Performance based analysis between k-Means and Fuzzy C-Means clustering algorithms for connection oriented telecommunication data

•The partition based clustering algorithms k-Means and Fuzzy C-Means algorithms are taken for analysis via its computational time.•The distance between servers and user connections of telecommunication data are taken for clustering.•The computational time and number of connections in each server was...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing Vol. 19; pp. 134 - 146
Main Author: T., Velmurugan
Format: Journal Article
Language:English
Published: Elsevier B.V 01.06.2014
Subjects:
ISSN:1568-4946, 1872-9681
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •The partition based clustering algorithms k-Means and Fuzzy C-Means algorithms are taken for analysis via its computational time.•The distance between servers and user connections of telecommunication data are taken for clustering.•The computational time and number of connections in each server was reported by the algorithms after clustering process.•The distribution of data points by k-Means algorithm is even to all the data centers, but, it is not even by the FCM algorithm.•From the experimental analysis, the computational time of k-Means algorithm is less than the FCM algorithm. Data mining is the process of discovering meaningful new correlation, patterns and trends by sifting through large amounts of data, using pattern recognition technologies as well as statistical and mathematical techniques. Cluster analysis is often used as one of the major data analysis technique widely applied for many practical applications in emerging areas of data mining. Two of the most delegated, partition based clustering algorithms namely k-Means and Fuzzy C-Means are analyzed in this research work. These algorithms are implemented by means of practical approach to analyze its performance, based on their computational time. The telecommunication data is the source data for this analysis. The connection oriented broad band data is used to find the performance of the chosen algorithms. The distance (Euclidian distance) between the server locations and their connections are rearranged after processing the data. The computational complexity (execution time) of each algorithm is analyzed and the results are compared with one another. By comparing the result of this practical approach, it was found that the results obtained are more accurate, easy to understand and above all the time taken to process the data was substantially high in Fuzzy C-Means algorithm than the k-Means.
AbstractList •The partition based clustering algorithms k-Means and Fuzzy C-Means algorithms are taken for analysis via its computational time.•The distance between servers and user connections of telecommunication data are taken for clustering.•The computational time and number of connections in each server was reported by the algorithms after clustering process.•The distribution of data points by k-Means algorithm is even to all the data centers, but, it is not even by the FCM algorithm.•From the experimental analysis, the computational time of k-Means algorithm is less than the FCM algorithm. Data mining is the process of discovering meaningful new correlation, patterns and trends by sifting through large amounts of data, using pattern recognition technologies as well as statistical and mathematical techniques. Cluster analysis is often used as one of the major data analysis technique widely applied for many practical applications in emerging areas of data mining. Two of the most delegated, partition based clustering algorithms namely k-Means and Fuzzy C-Means are analyzed in this research work. These algorithms are implemented by means of practical approach to analyze its performance, based on their computational time. The telecommunication data is the source data for this analysis. The connection oriented broad band data is used to find the performance of the chosen algorithms. The distance (Euclidian distance) between the server locations and their connections are rearranged after processing the data. The computational complexity (execution time) of each algorithm is analyzed and the results are compared with one another. By comparing the result of this practical approach, it was found that the results obtained are more accurate, easy to understand and above all the time taken to process the data was substantially high in Fuzzy C-Means algorithm than the k-Means.
Author T., Velmurugan
Author_xml – sequence: 1
  givenname: Velmurugan
  orcidid: 0000-0001-8857-0136
  surname: T.
  fullname: T., Velmurugan
  email: velmurugan_dgvc@yahoo.co.in
  organization: PG and Research Department of Computer Science, D.G. Vaishnav College, Chennai - 600106, India
BookMark eNp9kMtOAyEUhonRxOsLuOIFZgQ6nTKJG9N4SzS60DU5wJlKnQEDVFN3vrnUunLh6pDz5_tz-A7Jrg8eCTnlrOaMt2fLGlIwtWC8qZmoGec75IDLmai6VvLd8p62smq6pt0nhyktWYE6IQ_I1yPGPsQRvEGqIaGl4GFYJ5eoxvyB6OlrdY_gUwksvVp9fq7p_HdjhlXKGJ1fUBgWIbr8MiZa-qgJ3qPJLnha1uhzKc44oAnjuPLOwE9kIcMx2ethSHjyO4_I89Xl0_ymunu4vp1f3FVmwliuOm1nRjAwsm17o6faarBTbJup4MA7qeUM-14y2whrodVyYkvWMGwsSN3zyRGR214TQ0oRe2Vc_jkjR3CD4kxtVKql2qhUG5WKCVVUFlT8Qd-iGyGu_4fOtxCWT707jCqZIsKgdbGYUTa4__BvSZmUFg
CitedBy_id crossref_primary_10_1155_2016_3856727
crossref_primary_10_1016_j_asoc_2019_02_038
crossref_primary_10_1108_CCSM_04_2019_0081
crossref_primary_10_1007_s11042_017_4964_7
crossref_primary_10_1080_1206212X_2020_1735035
crossref_primary_10_1007_s40092_018_0283_5
crossref_primary_10_1002_hfm_20779
crossref_primary_10_1016_j_conbuildmat_2015_10_199
crossref_primary_10_1016_j_dcan_2025_07_001
crossref_primary_10_1088_1757_899X_928_3_032059
crossref_primary_10_1109_TIE_2023_3239864
crossref_primary_10_4018_IJDST_2018070101
crossref_primary_10_1016_j_knosys_2015_02_018
crossref_primary_10_1016_j_physa_2017_07_017
crossref_primary_10_3233_JIFS_179251
crossref_primary_10_1155_2022_7783196
crossref_primary_10_3233_JIFS_212863
crossref_primary_10_1016_j_asoc_2019_105840
crossref_primary_10_1088_1742_6596_1360_1_012017
crossref_primary_10_1016_j_knosys_2019_07_030
crossref_primary_10_1080_00207543_2014_980461
crossref_primary_10_1016_j_energy_2015_11_064
crossref_primary_10_1007_s42452_020_2417_9
crossref_primary_10_4236_ijmnta_2015_42011
crossref_primary_10_1002_dac_5255
crossref_primary_10_1002_dac_5850
crossref_primary_10_1007_s10922_015_9357_5
crossref_primary_10_1016_j_simpat_2015_03_007
crossref_primary_10_1155_2015_823720
crossref_primary_10_1007_s00500_020_05403_8
crossref_primary_10_1088_1757_899X_1088_1_012038
crossref_primary_10_1007_s13369_017_2761_2
crossref_primary_10_1109_MNET_123_2100764
crossref_primary_10_4018_IJERTCS_2019040105
crossref_primary_10_1007_s11356_021_17443_0
crossref_primary_10_1002_dac_4629
crossref_primary_10_1007_s12273_016_0285_4
crossref_primary_10_1016_j_eswa_2019_06_049
crossref_primary_10_1016_j_asoc_2014_11_012
crossref_primary_10_1016_j_sigpro_2021_108161
crossref_primary_10_3233_JIFS_169133
crossref_primary_10_1007_s10064_020_02063_8
crossref_primary_10_3233_JIFS_189065
crossref_primary_10_1007_s00607_023_01173_x
crossref_primary_10_1016_j_iot_2023_100994
crossref_primary_10_1007_s11205_018_1938_8
crossref_primary_10_1016_j_comnet_2025_111678
crossref_primary_10_1061__ASCE_HE_1943_5584_0002059
crossref_primary_10_1016_j_future_2017_06_010
crossref_primary_10_1109_ACCESS_2023_3333753
crossref_primary_10_1007_s10489_016_0759_1
crossref_primary_10_1007_s11356_023_26239_3
crossref_primary_10_1016_S1006_706X_16_30035_8
crossref_primary_10_1007_s40815_020_00937_3
crossref_primary_10_1108_MIP_03_2015_0060
crossref_primary_10_1016_j_agwat_2021_107067
crossref_primary_10_1109_TFUZZ_2021_3119240
crossref_primary_10_17671_gazibtd_368460
crossref_primary_10_1155_2016_4860309
crossref_primary_10_1002_cpe_6308
crossref_primary_10_1016_j_iswa_2023_200219
crossref_primary_10_3390_sym15091679
crossref_primary_10_1109_LGRS_2023_3287320
crossref_primary_10_1016_j_agrformet_2014_09_020
Cites_doi 10.1007/978-3-642-19934-9_54
10.1108/02644401011008504
10.1016/j.asoc.2009.12.015
10.3844/jcssp.2011.657.663
10.1016/j.eswa.2009.05.076
10.1177/1077546310379625
10.1109/TFUZZ.2004.836067
10.1016/j.advengsoft.2005.12.002
10.3844/jcssp.2010.363.368
10.1016/0098-3004(84)90020-7
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2014.02.011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 146
ExternalDocumentID 10_1016_j_asoc_2014_02_011
S1568494614000805
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-9bd7c20ac866fcb5bdbad5e64521a198b87eff80d42dda6b83d64540e4da8bf13
ISICitedReferencesCount 91
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000334768800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 20:44:29 EST 2025
Sat Nov 29 02:08:21 EST 2025
Fri Feb 23 02:28:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Telecommunication data
Data analysis
k-Means algorithm
Fuzzy C-Means algorithm
Data clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-9bd7c20ac866fcb5bdbad5e64521a198b87eff80d42dda6b83d64540e4da8bf13
ORCID 0000-0001-8857-0136
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2014_02_011
crossref_primary_10_1016_j_asoc_2014_02_011
elsevier_sciencedirect_doi_10_1016_j_asoc_2014_02_011
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen (bib0125) 2006; 37
Vijayakumar, Parvathi (bib0085) 2010; 39
Han, Kamber (bib0040) 2006
Susana, Leiva-Valdebenito, Francisco, Torres-Aviles (bib0070) 2010; 33
Velmurugan, Santhanam (bib0145) 2011; 27
Bezdek, Ehrlich, Full (bib0020) 1984; 10
Shanmugam, Suryanarayana, Chandrashekar, Manjunath (bib0065) 2011; 7
Lin, Chen (bib0130) 2010; 27
Al-Zoubi, Hudaib, Al-Shboul (bib0010) 2007
Napoleon, Ganga Lakshmi (bib0075) 2010; 2
Lin, Hsu (bib0105) 2011; 11
Berkhin (bib0015) 2002
Hsiao, Hwang, Chen, Tsai (bib0140) 2005; 13
Jain, Dubes (bib0050) 1988
Chen (bib0135) 2010; 37
Jain, Murty, Flynn (bib0055) 1999; 31
Shen, Cheng, Chen, Tsai, Cheng (bib0110) 2011; 7
Chen (bib0120) 2011; 17
Yong, Chongxun, Pan (bib0100) 2004; 4
Kuo, Chen (bib0115) 2011; 7
Park, Lee, Jun (bib0080) 2009
Bezdek (bib0025) 1981
Kaufman, Rousseeuw (bib0060) 2009; vol. 344
Velmurugan, Santhanam (bib0095) 2010; 46
Velmurugan, Santhanam (bib0090) 2010; 6
Rakhlin, Caponnetto (bib0005) 2007; vol. 12
Bradley, Fayyad, Reina (bib0030) 1998
Hartigan (bib0045) 1975, January
Benderskaya, Zhukova (bib0035) 2011; 91
Shanmugam (10.1016/j.asoc.2014.02.011_bib0065) 2011; 7
Yong (10.1016/j.asoc.2014.02.011_bib0100) 2004; 4
Lin (10.1016/j.asoc.2014.02.011_bib0130) 2010; 27
Chen (10.1016/j.asoc.2014.02.011_bib0125) 2006; 37
Jain (10.1016/j.asoc.2014.02.011_bib0055) 1999; 31
Hartigan (10.1016/j.asoc.2014.02.011_bib0045) 1975
Velmurugan (10.1016/j.asoc.2014.02.011_bib0095) 2010; 46
Lin (10.1016/j.asoc.2014.02.011_bib0105) 2011; 11
Kaufman (10.1016/j.asoc.2014.02.011_bib0060) 2009; vol. 344
Jain (10.1016/j.asoc.2014.02.011_bib0050) 1988
Napoleon (10.1016/j.asoc.2014.02.011_bib0075) 2010; 2
Chen (10.1016/j.asoc.2014.02.011_bib0120) 2011; 17
Rakhlin (10.1016/j.asoc.2014.02.011_bib0005) 2007; vol. 12
Kuo (10.1016/j.asoc.2014.02.011_bib0115) 2011; 7
Park (10.1016/j.asoc.2014.02.011_bib0080) 2009
Velmurugan (10.1016/j.asoc.2014.02.011_bib0145) 2011; 27
Hsiao (10.1016/j.asoc.2014.02.011_bib0140) 2005; 13
Chen (10.1016/j.asoc.2014.02.011_bib0135) 2010; 37
Berkhin (10.1016/j.asoc.2014.02.011_bib0015) 2002
Bradley (10.1016/j.asoc.2014.02.011_bib0030) 1998
Bezdek (10.1016/j.asoc.2014.02.011_bib0025) 1981
Shen (10.1016/j.asoc.2014.02.011_bib0110) 2011; 7
Susana (10.1016/j.asoc.2014.02.011_bib0070) 2010; 33
Bezdek (10.1016/j.asoc.2014.02.011_bib0020) 1984; 10
Han (10.1016/j.asoc.2014.02.011_bib0040) 2006
Al-Zoubi (10.1016/j.asoc.2014.02.011_bib0010) 2007
Vijayakumar (10.1016/j.asoc.2014.02.011_bib0085) 2010; 39
Benderskaya (10.1016/j.asoc.2014.02.011_bib0035) 2011; 91
Velmurugan (10.1016/j.asoc.2014.02.011_bib0090) 2010; 6
References_xml – year: 1988
  ident: bib0050
  article-title: Algorithms for Clustering Data
– year: 1981
  ident: bib0025
  article-title: Pattern Recognition with Fuzzy Objective Function Algorithms
– year: 2002
  ident: bib0015
  article-title: Survey of Clustering Data Mining Techniques, Technical Report
– volume: 27
  start-page: 19
  year: 2011
  end-page: 30
  ident: bib0145
  article-title: A comparative analysis between k-medoids and fuzzy c-means clustering algorithms for statistically distributed data points
  publication-title: Journal of Theoretical and Applied Information Technology
– volume: 4
  year: 2004
  ident: bib0100
  article-title: A novel fuzzy c-means clustering algorithm for image thresholding
  publication-title: Measurement Science Review
– volume: 39
  start-page: 234
  year: 2010
  end-page: 242
  ident: bib0085
  article-title: Concept mining of high volume data streams in network traffic using hierarchical clustering
  publication-title: European Journal of Scientific Research
– start-page: 9
  year: 1998
  end-page: 15
  ident: bib0030
  article-title: Scaling clustering algorithms to large databases
  publication-title: Proceedings of the 4th International Conference on Knowledge Discovery & Data Mining (KDD98)
– volume: 6
  start-page: 363
  year: 2010
  end-page: 368
  ident: bib0090
  article-title: Computational complexity between K-means and K-medoids clustering algorithms for normal and uniform distributions of data points
  publication-title: Journal of Computer Science
– year: 2006
  ident: bib0040
  article-title: Data Mining: Concepts and Techniques
– volume: 7
  start-page: 657
  year: 2011
  end-page: 663
  ident: bib0065
  article-title: A novel approach to medical image segmentation
  publication-title: Journal of Computer Science
– volume: 13
  start-page: 152
  year: 2005
  end-page: 163
  ident: bib0140
  article-title: Robust stabilization of nonlinear multiple time-delay large-scale systems via decentralized fuzzy control
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 17
  start-page: 1693
  year: 2011
  end-page: 1702
  ident: bib0120
  article-title: Fuzzy control of interconnected structural systems using the fuzzy Lyapunov method
  publication-title: Journal of Vibration and Control
– volume: 7
  start-page: 253
  year: 2011
  end-page: 268
  ident: bib0115
  article-title: Application of quality function deployment to improve the quality of Internet shopping website interface design
  publication-title: International Journal of Innovative Computing, Information and Control
– volume: 37
  start-page: 993
  year: 2010
  end-page: 997
  ident: bib0135
  article-title: Application of data mining to the spatial heterogeneity of foreclosed mortgages
  publication-title: Expert Systems with Applications
– volume: vol. 344
  year: 2009
  ident: bib0060
  publication-title: Finding groups in data: an introduction to cluster analysis
– volume: 7
  start-page: 805
  year: 2011
  end-page: 816
  ident: bib0110
  article-title: A fuzzy AHP-based fault diagnosis for semiconductor lithography process
  publication-title: International Journal of Innovative Computing, Information and Control
– volume: 91
  start-page: 423
  year: 2011
  end-page: 431
  ident: bib0035
  article-title: Self-organized clustering and classification: a unified approach via distributed chaotic computing, international symposium on distributed computing and artificial intelligence
  publication-title: Advances in Intelligent and Soft Computing
– volume: 2
  start-page: 2409
  year: 2010
  end-page: 2413
  ident: bib0075
  article-title: An enhanced k-means algorithm to improve the efficiency using normal distribution data points
  publication-title: International Journal on Computer Science and Engineering
– volume: 11
  start-page: 561
  year: 2011
  end-page: 573
  ident: bib0105
  article-title: Designing a model of FANP in brand image decision making
  publication-title: Applied Soft Computing
– volume: 31
  year: 1999
  ident: bib0055
  article-title: Data clustering: a review
  publication-title: ACM Computing Surveys
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: bib0020
  article-title: FCM: the Fuzzy C-Means clustering algorithm
  publication-title: Computers and Geosciences
– year: 1975, January
  ident: bib0045
  article-title: Clustering Algorithms
– volume: 37
  start-page: 624
  year: 2006
  end-page: 629
  ident: bib0125
  article-title: Stability conditions of fuzzy systems and its application to structural and mechanical systems
  publication-title: Advances in Engineering Software
– volume: 33
  start-page: 321
  year: 2010
  end-page: 339
  ident: bib0070
  article-title: A review of the most common partition algorithms in cluster analysis: a comparative study
  publication-title: Colombian Journal of Statistics
– volume: 46
  start-page: 320
  year: 2010
  end-page: 330
  ident: bib0095
  article-title: Performance evaluation of k-means and fuzzy C-means clustering algorithms for statistical distributions of input data points
  publication-title: European Journal of Scientific Research
– year: 2009
  ident: bib0080
  article-title: A k-Means-Like Algorithm for k-Medoids Clustering and Its Performance
– volume: vol. 12
  start-page: 216
  year: 2007
  end-page: 222
  ident: bib0005
  article-title: Stability of k-Means clustering
  publication-title: Advances in Neural Information Processing Systems
– start-page: 28
  year: 2007
  end-page: 32
  ident: bib0010
  article-title: A fast fuzzy clustering algorithm
  publication-title: Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases
– volume: 27
  start-page: 5
  year: 2010
  end-page: 19
  ident: bib0130
  article-title: Application of fuzzy models for the monitoring of ecologically sensitive ecosystems in a dynamic semi-arid landscape from satellite imagery
  publication-title: Engineering Computations
– year: 2002
  ident: 10.1016/j.asoc.2014.02.011_bib0015
– volume: vol. 344
  year: 2009
  ident: 10.1016/j.asoc.2014.02.011_bib0060
– volume: 91
  start-page: 423
  year: 2011
  ident: 10.1016/j.asoc.2014.02.011_bib0035
  article-title: Self-organized clustering and classification: a unified approach via distributed chaotic computing, international symposium on distributed computing and artificial intelligence
  publication-title: Advances in Intelligent and Soft Computing
  doi: 10.1007/978-3-642-19934-9_54
– volume: 27
  start-page: 5
  issue: 1
  year: 2010
  ident: 10.1016/j.asoc.2014.02.011_bib0130
  article-title: Application of fuzzy models for the monitoring of ecologically sensitive ecosystems in a dynamic semi-arid landscape from satellite imagery
  publication-title: Engineering Computations
  doi: 10.1108/02644401011008504
– volume: 7
  start-page: 805
  issue: 2
  year: 2011
  ident: 10.1016/j.asoc.2014.02.011_bib0110
