrXbKI4Pi4XC3kSQoI2rp1A0bbl5aW8-K-sBhowG1Nn_4Ld40uBAPfAdLgC2-H6R4yfr7QBadKglwB-0SZyiRsRSI5uYyK17ddYuxJLSIAFa1aYOeWcsUdp1LnG9F1IzXTnClgew67PMcel8YVmp-rsoMNuQJi76PRtP2yFGOTjIgW-rNtvqynVePIOlp-Dz_pkOZIOl4H2AUZaE0YH70Q2Cc_yLrMraTNeyuZlzGXwPRpPK4sslrnv3zKKZv-qK2LeexzOXitAMNj4GZKKJGG7TW0MNfyIk-FcGR4m8Wxxk-xlhZDljOwdvJ8vDsczp1y6Trzjx4UUKx8N-OtMv1djJqrJ6T1yJ9gU9MBj4T65YdoH5O7Qr4MG8f2QfB2gQQM0qIMG9dCgE2jQARoUoUGPUvozNChAgw7QoCM0HpFPb-enb97FocNGXLMk6WNZC6tTq2tQQzWzptaytg3qtFrVtk6UAu2VMSzJlHNVMi4LxQsQ41wbeISzx2TWrlvzhFAlMmHzFAS6spw7M16JUgudq9QwUeyTdFiwqg7l57ELynk1xBmeVbjIFS5y5Rd5n0TjmAtffOXap8XAhyqoj14trAA214x7-o_jnpHbO8Q_J7O-25oX5Fb9vV9uupcBXT8AJgOV2A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Embedded+stacked+group+sparse+autoencoder+ensemble+with+L1+regularization+and+manifold+reduction&rft.jtitle=Applied+soft+computing&rft.au=Li%2C+Yongming&rft.au=Lei%2C+Yan&rft.au=Wang%2C+Pin&rft.au=Jiang%2C+Mingfeng&rft.date=2021-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=101&rft_id=info:doi/10.1016%2Fj.asoc.2020.107003&rft.externalDocID=S156849462030942X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon