Numerical investigation and ANN modeling of performance for hexagonal boron Nitride-water nanofluid PVT collectors
[Display omitted] •hBN/water nanofluid based PVT collectors has been investigated for the first time.•hBN can be utilized as an alternative nanoparticle to enhance the performance of PVT.•hBN/water is exhibited greater efficiencies compared to pure water and graphene/water.•ANN is successful for pre...
Uložené v:
| Vydané v: | Thermal science and engineering progress Ročník 43; s. 101997 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.08.2023
|
| Predmet: | |
| ISSN: | 2451-9049 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | [Display omitted]
•hBN/water nanofluid based PVT collectors has been investigated for the first time.•hBN can be utilized as an alternative nanoparticle to enhance the performance of PVT.•hBN/water is exhibited greater efficiencies compared to pure water and graphene/water.•ANN is successful for predicting the outcomes of hBN-based PVT systems.
In this study, performance of hexagonal boron nitride (hBN)/water nanofluid used as a coolant in a PVT collector for the first time in the open literature was numerically analyzed based on various input parameters. Numerical analyzes were carried out by varying the flow rate between 14.5 and 43.4 l/h, solar radiation intensity between 200 and 1000 W/m2, hBN nanoparticle volumetric ratio between 0 and 0.22% and nanoparticle diameter between 20 and 80 nm. The results revealed that the thermal efficiency increases up to 0.18 volumetric ratio and then decreases, while the electrical efficiency continuously increases as the volumetric ratio increases. Additionally, an increase in the volumetric ratio leads to an improvement in all exergy parameters. The utilization of 20 nm diameter hBN nanoparticles results in an increase of 0.7%, 3.01%, 2.71%, and 1.80% in electrical, thermal, overall, and exergy efficiency, respectively, in comparison to pure water. In addition to the numerical analysis conducted with hBN/water nanofluid, simulations were also performed for graphene/water nanofluid, which is commonly studied for PVT collectors in the literature, and it was shown that the former exhibits better performance than the latter, albeit to a minimal extent. Finally, two different sets of ANN models were developed to predict five performance parameters of the PVT collector using hBN/water nanofluid. In the first set, each model predicted only one of the five performance parameters, while in the second set, a single ANN model predicted all output parameters. Different numbers of neurons and training functions were tested in the ANN models, and the Feed Forward Backpropagation algorithm was used as the training algorithm for all the models. Additionally, Logsig and Purelin transfer functions were used for the hidden and output layers, respectively. The proposed models were able to successfully reproduce the performance parameters. |
|---|---|
| AbstractList | [Display omitted]
•hBN/water nanofluid based PVT collectors has been investigated for the first time.•hBN can be utilized as an alternative nanoparticle to enhance the performance of PVT.•hBN/water is exhibited greater efficiencies compared to pure water and graphene/water.•ANN is successful for predicting the outcomes of hBN-based PVT systems.
In this study, performance of hexagonal boron nitride (hBN)/water nanofluid used as a coolant in a PVT collector for the first time in the open literature was numerically analyzed based on various input parameters. Numerical analyzes were carried out by varying the flow rate between 14.5 and 43.4 l/h, solar radiation intensity between 200 and 1000 W/m2, hBN nanoparticle volumetric ratio between 0 and 0.22% and nanoparticle diameter between 20 and 80 nm. The results revealed that the thermal efficiency increases up to 0.18 volumetric ratio and then decreases, while the electrical efficiency continuously increases as the volumetric ratio increases. Additionally, an increase in the volumetric ratio leads to an improvement in all exergy parameters. The utilization of 20 nm diameter hBN nanoparticles results in an increase of 0.7%, 3.01%, 2.71%, and 1.80% in electrical, thermal, overall, and exergy efficiency, respectively, in comparison to pure water. In addition to the numerical analysis conducted with hBN/water nanofluid, simulations were also performed for graphene/water nanofluid, which is commonly studied for PVT collectors in the literature, and it was shown that the former exhibits better performance than the latter, albeit to a minimal extent. Finally, two different sets of ANN models were developed to predict five performance parameters of the PVT collector using hBN/water nanofluid. In the first set, each model predicted only one of the five performance parameters, while in the second set, a single ANN model predicted all output parameters. Different numbers of neurons and training functions were tested in the ANN models, and the Feed Forward Backpropagation algorithm was used as the training algorithm for all the models. Additionally, Logsig and Purelin transfer functions were used for the hidden and output layers, respectively. The proposed models were able to successfully reproduce the performance parameters. |
| ArticleNumber | 101997 |
| Author | Büyükalaca, Orhan Kılıç, Hacı Mehmet Olmuş, Umutcan Güzelel, Yunus Emre Çerçi, Kamil Neyfel |
| Author_xml | – sequence: 1 givenname: Orhan surname: Büyükalaca fullname: Büyükalaca, Orhan organization: Department of Mechanical Engineering, Faculty of Engineering, Çukurova University, 01330, Sarıçam, Adana, Turkey – sequence: 2 givenname: Hacı Mehmet surname: Kılıç fullname: Kılıç, Hacı Mehmet organization: Department of Mechanical Engineering, Faculty of Engineering, Çukurova University, 01330, Sarıçam, Adana, Turkey – sequence: 3 givenname: Umutcan orcidid: 0000-0002-5799-1840 surname: Olmuş fullname: Olmuş, Umutcan organization: Department of Mechanical Engineering, Faculty of Engineering, Çukurova University, 01330, Sarıçam, Adana, Turkey – sequence: 4 givenname: Yunus Emre surname: Güzelel fullname: Güzelel, Yunus Emre organization: Department of Mechanical Engineering, Faculty of Engineering, Çukurova University, 01330, Sarıçam, Adana, Turkey – sequence: 5 givenname: Kamil Neyfel surname: Çerçi fullname: Çerçi, Kamil Neyfel email: kneyfelcerci@tarsus.edu.tr organization: Department of Mechanical Engineering, Faculty of Engineering, Tarsus University, 33400, Tarsus, Mersin, Turkey |
| BookMark | eNp9kM1OAjEUhbvARERewFVfYLCdH2aauCHEv4SgC3TbdNpbLJlpSVtQ396OuHLB6t6c5DvJ-a7QyDoLCN1QMqOEzm93sxhgP8tJXgwBY_UIjfOyohkjJbtE0xB2hJC8asqCNWPk14cevJGiw8YeIUSzFdE4i4VVeLFe494p6IzdYqfxHrx2vhdWAk4P_oAvsXU2sa3ziVmb6I2C7FNE8NgK63R3MAq_vm-wdF0HMjofrtGFFl2A6d-doLeH-83yKVu9PD4vF6tMFoTEjLVzJQitiGiBNLoGILmGlgjGgKmCqarMoVVlClRTUqHmwKQuq7rWtBB1VUxQc-qV3oXgQXNp4u-46IXpOCV8UMZ3fFDGB2X8pCyh-T90700v_Pd56O4EQRp1NOB5kAaSK2V8Ws6VM-fwH6JpjHg |
| CitedBy_id | crossref_primary_10_1007_s10973_025_14012_2 crossref_primary_10_1177_01445987241301573 crossref_primary_10_1093_ijlct_ctaf071 crossref_primary_10_1016_j_solener_2024_112499 crossref_primary_10_1007_s10973_023_12526_1 crossref_primary_10_1016_j_icheatmasstransfer_2024_107829 crossref_primary_10_12944_CWE_18_2_21 crossref_primary_10_61435_ijred_2024_60129 crossref_primary_10_1007_s11431_024_2814_4 crossref_primary_10_1049_rpg2_70041 crossref_primary_10_1016_j_icheatmasstransfer_2024_108135 crossref_primary_10_3390_en17061269 crossref_primary_10_1155_2024_6649100 crossref_primary_10_1007_s12043_025_02977_6 |
| Cites_doi | 10.1016/j.rser.2019.03.024 10.1016/j.solener.2012.11.018 10.1016/j.enconman.2015.06.077 10.1016/j.enconman.2016.05.083 10.1016/j.vacuum.2014.11.009 10.1016/j.applthermaleng.2022.119609 10.1016/j.ijheatmasstransfer.2017.03.040 10.1016/j.applthermaleng.2016.11.105 10.1016/j.solener.2019.12.069 10.1016/j.applthermaleng.2019.114265 10.24102/ijes.v5i2.674 10.1016/j.enconman.2016.10.066 10.3763/aber.2009.0304 10.1016/j.renene.2021.01.117 10.1016/S0017-9310(99)00369-5 10.1002/aic.690490420 10.1016/j.enconman.2019.112384 10.1016/j.renene.2018.01.014 10.20944/preprints201905.0033.v1 10.1016/j.icheatmasstransfer.2022.106006 10.1016/j.egyr.2021.11.252 10.1016/j.enconman.2021.115063 10.1016/j.csite.2020.100706 10.1016/j.applthermaleng.2015.12.112 10.1016/j.solener.2021.12.004 10.1016/j.solener.2017.06.069 10.1016/j.clet.2021.100132 10.1007/s00521-022-07013-x 10.1016/j.energy.2017.07.046 10.1080/08916159808946559 10.1016/j.icheatmasstransfer.2020.104713 10.1063/1.1700493 10.1007/s40089-014-0126-3 10.1016/j.solener.2015.04.038 10.1016/j.energy.2014.01.102 10.1016/j.ijheatmasstransfer.2015.08.107 10.1016/0013-7480(76)90018-8 10.1080/15567036.2021.1974126 10.1016/j.solener.2016.07.002 10.1016/j.enconman.2018.01.006 10.1016/j.renene.2018.12.049 10.1016/j.applthermaleng.2020.116381 10.1016/j.enbuild.2023.113101 10.1016/j.csite.2021.101692 10.1016/j.enconman.2019.02.066 10.1016/j.solener.2020.07.060 10.1016/j.jclepro.2020.124318 10.1016/j.enconman.2016.07.052 10.1016/j.applthermaleng.2021.117544 10.1016/j.enconman.2018.02.039 10.1016/j.solener.2018.07.051 10.1016/j.solener.2023.02.020 10.1016/j.solener.2018.05.004 10.1016/j.renene.2019.06.099 10.1504/IJEX.2021.117050 10.1016/j.renene.2005.12.002 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.tsep.2023.101997 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_tsep_2023_101997 S2451904923003505 |
| GroupedDBID | --M 0R~ AACTN AAEDW AAHCO AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV AEBSH AEIPS AFJKZ AFTJW AFXIZ AGCQF AGUBO AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BJAXD BKOJK BLXMC BNPGV EBS EFJIC FDB FIRID FYGXN KOM OAUVE ROL SPC SPCBC SSH SSR SST SSZ T5K ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP CITATION EFKBS EFLBG EJD |
| ID | FETCH-LOGICAL-c300t-9b6da0150abe08f7ee02feb0a99e9d39d542ebd40a9d841ad6e9cf4577f13a753 |
| ISICitedReferencesCount | 43 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001037512900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2451-9049 |
| IngestDate | Sat Nov 29 08:00:05 EST 2025 Tue Nov 18 22:28:46 EST 2025 Sat Apr 26 15:41:18 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Keywords | CFD simulation Numerical simulation hBN/water nanofluid Artificial neural network Photovoltaic thermal (PVT) Energy and exergy analysis |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-9b6da0150abe08f7ee02feb0a99e9d39d542ebd40a9d841ad6e9cf4577f13a753 |
| ORCID | 0000-0002-5799-1840 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_tsep_2023_101997 crossref_primary_10_1016_j_tsep_2023_101997 elsevier_sciencedirect_doi_10_1016_j_tsep_2023_101997 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 2023-08-00 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Thermal science and engineering progress |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ebrahimnia-Bajestan, Charjouei Moghadam, Niazmand, Daungthongsuk, Wongwises (b0215) 2016; 92 Slimani, Amirat, Kurucz, Bahria, Hamidat, Chaouch (b0060) 2017; 133 Yuan, Li, Lindsay, Cherns, Pomeroy, Liu, Edgar, Kuball (b0225) 2019; 2 Mishra, Mukherjee, Nayak, Panda (b0250) 2014; 4 Al-Shamani, Sopian, Mat, Hasan, Abed, Ruslan (b0090) 2016; 124 Khanjari, Pourfayaz, Kasaeian (b0095) 2016; 122 Cao, Kamrani, Mirzaei, Khandakar, Vaferi (b0170) 2022; 8 Kostoglou, Polychronopoulou, Rebholz (b0220) 2015; 112 Kalogirou (b0175) 2009; 3 Jani, Mishra, Sahoo (b0180) 2016; 98 Alous, Kayfeci, Uysal (b0115) 2019; 162 M.H. Ahmadi, A. Baghban, E. Salwana, M. Sadeghzadeh, M. Zamen, S. Shamshirband, R. Kumar, Machine learning prediction Models of Electrical Efficiency of Photovoltaic-Thermal Collectors, (2019). 10.20944/preprints201905.0033.v1. Shahsavar, Jha, Arıcı, Estellé (b0020) 2021; 170 Shen, Zhang, Zhang, Pu, Wei, Dong (b0265) 2021; 185 Ghadiri, Sardarabadi, Pasandideh-fard, Moghadam (b0080) 2015; 103 Kumar, Tiwari (b0130) 2022; 53 Kalani, Sardarabadi, Passandideh-Fard (b0185) 2017; 113 Al-Waeli, Sopian, Yousif, Kazem, Boland, Chaichan (b0200) 2019; 186 Rubbi, Habib, Saidur, Aslfattahi, Yahya, Das (b0260) 2020; 208 Çerçi, Hürdoğan (b0155) 2020; 116 Sardarabadi, Hosseinzadeh, Kazemian, Passandideh-Fard (b0100) 2017; 138 Aghakhani, Afrand, Karimipour, Kalbasi, Mehdi Razzaghi (b0015) 2022; 52 Salari, Taheri, Farzanehnia, Passandideh-fard, Sardarabadi (b0010) 2021; 282 Jia, Ran, Zhu, Fang (b0075) 2020; 196 Xuan, Roetzel (b0235) 2000; 43 Hürdoğan, Çerçi, Saydam, Ozalp (b0140) 2021; 44 Rajoria, Agrawal, Tiwari (b0295) 2013; 88 Nasrin, Rahim, Fayaz, Hasanuzzaman (b0005) 2018; 121 J. Yazdanpanahi, F. Sarhaddi, M. Mahdavi Adeli, Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses, Solar Energy, 118 (2015) 197-208. 10.1016/j.solener.2015.04.038. Güzelel, Olmuş, Çerçi, Büyükalaca (b0160) 2021; 199 H.C. Brinkman, The viscosity of concentrated suspensions and solutions, The Journal of chemical physics, 20 (4) (1952) 571-571. 10.1063/1.1700493. Hu, Liu, Guo, Zhang, Chu, Wang (b0270) 2019; 135 Al-Waeli, Kazem, Yousif, Chaichan, Sopian (b0205) 2020; 145 Tumse, Bilgili, Sahin (b0165) 2022; 34 Al-Shamani, Mat, Ruslan, Abed, Sopian (b0050) 2016; 5 Xuan, Li, Hu (b0240) 2003; 49 Mousavi, Kasaeian, Shafii, Jahangir (b0055) 2018; 163 Kılıç (b0255) 2022 Soltani, Kasaeian, Sarrafha, Wen (b0300) 2017; 155 Krishnayatra, Tokas, Kumar (b0145) 2020; 21 Das (b0285) 2021; 28 Güzelel, Olmuş, Çerçi, Büyükalaca (b0135) 2022; 134 Pak, Cho (b0230) 1998; 11 Chaibi, Malvoni, El Rhafiki, Kousksou, Zeraouli (b0195) 2021; 4 Arslan (b0210) 2023; 255 Fayaz, Nasrin, Rahim, Hasanuzzaman (b0110) 2018; 169 Kazemian, Hosseinzadeh, Sardarabadi, Passandideh-Fard (b0040) 2018; 173 Nazri, Fudholi, Mustafa, Yen, Mohammad, Ruslan, Sopian (b0280) 2019; 111 Tripathi, Tiwari, Dwivedi (b0290) 2016; 136 İlhan, Ertürk (b0120) 2017; 111 Salari, Kazemian, Ma, Hakkaki-Fard, Peng (b0065) 2020; 205 Olmuş, Güzelel, Pınar, Özbek, Büyükalaca (b0025) 2022; 231 Gelis, Ozbek, Ozyurt, Celik (b0070) 2023; 219 Sardarabadi, Passandideh-Fard, Zeinali Heris (b0085) 2014; 66 Tiwari, Sodha (b0045) 2006; 31 Hosseinzadeh, Salari, Sardarabadi, Passandideh-Fard (b0105) 2018; 160 Ziyadanogullari, Percin (b0125) 2021; 35 Wolf (b0035) 1976; 16 Osorio, Wang, Karniadakis, Cai, Chryssostomidis, Panwar, Hovsapian (b0150) 2022; 252 Olmuş, Güzelel, Büyükalaca (b0030) 2023; 291 Shahsavar (10.1016/j.tsep.2023.101997_b0020) 2021; 170 10.1016/j.tsep.2023.101997_b0275 Ghadiri (10.1016/j.tsep.2023.101997_b0080) 2015; 103 Kumar (10.1016/j.tsep.2023.101997_b0130) 2022; 53 Yuan (10.1016/j.tsep.2023.101997_b0225) 2019; 2 Olmuş (10.1016/j.tsep.2023.101997_b0025) 2022; 231 Rubbi (10.1016/j.tsep.2023.101997_b0260) 2020; 208 Ebrahimnia-Bajestan (10.1016/j.tsep.2023.101997_b0215) 2016; 92 10.1016/j.tsep.2023.101997_b0190 Mishra (10.1016/j.tsep.2023.101997_b0250) 2014; 4 Al-Waeli (10.1016/j.tsep.2023.101997_b0205) 2020; 145 Gelis (10.1016/j.tsep.2023.101997_b0070) 2023; 219 10.1016/j.tsep.2023.101997_b0245 Xuan (10.1016/j.tsep.2023.101997_b0235) 2000; 43 Pak (10.1016/j.tsep.2023.101997_b0230) 1998; 11 Hu (10.1016/j.tsep.2023.101997_b0270) 2019; 135 Xuan (10.1016/j.tsep.2023.101997_b0240) 2003; 49 Al-Shamani (10.1016/j.tsep.2023.101997_b0050) 2016; 5 Tumse (10.1016/j.tsep.2023.101997_b0165) 2022; 34 Al-Shamani (10.1016/j.tsep.2023.101997_b0090) 2016; 124 Cao (10.1016/j.tsep.2023.101997_b0170) 2022; 8 Salari (10.1016/j.tsep.2023.101997_b0065) 2020; 205 Hürdoğan (10.1016/j.tsep.2023.101997_b0140) 2021; 44 Aghakhani (10.1016/j.tsep.2023.101997_b0015) 2022; 52 Çerçi (10.1016/j.tsep.2023.101997_b0155) 2020; 116 Kazemian (10.1016/j.tsep.2023.101997_b0040) 2018; 173 Osorio (10.1016/j.tsep.2023.101997_b0150) 2022; 252 Tripathi (10.1016/j.tsep.2023.101997_b0290) 2016; 136 Wolf (10.1016/j.tsep.2023.101997_b0035) 1976; 16 Güzelel (10.1016/j.tsep.2023.101997_b0160) 2021; 199 Olmuş (10.1016/j.tsep.2023.101997_b0030) 2023; 291 Kalani (10.1016/j.tsep.2023.101997_b0185) 2017; 113 Sardarabadi (10.1016/j.tsep.2023.101997_b0100) 2017; 138 Soltani (10.1016/j.tsep.2023.101997_b0300) 2017; 155 Kalogirou (10.1016/j.tsep.2023.101997_b0175) 2009; 3 Jia (10.1016/j.tsep.2023.101997_b0075) 2020; 196 Rajoria (10.1016/j.tsep.2023.101997_b0295) 2013; 88 Tiwari (10.1016/j.tsep.2023.101997_b0045) 2006; 31 Jani (10.1016/j.tsep.2023.101997_b0180) 2016; 98 Shen (10.1016/j.tsep.2023.101997_b0265) 2021; 185 Salari (10.1016/j.tsep.2023.101997_b0010) 2021; 282 Nazri (10.1016/j.tsep.2023.101997_b0280) 2019; 111 Chaibi (10.1016/j.tsep.2023.101997_b0195) 2021; 4 Khanjari (10.1016/j.tsep.2023.101997_b0095) 2016; 122 Kostoglou (10.1016/j.tsep.2023.101997_b0220) 2015; 112 Mousavi (10.1016/j.tsep.2023.101997_b0055) 2018; 163 Sardarabadi (10.1016/j.tsep.2023.101997_b0085) 2014; 66 Al-Waeli (10.1016/j.tsep.2023.101997_b0200) 2019; 186 Güzelel (10.1016/j.tsep.2023.101997_b0135) 2022; 134 Ziyadanogullari (10.1016/j.tsep.2023.101997_b0125) 2021; 35 Nasrin (10.1016/j.tsep.2023.101997_b0005) 2018; 121 İlhan (10.1016/j.tsep.2023.101997_b0120) 2017; 111 Fayaz (10.1016/j.tsep.2023.101997_b0110) 2018; 169 Arslan (10.1016/j.tsep.2023.101997_b0210) 2023; 255 Krishnayatra (10.1016/j.tsep.2023.101997_b0145) 2020; 21 Kılıç (10.1016/j.tsep.2023.101997_b0255) 2022 Hosseinzadeh (10.1016/j.tsep.2023.101997_b0105) 2018; 160 Alous (10.1016/j.tsep.2023.101997_b0115) 2019; 162 Slimani (10.1016/j.tsep.2023.101997_b0060) 2017; 133 Das (10.1016/j.tsep.2023.101997_b0285) 2021; 28 |
| References_xml | – volume: 282 year: 2021 ident: b0010 article-title: An updated review of the performance of nanofluid-based photovoltaic thermal systems from energy, exergy, economic, and environmental (4E) approaches publication-title: J. Clean. Prod. – volume: 5 year: 2016 ident: b0050 article-title: Effect of new ellipse design on the performance enhancement of PV/T collector: CDF approach publication-title: International Journal of Environment and Sustainability – volume: 155 start-page: 1033 year: 2017 end-page: 1043 ident: b0300 article-title: An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application publication-title: Sol. Energy – volume: 11 start-page: 151 year: 1998 end-page: 170 ident: b0230 article-title: Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles publication-title: Exp. Heat Transfer – volume: 103 start-page: 468 year: 2015 end-page: 476 ident: b0080 article-title: Experimental investigation of a PVT system performance using nano ferrofluids publication-title: Energ. Conver. Manage. – volume: 199 year: 2021 ident: b0160 article-title: Comprehensive modelling of rotary desiccant wheel with different multiple regression and machine learning methods for balanced flow publication-title: Appl. Therm. Eng. – volume: 162 year: 2019 ident: b0115 article-title: Experimental investigations of using MWCNTs and graphene nanoplatelets water-based nanofluids as coolants in PVT systems publication-title: Appl. Therm. Eng. – volume: 252 year: 2022 ident: b0150 article-title: Forecasting solar-thermal systems performance under transient operation using a data-driven machine learning approach based on the deep operator network architecture publication-title: Energ. Conver. Manage. – reference: M.H. Ahmadi, A. Baghban, E. Salwana, M. Sadeghzadeh, M. Zamen, S. Shamshirband, R. Kumar, Machine learning prediction Models of Electrical Efficiency of Photovoltaic-Thermal Collectors, (2019). 10.20944/preprints201905.0033.v1. – volume: 169 start-page: 217 year: 2018 end-page: 230 ident: b0110 article-title: Energy and exergy analysis of the PVT system: Effect of nanofluid flow rate publication-title: Sol. Energy – volume: 185 year: 2021 ident: b0265 article-title: A numerical investigation on optimization of PV/T systems with the field synergy theory publication-title: Appl. Therm. Eng. – volume: 255 start-page: 369 year: 2023 end-page: 380 ident: b0210 article-title: Applying regression techniques to determine mathematical equations of exergy, electricity, and energy values of photovoltaic thermal collector publication-title: Sol. Energy – volume: 113 start-page: 1170 year: 2017 end-page: 1177 ident: b0185 article-title: Using artificial neural network models and particle swarm optimization for manner prediction of a photovoltaic thermal nanofluid based collector publication-title: Appl. Therm. Eng. – volume: 205 year: 2020 ident: b0065 article-title: Nanofluid based photovoltaic thermal systems integrated with phase change materials: Numerical simulation and thermodynamic analysis publication-title: Energ. Conver. Manage. – volume: 136 start-page: 260 year: 2016 end-page: 267 ident: b0290 article-title: Overall energy, exergy and carbon credit analysis of N partially covered Photovoltaic Thermal (PVT) concentrating collector connected in series publication-title: Sol. Energy – volume: 208 start-page: 124 year: 2020 end-page: 138 ident: b0260 article-title: Performance optimization of a hybrid PV/T solar system using Soybean oil/MXene nanofluids as a new class of heat transfer fluids publication-title: Sol. Energy – volume: 2 year: 2019 ident: b0225 article-title: Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration, Communications publication-title: Physics – volume: 52 year: 2022 ident: b0015 article-title: Numerical study of the cooling effect of a PVT on its thermal and electrical efficiency using a Cu tube of different diameters and lengths publication-title: Sustainable Energy Technol. Assess. – reference: J. Yazdanpanahi, F. Sarhaddi, M. Mahdavi Adeli, Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses, Solar Energy, 118 (2015) 197-208. 10.1016/j.solener.2015.04.038. – volume: 3 start-page: 83 year: 2009 end-page: 119 ident: b0175 article-title: Artificial neural networks and genetic algorithms in energy applications in buildings publication-title: Adv. Build. Energy Res. – volume: 4 year: 2021 ident: b0195 article-title: Artificial neural-network based model to forecast the electrical and thermal efficiencies of PVT air collector systems publication-title: Cleaner Engineering and Technology – volume: 133 start-page: 458 year: 2017 end-page: 476 ident: b0060 article-title: A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions publication-title: Energ. Conver. Manage. – volume: 135 start-page: 701 year: 2019 end-page: 710 ident: b0270 article-title: Performance improvement of baffle-type solar air collector based on first chamber narrowing publication-title: Renew. Energy – volume: 138 start-page: 682 year: 2017 end-page: 695 ident: b0100 article-title: Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints publication-title: Energy – volume: 219 year: 2023 ident: b0070 article-title: Multi-objective optimization of a photovoltaic thermal system with different water based nanofluids using Taguchi approach publication-title: Appl. Therm. Eng. – volume: 28 year: 2021 ident: b0285 article-title: Exploration of the effect of two-axis PLC solar tracking system on the thermal performance of solar air collector publication-title: Case Studies in Thermal Engineering – volume: 92 start-page: 1041 year: 2016 end-page: 1052 ident: b0215 article-title: Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers publication-title: Int. J. Heat Mass Transf. – volume: 44 start-page: 5586 year: 2021 end-page: 5609 ident: b0140 article-title: Experimental and Modeling Study of Peanut Drying in a Solar Dryer with a Novel Type of a Drying Chamber publication-title: Energy Sources Part A – volume: 112 start-page: 42 year: 2015 end-page: 45 ident: b0220 article-title: Thermal and chemical stability of hexagonal boron nitride (h-BN) nanoplatelets publication-title: Vacuum – volume: 111 start-page: 500 year: 2017 end-page: 507 ident: b0120 article-title: Experimental characterization of laminar forced convection of hBN-water nanofluid in circular pipe publication-title: Int. J. Heat Mass Transf. – volume: 98 start-page: 1091 year: 2016 end-page: 1103 ident: b0180 article-title: Performance prediction of rotary solid desiccant dehumidifier in hybrid air-conditioning system using artificial neural network publication-title: Appl. Therm. Eng. – volume: 111 start-page: 132 year: 2019 end-page: 144 ident: b0280 article-title: Exergy and improvement potential of hybrid photovoltaic thermal/thermoelectric (PVT/TE) air collector publication-title: Renew. Sustain. Energy Rev. – volume: 43 start-page: 3701 year: 2000 end-page: 3707 ident: b0235 article-title: Conceptions for heat transfer correlation of nanofluids publication-title: Int. J. Heat Mass Transf. – volume: 196 start-page: 625 year: 2020 end-page: 636 ident: b0075 article-title: Numerical analysis of photovoltaic-thermal collector using nanofluid as a coolant publication-title: Sol. Energy – volume: 291 year: 2023 ident: b0030 article-title: Seasonal analysis of a desiccant air-conditioning system supported by water-cooled PV/T units publication-title: Energ. Buildings – volume: 16 start-page: 79 year: 1976 end-page: 90 ident: b0035 article-title: Performance analyses of combined heating and photovoltaic power systems for residences publication-title: Energy Conversion – volume: 145 start-page: 963 year: 2020 end-page: 980 ident: b0205 article-title: Mathematical and neural network modeling for predicting and analyzing of nanofluid-nano PCM photovoltaic thermal systems performance publication-title: Renew. Energy – volume: 170 start-page: 410 year: 2021 end-page: 425 ident: b0020 article-title: Experimental investigation of the usability of the rifled serpentine tube to improve energy and exergy performances of a nanofluid-based photovoltaic/thermal system publication-title: Renew. Energy – volume: 35 start-page: 438 year: 2021 end-page: 452 ident: b0125 article-title: An exergy analysis of a concentric tube heat exchanger using hBN-water nanofluids publication-title: Int. J. Exergy – volume: 186 start-page: 368 year: 2019 end-page: 379 ident: b0200 article-title: Artificial neural network modeling and analysis of photovoltaic/thermal system based on the experimental study publication-title: Energ. Conver. Manage. – volume: 21 year: 2020 ident: b0145 article-title: Numerical heat transfer analysis & predicting thermal performance of fins for a novel heat exchanger using machine learning publication-title: Case Studies in Thermal Engineering – volume: 116 year: 2020 ident: b0155 article-title: Comparative study of multiple linear regression (MLR) and artificial neural network (ANN) techniques to model a solid desiccant wheel publication-title: Int. Commun. Heat Mass Transfer – volume: 66 start-page: 264 year: 2014 end-page: 272 ident: b0085 article-title: Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units) publication-title: Energy – reference: H.C. Brinkman, The viscosity of concentrated suspensions and solutions, The Journal of chemical physics, 20 (4) (1952) 571-571. 10.1063/1.1700493. – volume: 4 start-page: 109 year: 2014 end-page: 120 ident: b0250 article-title: A brief review on viscosity of nanofluids publication-title: International Nano Letters – volume: 124 start-page: 528 year: 2016 end-page: 542 ident: b0090 article-title: Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions publication-title: Energ. Conver. Manage. – volume: 134 year: 2022 ident: b0135 article-title: New multiple regression and machine learning models of rotary desiccant wheel for unbalanced flow conditions publication-title: Int. Commun. Heat Mass Transfer – volume: 88 start-page: 110 year: 2013 end-page: 119 ident: b0295 article-title: Exergetic and enviroeconomic analysis of novel hybrid PVT array publication-title: Sol. Energy – volume: 122 start-page: 263 year: 2016 end-page: 278 ident: b0095 article-title: Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system publication-title: Energ. Conver. Manage. – volume: 173 start-page: 1002 year: 2018 end-page: 1010 ident: b0040 article-title: Effect of glass cover and working fluid on the performance of photovoltaic thermal (PVT) system: An experimental study publication-title: Sol. Energy – volume: 49 start-page: 1038 year: 2003 end-page: 1043 ident: b0240 article-title: Aggregation structure and thermal conductivity of nanofluids publication-title: AIChE J – volume: 8 start-page: 24 year: 2022 end-page: 36 ident: b0170 article-title: Electrical efficiency of the photovoltaic/thermal collectors cooled by nanofluids: Machine learning simulation and optimization by evolutionary algorithm publication-title: Energy Rep. – volume: 31 start-page: 2460 year: 2006 end-page: 2474 ident: b0045 article-title: Performance evaluation of hybrid PV/thermal water/air heating system: a parametric study publication-title: Renew. Energy – volume: 231 start-page: 566 year: 2022 end-page: 577 ident: b0025 article-title: Performance assessment of a desiccant air-conditioning system combined with dew-point indirect evaporative cooler and PV/T publication-title: Sol. Energy – volume: 163 start-page: 187 year: 2018 end-page: 195 ident: b0055 article-title: Numerical investigation of the effects of a copper foam filled with phase change materials in a water-cooled photovoltaic/thermal system publication-title: Energ. Conver. Manage. – volume: 53 year: 2022 ident: b0130 article-title: Performance evaluation of evacuated tube solar collector using boron nitride nanofluid publication-title: Sustainable Energy Technol. Assess. – volume: 121 start-page: 286 year: 2018 end-page: 300 ident: b0005 article-title: Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research publication-title: Renew. Energy – volume: 160 start-page: 93 year: 2018 end-page: 108 ident: b0105 article-title: Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation publication-title: Energ. Conver. Manage. – year: 2022 ident: b0255 article-title: Numerical Investigation of Using Nanofluid Coolant in PVT System – volume: 34 start-page: 10823 year: 2022 end-page: 10844 ident: b0165 article-title: Estimation of aerodynamic coefficients of a non-slender delta wing under ground effect using artificial intelligence techniques publication-title: Neural Comput. & Applic. – volume: 111 start-page: 132 year: 2019 ident: 10.1016/j.tsep.2023.101997_b0280 article-title: Exergy and improvement potential of hybrid photovoltaic thermal/thermoelectric (PVT/TE) air collector publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.03.024 – volume: 88 start-page: 110 year: 2013 ident: 10.1016/j.tsep.2023.101997_b0295 article-title: Exergetic and enviroeconomic analysis of novel hybrid PVT array publication-title: Sol. Energy doi: 10.1016/j.solener.2012.11.018 – volume: 103 start-page: 468 year: 2015 ident: 10.1016/j.tsep.2023.101997_b0080 article-title: Experimental investigation of a PVT system performance using nano ferrofluids publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2015.06.077 – volume: 53 year: 2022 ident: 10.1016/j.tsep.2023.101997_b0130 article-title: Performance evaluation of evacuated tube solar collector using boron nitride nanofluid publication-title: Sustainable Energy Technol. Assess. – volume: 122 start-page: 263 year: 2016 ident: 10.1016/j.tsep.2023.101997_b0095 article-title: Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2016.05.083 – volume: 112 start-page: 42 year: 2015 ident: 10.1016/j.tsep.2023.101997_b0220 article-title: Thermal and chemical stability of hexagonal boron nitride (h-BN) nanoplatelets publication-title: Vacuum doi: 10.1016/j.vacuum.2014.11.009 – volume: 2 issue: 1 year: 2019 ident: 10.1016/j.tsep.2023.101997_b0225 article-title: Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration, Communications publication-title: Physics – volume: 219 year: 2023 ident: 10.1016/j.tsep.2023.101997_b0070 article-title: Multi-objective optimization of a photovoltaic thermal system with different water based nanofluids using Taguchi approach publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.119609 – volume: 111 start-page: 500 year: 2017 ident: 10.1016/j.tsep.2023.101997_b0120 article-title: Experimental characterization of laminar forced convection of hBN-water nanofluid in circular pipe publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.03.040 – volume: 113 start-page: 1170 year: 2017 ident: 10.1016/j.tsep.2023.101997_b0185 article-title: Using artificial neural network models and particle swarm optimization for manner prediction of a photovoltaic thermal nanofluid based collector publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.11.105 – volume: 196 start-page: 625 year: 2020 ident: 10.1016/j.tsep.2023.101997_b0075 article-title: Numerical analysis of photovoltaic-thermal collector using nanofluid as a coolant publication-title: Sol. Energy doi: 10.1016/j.solener.2019.12.069 – volume: 162 year: 2019 ident: 10.1016/j.tsep.2023.101997_b0115 article-title: Experimental investigations of using MWCNTs and graphene nanoplatelets water-based nanofluids as coolants in PVT systems publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114265 – volume: 5 issue: 2 year: 2016 ident: 10.1016/j.tsep.2023.101997_b0050 article-title: Effect of new ellipse design on the performance enhancement of PV/T collector: CDF approach publication-title: International Journal of Environment and Sustainability doi: 10.24102/ijes.v5i2.674 – volume: 133 start-page: 458 year: 2017 ident: 10.1016/j.tsep.2023.101997_b0060 article-title: A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2016.10.066 – volume: 3 start-page: 83 issue: 1 year: 2009 ident: 10.1016/j.tsep.2023.101997_b0175 article-title: Artificial neural networks and genetic algorithms in energy applications in buildings publication-title: Adv. Build. Energy Res. doi: 10.3763/aber.2009.0304 – volume: 170 start-page: 410 year: 2021 ident: 10.1016/j.tsep.2023.101997_b0020 article-title: Experimental investigation of the usability of the rifled serpentine tube to improve energy and exergy performances of a nanofluid-based photovoltaic/thermal system publication-title: Renew. Energy doi: 10.1016/j.renene.2021.01.117 – volume: 43 start-page: 3701 issue: 19 year: 2000 ident: 10.1016/j.tsep.2023.101997_b0235 article-title: Conceptions for heat transfer correlation of nanofluids publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(99)00369-5 – volume: 49 start-page: 1038 issue: 4 year: 2003 ident: 10.1016/j.tsep.2023.101997_b0240 article-title: Aggregation structure and thermal conductivity of nanofluids publication-title: AIChE J doi: 10.1002/aic.690490420 – volume: 205 year: 2020 ident: 10.1016/j.tsep.2023.101997_b0065 article-title: Nanofluid based photovoltaic thermal systems integrated with phase change materials: Numerical simulation and thermodynamic analysis publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2019.112384 – volume: 121 start-page: 286 year: 2018 ident: 10.1016/j.tsep.2023.101997_b0005 article-title: Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research publication-title: Renew. Energy doi: 10.1016/j.renene.2018.01.014 – ident: 10.1016/j.tsep.2023.101997_b0190 doi: 10.20944/preprints201905.0033.v1 – volume: 134 year: 2022 ident: 10.1016/j.tsep.2023.101997_b0135 article-title: New multiple regression and machine learning models of rotary desiccant wheel for unbalanced flow conditions publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2022.106006 – volume: 8 start-page: 24 year: 2022 ident: 10.1016/j.tsep.2023.101997_b0170 article-title: Electrical efficiency of the photovoltaic/thermal collectors cooled by nanofluids: Machine learning simulation and optimization by evolutionary algorithm publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.11.252 – volume: 252 year: 2022 ident: 10.1016/j.tsep.2023.101997_b0150 article-title: Forecasting solar-thermal systems performance under transient operation using a data-driven machine learning approach based on the deep operator network architecture publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2021.115063 – volume: 21 year: 2020 ident: 10.1016/j.tsep.2023.101997_b0145 article-title: Numerical heat transfer analysis & predicting thermal performance of fins for a novel heat exchanger using machine learning publication-title: Case Studies in Thermal Engineering doi: 10.1016/j.csite.2020.100706 – volume: 98 start-page: 1091 year: 2016 ident: 10.1016/j.tsep.2023.101997_b0180 article-title: Performance prediction of rotary solid desiccant dehumidifier in hybrid air-conditioning system using artificial neural network publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.12.112 – volume: 231 start-page: 566 year: 2022 ident: 10.1016/j.tsep.2023.101997_b0025 article-title: Performance assessment of a desiccant air-conditioning system combined with dew-point indirect evaporative cooler and PV/T publication-title: Sol. Energy doi: 10.1016/j.solener.2021.12.004 – volume: 155 start-page: 1033 year: 2017 ident: 10.1016/j.tsep.2023.101997_b0300 article-title: An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application publication-title: Sol. Energy doi: 10.1016/j.solener.2017.06.069 – volume: 4 year: 2021 ident: 10.1016/j.tsep.2023.101997_b0195 article-title: Artificial neural-network based model to forecast the electrical and thermal efficiencies of PVT air collector systems publication-title: Cleaner Engineering and Technology doi: 10.1016/j.clet.2021.100132 – volume: 34 start-page: 10823 issue: 13 year: 2022 ident: 10.1016/j.tsep.2023.101997_b0165 article-title: Estimation of aerodynamic coefficients of a non-slender delta wing under ground effect using artificial intelligence techniques publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-022-07013-x – volume: 138 start-page: 682 year: 2017 ident: 10.1016/j.tsep.2023.101997_b0100 article-title: Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints publication-title: Energy doi: 10.1016/j.energy.2017.07.046 – volume: 11 start-page: 151 issue: 2 year: 1998 ident: 10.1016/j.tsep.2023.101997_b0230 article-title: Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles publication-title: Exp. Heat Transfer doi: 10.1080/08916159808946559 – year: 2022 ident: 10.1016/j.tsep.2023.101997_b0255 – volume: 116 year: 2020 ident: 10.1016/j.tsep.2023.101997_b0155 article-title: Comparative study of multiple linear regression (MLR) and artificial neural network (ANN) techniques to model a solid desiccant wheel publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2020.104713 – ident: 10.1016/j.tsep.2023.101997_b0245 doi: 10.1063/1.1700493 – volume: 4 start-page: 109 issue: 4 year: 2014 ident: 10.1016/j.tsep.2023.101997_b0250 article-title: A brief review on viscosity of nanofluids publication-title: International Nano Letters doi: 10.1007/s40089-014-0126-3 – ident: 10.1016/j.tsep.2023.101997_b0275 doi: 10.1016/j.solener.2015.04.038 – volume: 66 start-page: 264 year: 2014 ident: 10.1016/j.tsep.2023.101997_b0085 article-title: Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units) publication-title: Energy doi: 10.1016/j.energy.2014.01.102 – volume: 92 start-page: 1041 year: 2016 ident: 10.1016/j.tsep.2023.101997_b0215 article-title: Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.08.107 – volume: 16 start-page: 79 issue: 1–2 year: 1976 ident: 10.1016/j.tsep.2023.101997_b0035 article-title: Performance analyses of combined heating and photovoltaic power systems for residences publication-title: Energy Conversion doi: 10.1016/0013-7480(76)90018-8 – volume: 44 start-page: 5586 issue: 2 year: 2021 ident: 10.1016/j.tsep.2023.101997_b0140 article-title: Experimental and Modeling Study of Peanut Drying in a Solar Dryer with a Novel Type of a Drying Chamber publication-title: Energy Sources Part A doi: 10.1080/15567036.2021.1974126 – volume: 136 start-page: 260 year: 2016 ident: 10.1016/j.tsep.2023.101997_b0290 article-title: Overall energy, exergy and carbon credit analysis of N partially covered Photovoltaic Thermal (PVT) concentrating collector connected in series publication-title: Sol. Energy doi: 10.1016/j.solener.2016.07.002 – volume: 160 start-page: 93 year: 2018 ident: 10.1016/j.tsep.2023.101997_b0105 article-title: Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2018.01.006 – volume: 52 year: 2022 ident: 10.1016/j.tsep.2023.101997_b0015 article-title: Numerical study of the cooling effect of a PVT on its thermal and electrical efficiency using a Cu tube of different diameters and lengths publication-title: Sustainable Energy Technol. Assess. – volume: 135 start-page: 701 year: 2019 ident: 10.1016/j.tsep.2023.101997_b0270 article-title: Performance improvement of baffle-type solar air collector based on first chamber narrowing publication-title: Renew. Energy doi: 10.1016/j.renene.2018.12.049 – volume: 185 year: 2021 ident: 10.1016/j.tsep.2023.101997_b0265 article-title: A numerical investigation on optimization of PV/T systems with the field synergy theory publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.116381 – volume: 291 year: 2023 ident: 10.1016/j.tsep.2023.101997_b0030 article-title: Seasonal analysis of a desiccant air-conditioning system supported by water-cooled PV/T units publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2023.113101 – volume: 28 year: 2021 ident: 10.1016/j.tsep.2023.101997_b0285 article-title: Exploration of the effect of two-axis PLC solar tracking system on the thermal performance of solar air collector publication-title: Case Studies in Thermal Engineering doi: 10.1016/j.csite.2021.101692 – volume: 186 start-page: 368 year: 2019 ident: 10.1016/j.tsep.2023.101997_b0200 article-title: Artificial neural network modeling and analysis of photovoltaic/thermal system based on the experimental study publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2019.02.066 – volume: 208 start-page: 124 year: 2020 ident: 10.1016/j.tsep.2023.101997_b0260 article-title: Performance optimization of a hybrid PV/T solar system using Soybean oil/MXene nanofluids as a new class of heat transfer fluids publication-title: Sol. Energy doi: 10.1016/j.solener.2020.07.060 – volume: 282 year: 2021 ident: 10.1016/j.tsep.2023.101997_b0010 article-title: An updated review of the performance of nanofluid-based photovoltaic thermal systems from energy, exergy, economic, and environmental (4E) approaches publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.124318 – volume: 124 start-page: 528 year: 2016 ident: 10.1016/j.tsep.2023.101997_b0090 article-title: Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2016.07.052 – volume: 199 year: 2021 ident: 10.1016/j.tsep.2023.101997_b0160 article-title: Comprehensive modelling of rotary desiccant wheel with different multiple regression and machine learning methods for balanced flow publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117544 – volume: 163 start-page: 187 year: 2018 ident: 10.1016/j.tsep.2023.101997_b0055 article-title: Numerical investigation of the effects of a copper foam filled with phase change materials in a water-cooled photovoltaic/thermal system publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2018.02.039 – volume: 173 start-page: 1002 year: 2018 ident: 10.1016/j.tsep.2023.101997_b0040 article-title: Effect of glass cover and working fluid on the performance of photovoltaic thermal (PVT) system: An experimental study publication-title: Sol. Energy doi: 10.1016/j.solener.2018.07.051 – volume: 255 start-page: 369 year: 2023 ident: 10.1016/j.tsep.2023.101997_b0210 article-title: Applying regression techniques to determine mathematical equations of exergy, electricity, and energy values of photovoltaic thermal collector publication-title: Sol. Energy doi: 10.1016/j.solener.2023.02.020 – volume: 169 start-page: 217 year: 2018 ident: 10.1016/j.tsep.2023.101997_b0110 article-title: Energy and exergy analysis of the PVT system: Effect of nanofluid flow rate publication-title: Sol. Energy doi: 10.1016/j.solener.2018.05.004 – volume: 145 start-page: 963 year: 2020 ident: 10.1016/j.tsep.2023.101997_b0205 article-title: Mathematical and neural network modeling for predicting and analyzing of nanofluid-nano PCM photovoltaic thermal systems performance publication-title: Renew. Energy doi: 10.1016/j.renene.2019.06.099 – volume: 35 start-page: 438 issue: 4 year: 2021 ident: 10.1016/j.tsep.2023.101997_b0125 article-title: An exergy analysis of a concentric tube heat exchanger using hBN-water nanofluids publication-title: Int. J. Exergy doi: 10.1504/IJEX.2021.117050 – volume: 31 start-page: 2460 issue: 15 year: 2006 ident: 10.1016/j.tsep.2023.101997_b0045 article-title: Performance evaluation of hybrid PV/thermal water/air heating system: a parametric study publication-title: Renew. Energy doi: 10.1016/j.renene.2005.12.002 |
| SSID | ssj0002584398 |
| Score | 2.4295077 |
| Snippet | [Display omitted]
•hBN/water nanofluid based PVT collectors has been investigated for the first time.•hBN can be utilized as an alternative nanoparticle to... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 101997 |
| SubjectTerms | Artificial neural network CFD simulation Energy and exergy analysis hBN/water nanofluid Numerical simulation Photovoltaic thermal (PVT) |
| Title | Numerical investigation and ANN modeling of performance for hexagonal boron Nitride-water nanofluid PVT collectors |
| URI | https://dx.doi.org/10.1016/j.tsep.2023.101997 |
| Volume | 43 |
| WOSCitedRecordID | wos001037512900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 2451-9049 databaseCode: AIEXJ dateStart: 20170301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0002584398 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5wwELa2mx7aQ9SnmqatfGhOiIg3-LhZbfomOWyq7QkZbLKbsmzEQrrt_-z_6Ribx6Zt1Bx6AWSZATEfZhh_8xmh176ZpDSITZ1aJNVh9DN0QlkKb3xqxjH3HM-tC4U_-mEYzGbkdDD42dTCXGV-ngebDbn8r66GNnC2KJ29hbtbo9AAx-B02ILbYftPjg8rOQkjxDRaDQ3FOR6FoVz7puE698oGBN9wzjf0vM4NxkLZAHBSFgvG9W9UaCnmNF-lWbVg2unnqSYQVKf81_0AF2AH9lShpSpG4J3moeSDNawPkQYQM_VH4-9y95VmNKnD2ZNi3uH2gwh5j8xM7uq5fb_-ZtJENmmf-HzZlXKfZMvqYOwekGPR62xZlUln7I281A-uCApfqrxaa5OlYgGrDIhlt_w7NVBajitoJlL6tBnVHbs3LMO4QyQN-LcvhkxeXByWay7kSy37sOu8Lc997bPZkhkbntxFJGxEwkYkbdxBO5bvkmCIdkbvJrP3bfLPgrDPrtdpbu9dFXRJ7uH1m_lz0NQLhKYP0K76g8EjibyHaMDzR-h-T9fyMSpaDOItDGJAAwYM4gaDeJXiHgYxHOAWg7jGIN7CIG4xiAGDuMPgE3R2PJmO3-pqcQ89sQ2j1EnsMSrSbTTmRpD6nBtWymODEsIJswlzHYvHzIEGFjgmZR4nSeq4vp-aNoWf7KdomK9y_gxhJ2CMeCJSdhLHJQa1_YC7DHrZSUDiYA-ZzdOLEqV8LxZgyaK_u24Pae05l1L35cbebuOUSL1fMiKNAGY3nPf8VlfZR_c6-L9Aw7Ko-Et0N7kqF-vilcLYLymtuYc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+and+ANN+modeling+of+performance+for+hexagonal+boron+Nitride-water+nanofluid+PVT+collectors&rft.jtitle=Thermal+science+and+engineering+progress&rft.au=B%C3%BCy%C3%BCkalaca%2C+Orhan&rft.au=K%C4%B1l%C4%B1%C3%A7%2C+Hac%C4%B1+Mehmet&rft.au=Olmu%C5%9F%2C+Umutcan&rft.au=G%C3%BCzelel%2C+Yunus+Emre&rft.date=2023-08-01&rft.issn=2451-9049&rft.volume=43&rft.spage=101997&rft_id=info:doi/10.1016%2Fj.tsep.2023.101997&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tsep_2023_101997 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-9049&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-9049&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-9049&client=summon |