  article-title: A fuzzy AHP-based fault diagnosis for semiconductor lithography process
  publication-title: International Journal of Innovative Computing, Information and Control
– volume: 11
  start-page: 561
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2014.02.011_bib0105
  article-title: Designing a model of FANP in brand image decision making
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2009.12.015
– volume: 7
  start-page: 657
  issue: 5
  year: 2011
  ident: 10.1016/j.asoc.2014.02.011_bib0065
  article-title: A novel approach to medical image segmentation
  publication-title: Journal of Computer Science
  doi: 10.3844/jcssp.2011.657.663
– volume: 46
  start-page: 320
  issue: 3
  year: 2010
  ident: 10.1016/j.asoc.2014.02.011_bib0095
  article-title: Performance evaluation of k-means and fuzzy C-means clustering algorithms for statistical distributions of input data points
  publication-title: European Journal of Scientific Research
– volume: 37
  start-page: 993
  issue: 2
  year: 2010
  ident: 10.1016/j.asoc.2014.02.011_bib0135
  article-title: Application of data mining to the spatial heterogeneity of foreclosed mortgages
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.05.076
– year: 2009
  ident: 10.1016/j.asoc.2014.02.011_bib0080
– volume: vol. 12
  start-page: 216
  year: 2007
  ident: 10.1016/j.asoc.2014.02.011_bib0005
  article-title: Stability of k-Means clustering
– volume: 7
  start-page: 253
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2014.02.011_bib0115
  article-title: Application of quality function deployment to improve the quality of Internet shopping website interface design
  publication-title: International Journal of Innovative Computing, Information and Control
– volume: 27
  start-page: 19
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2014.02.011_bib0145
  article-title: A comparative analysis between k-medoids and fuzzy c-means clustering algorithms for statistically distributed data points
  publication-title: Journal of Theoretical and Applied Information Technology
– volume: 39
  start-page: 234
  issue: 2
  year: 2010
  ident: 10.1016/j.asoc.2014.02.011_bib0085
  article-title: Concept mining of high volume data streams in network traffic using hierarchical clustering
  publication-title: European Journal of Scientific Research
– volume: 17
  start-page: 1693
  issue: 11
  year: 2011
  ident: 10.1016/j.asoc.2014.02.011_bib0120
  article-title: Fuzzy control of interconnected structural systems using the fuzzy Lyapunov method
  publication-title: Journal of Vibration and Control
  doi: 10.1177/1077546310379625
– volume: 13
  start-page: 152
  year: 2005
  ident: 10.1016/j.asoc.2014.02.011_bib0140
  article-title: Robust stabilization of nonlinear multiple time-delay large-scale systems via decentralized fuzzy control
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2004.836067
– volume: 33
  start-page: 321
  issue: December (2)
  year: 2010
  ident: 10.1016/j.asoc.2014.02.011_bib0070
  article-title: A review of the most common partition algorithms in cluster analysis: a comparative study
  publication-title: Colombian Journal of Statistics
– year: 1981
  ident: 10.1016/j.asoc.2014.02.011_bib0025
– volume: 37
  start-page: 624
  issue: 9
  year: 2006
  ident: 10.1016/j.asoc.2014.02.011_bib0125
  article-title: Stability conditions of fuzzy systems and its application to structural and mechanical systems
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2005.12.002
– volume: 2
  start-page: 2409
  issue: 7
  year: 2010
  ident: 10.1016/j.asoc.2014.02.011_bib0075
  article-title: An enhanced k-means algorithm to improve the efficiency using normal distribution data points
  publication-title: International Journal on Computer Science and Engineering
– year: 1988
  ident: 10.1016/j.asoc.2014.02.011_bib0050
– volume: 6
  start-page: 363
  issue: 3
  year: 2010
  ident: 10.1016/j.asoc.2014.02.011_bib0090
  article-title: Computational complexity between K-means and K-medoids clustering algorithms for normal and uniform distributions of data points
  publication-title: Journal of Computer Science
  doi: 10.3844/jcssp.2010.363.368
– year: 1975
  ident: 10.1016/j.asoc.2014.02.011_bib0045
– volume: 4
  issue: 91
  year: 2004
  ident: 10.1016/j.asoc.2014.02.011_bib0100
  article-title: A novel fuzzy c-means clustering algorithm for image thresholding
  publication-title: Measurement Science Review
– year: 2006
  ident: 10.1016/j.asoc.2014.02.011_bib0040
– start-page: 28
  year: 2007
  ident: 10.1016/j.asoc.2014.02.011_bib0010
  article-title: A fast fuzzy clustering algorithm
– volume: 31
  issue: September (3)
  year: 1999
  ident: 10.1016/j.asoc.2014.02.011_bib0055
  article-title: Data clustering: a review
  publication-title: ACM Computing Surveys
– volume: 10
  start-page: 191
  year: 1984
  ident: 10.1016/j.asoc.2014.02.011_bib0020
  article-title: FCM: the Fuzzy C-Means clustering algorithm
  publication-title: Computers and Geosciences
  doi: 10.1016/0098-3004(84)90020-7
– start-page: 9
  year: 1998
  ident: 10.1016/j.asoc.2014.02.011_bib0030
  article-title: Scaling clustering algorithms to large databases
SSID ssj0016928
Score 2.4478033
Snippet •The partition based clustering algorithms k-Means and Fuzzy C-Means algorithms are taken for analysis via its computational time.•The distance between servers...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 134
SubjectTerms Data analysis
Data clustering
Fuzzy C-Means algorithm
k-Means algorithm
Telecommunication data
Title Performance based analysis between k-Means and Fuzzy C-Means clustering algorithms for connection oriented telecommunication data
URI https://dx.doi.org/10.1016/j.asoc.2014.02.011
Volume 19
WOSCitedRecordID wos000334768800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZQy4ELlJcoUOQDtyoocV72sUKtWgRVD6XaWxS_Sss2W-0mqOqNf87YGSehhYoeuEQrbzK7m_n2m8l4HoS8V1Ioxq2MMiHzKFN1GvE811GhWZ1Ymxrpp0ScfC4PD_lsJo4w3XblxwmUTcOvrsTlf1U1rIGyXensPdQ9CIUFeA1KhyOoHY7_pPijSSmAs1GuFys2HglJWd-jLwZMlN842Ouur4EWcEXNO9c5wVcuzk8Xy7P2W9-xwaWnN6afK75wvZGdp9q6ITrTCpNtLHUb_N3g5K6A7X36etcGW-nCBZ6aTsz8olt2p4hTDEEk2ZgqFViz4KBsjCUGWhUTXkwwYtmbWIw63mLvPpBw_qEGYLqsu8y3U0Uy_q1V9g0TNiQWhpy188rJqJyMKmZV7Kq_11mZCyC-9Z2D3dmnYaupEH4A7_AbsLKqTwK8-U3-7L1MPJLjDfIYHyXoTg-Bp-SBaZ6RJ2FMB0XWfk5-ThBBPSJoQARFRFBEBLyhqUcERUTQERF0RAQFeXREBA2IoLcQQR0iXpCve7vHH_cjnLwRqTSO20hIXSoW14oXhVUyl1rWOjduEzypE8ElL421PNYZ07ouJE-16wwXm0zXXNokfUnWmkVjXhEKjwyCKZHY2JaZ5UxYw6xgIFoyGyuxSZJwRyuFbenddJR59XddbpLt4ZrLvinLnWfnQVEVupW9u1gB7u647vW9PuUNeTT-Nd6StXbZmS3yUP1oz1bLdwi6X3groJY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+based+analysis+between+k-Means+and+Fuzzy+C-Means+clustering+algorithms+for+connection+oriented+telecommunication+data&rft.jtitle=Applied+soft+computing&rft.au=T.%2C+Velmurugan&rft.date=2014-06-01&rft.issn=1568-4946&rft.volume=19&rft.spage=134&rft.epage=146&rft_id=info:doi/10.1016%2Fj.asoc.2014.02.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2014_02_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon