Numerical investigation and ANN modeling of performance for hexagonal boron Nitride-water nanofluid PVT collectors

[Display omitted] •hBN/water nanofluid based PVT collectors has been investigated for the first time.•hBN can be utilized as an alternative nanoparticle to enhance the performance of PVT.•hBN/water is exhibited greater efficiencies compared to pure water and graphene/water.•ANN is successful for pre...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Thermal science and engineering progress Ročník 43; s. 101997
Hlavní autori: Büyükalaca, Orhan, Kılıç, Hacı Mehmet, Olmuş, Umutcan, Güzelel, Yunus Emre, Çerçi, Kamil Neyfel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.08.2023
Predmet:
ISSN:2451-9049
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract [Display omitted] •hBN/water nanofluid based PVT collectors has been investigated for the first time.•hBN can be utilized as an alternative nanoparticle to enhance the performance of PVT.•hBN/water is exhibited greater efficiencies compared to pure water and graphene/water.•ANN is successful for predicting the outcomes of hBN-based PVT systems. In this study, performance of hexagonal boron nitride (hBN)/water nanofluid used as a coolant in a PVT collector for the first time in the open literature was numerically analyzed based on various input parameters. Numerical analyzes were carried out by varying the flow rate between 14.5 and 43.4 l/h, solar radiation intensity between 200 and 1000 W/m2, hBN nanoparticle volumetric ratio between 0 and 0.22% and nanoparticle diameter between 20 and 80 nm. The results revealed that the thermal efficiency increases up to 0.18 volumetric ratio and then decreases, while the electrical efficiency continuously increases as the volumetric ratio increases. Additionally, an increase in the volumetric ratio leads to an improvement in all exergy parameters. The utilization of 20 nm diameter hBN nanoparticles results in an increase of 0.7%, 3.01%, 2.71%, and 1.80% in electrical, thermal, overall, and exergy efficiency, respectively, in comparison to pure water. In addition to the numerical analysis conducted with hBN/water nanofluid, simulations were also performed for graphene/water nanofluid, which is commonly studied for PVT collectors in the literature, and it was shown that the former exhibits better performance than the latter, albeit to a minimal extent. Finally, two different sets of ANN models were developed to predict five performance parameters of the PVT collector using hBN/water nanofluid. In the first set, each model predicted only one of the five performance parameters, while in the second set, a single ANN model predicted all output parameters. Different numbers of neurons and training functions were tested in the ANN models, and the Feed Forward Backpropagation algorithm was used as the training algorithm for all the models. Additionally, Logsig and Purelin transfer functions were used for the hidden and output layers, respectively. The proposed models were able to successfully reproduce the performance parameters.
AbstractList [Display omitted] •hBN/water nanofluid based PVT collectors has been investigated for the first time.•hBN can be utilized as an alternative nanoparticle to enhance the performance of PVT.•hBN/water is exhibited greater efficiencies compared to pure water and graphene/water.•ANN is successful for predicting the outcomes of hBN-based PVT systems. In this study, performance of hexagonal boron nitride (hBN)/water nanofluid used as a coolant in a PVT collector for the first time in the open literature was numerically analyzed based on various input parameters. Numerical analyzes were carried out by varying the flow rate between 14.5 and 43.4 l/h, solar radiation intensity between 200 and 1000 W/m2, hBN nanoparticle volumetric ratio between 0 and 0.22% and nanoparticle diameter between 20 and 80 nm. The results revealed that the thermal efficiency increases up to 0.18 volumetric ratio and then decreases, while the electrical efficiency continuously increases as the volumetric ratio increases. Additionally, an increase in the volumetric ratio leads to an improvement in all exergy parameters. The utilization of 20 nm diameter hBN nanoparticles results in an increase of 0.7%, 3.01%, 2.71%, and 1.80% in electrical, thermal, overall, and exergy efficiency, respectively, in comparison to pure water. In addition to the numerical analysis conducted with hBN/water nanofluid, simulations were also performed for graphene/water nanofluid, which is commonly studied for PVT collectors in the literature, and it was shown that the former exhibits better performance than the latter, albeit to a minimal extent. Finally, two different sets of ANN models were developed to predict five performance parameters of the PVT collector using hBN/water nanofluid. In the first set, each model predicted only one of the five performance parameters, while in the second set, a single ANN model predicted all output parameters. Different numbers of neurons and training functions were tested in the ANN models, and the Feed Forward Backpropagation algorithm was used as the training algorithm for all the models. Additionally, Logsig and Purelin transfer functions were used for the hidden and output layers, respectively. The proposed models were able to successfully reproduce the performance parameters.
ArticleNumber 101997
Author Büyükalaca, Orhan
Kılıç, Hacı Mehmet
Olmuş, Umutcan
Güzelel, Yunus Emre
Çerçi, Kamil Neyfel
Author_xml – sequence: 1
  givenname: Orhan
  surname: Büyükalaca
  fullname: Büyükalaca, Orhan
  organization: Department of Mechanical Engineering, Faculty of Engineering, Çukurova University, 01330, Sarıçam, Adana, Turkey
– sequence: 2
  givenname: Hacı Mehmet
  surname: Kılıç
  fullname: Kılıç, Hacı Mehmet
  organization: Department of Mechanical Engineering, Faculty of Engineering, Çukurova University, 01330, Sarıçam, Adana, Turkey
– sequence: 3
  givenname: Umutcan
  orcidid: 0000-0002-5799-1840
  surname: Olmuş
  fullname: Olmuş, Umutcan
  organization: Department of Mechanical Engineering, Faculty of Engineering, Çukurova University, 01330, Sarıçam, Adana, Turkey
– sequence: 4
  givenname: Yunus Emre
  surname: Güzelel
  fullname: Güzelel, Yunus Emre
  organization: Department of Mechanical Engineering, Faculty of Engineering, Çukurova University, 01330, Sarıçam, Adana, Turkey
– sequence: 5
  givenname: Kamil Neyfel
  surname: Çerçi
  fullname: Çerçi, Kamil Neyfel
  email: kneyfelcerci@tarsus.edu.tr
  organization: Department of Mechanical Engineering, Faculty of Engineering, Tarsus University, 33400, Tarsus, Mersin, Turkey
BookMark eNp9kM1OAjEUhbvARERewFVfYLCdH2aauCHEv4SgC3TbdNpbLJlpSVtQ396OuHLB6t6c5DvJ-a7QyDoLCN1QMqOEzm93sxhgP8tJXgwBY_UIjfOyohkjJbtE0xB2hJC8asqCNWPk14cevJGiw8YeIUSzFdE4i4VVeLFe494p6IzdYqfxHrx2vhdWAk4P_oAvsXU2sa3ziVmb6I2C7FNE8NgK63R3MAq_vm-wdF0HMjofrtGFFl2A6d-doLeH-83yKVu9PD4vF6tMFoTEjLVzJQitiGiBNLoGILmGlgjGgKmCqarMoVVlClRTUqHmwKQuq7rWtBB1VUxQc-qV3oXgQXNp4u-46IXpOCV8UMZ3fFDGB2X8pCyh-T90700v_Pd56O4EQRp1NOB5kAaSK2V8Ws6VM-fwH6JpjHg
CitedBy_id crossref_primary_10_1007_s10973_025_14012_2
crossref_primary_10_1177_01445987241301573
crossref_primary_10_1093_ijlct_ctaf071
crossref_primary_10_1016_j_solener_2024_112499
crossref_primary_10_1007_s10973_023_12526_1
crossref_primary_10_1016_j_icheatmasstransfer_2024_107829
crossref_primary_10_12944_CWE_18_2_21
crossref_primary_10_61435_ijred_2024_60129
crossref_primary_10_1007_s11431_024_2814_4
crossref_primary_10_1049_rpg2_70041
crossref_primary_10_1016_j_icheatmasstransfer_2024_108135
crossref_primary_10_3390_en17061269
crossref_primary_10_1155_2024_6649100
crossref_primary_10_1007_s12043_025_02977_6
Cites_doi 10.1016/j.rser.2019.03.024
10.1016/j.solener.2012.11.018
10.1016/j.enconman.2015.06.077
10.1016/j.enconman.2016.05.083
10.1016/j.vacuum.2014.11.009
10.1016/j.applthermaleng.2022.119609
10.1016/j.ijheatmasstransfer.2017.03.040
10.1016/j.applthermaleng.2016.11.105
10.1016/j.solener.2019.12.069
10.1016/j.applthermaleng.2019.114265
10.24102/ijes.v5i2.674
10.1016/j.enconman.2016.10.066
10.3763/aber.2009.0304
10.1016/j.renene.2021.01.117
10.1016/S0017-9310(99)00369-5
10.1002/aic.690490420
10.1016/j.enconman.2019.112384
10.1016/j.renene.2018.01.014
10.20944/preprints201905.0033.v1
10.1016/j.icheatmasstransfer.2022.106006
10.1016/j.egyr.2021.11.252
10.1016/j.enconman.2021.115063
10.1016/j.csite.2020.100706
10.1016/j.applthermaleng.2015.12.112
10.1016/j.solener.2021.12.004
10.1016/j.solener.2017.06.069
10.1016/j.clet.2021.100132
10.1007/s00521-022-07013-x
10.1016/j.energy.2017.07.046
10.1080/08916159808946559
10.1016/j.icheatmasstransfer.2020.104713
10.1063/1.1700493
10.1007/s40089-014-0126-3
10.1016/j.solener.2015.04.038
10.1016/j.energy.2014.01.102
10.1016/j.ijheatmasstransfer.2015.08.107
10.1016/0013-7480(76)90018-8
10.1080/15567036.2021.1974126
10.1016/j.solener.2016.07.002
10.1016/j.enconman.2018.01.006
10.1016/j.renene.2018.12.049
10.1016/j.applthermaleng.2020.116381
10.1016/j.enbuild.2023.113101
10.1016/j.csite.2021.101692
10.1016/j.enconman.2019.02.066
10.1016/j.solener.2020.07.060
10.1016/j.jclepro.2020.124318
10.1016/j.enconman.2016.07.052
10.1016/j.applthermaleng.2021.117544
10.1016/j.enconman.2018.02.039
10.1016/j.solener.2018.07.051
10.1016/j.solener.2023.02.020
10.1016/j.solener.2018.05.004
10.1016/j.renene.2019.06.099
10.1504/IJEX.2021.117050
10.1016/j.renene.2005.12.002
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.tsep.2023.101997
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_tsep_2023_101997
S2451904923003505
GroupedDBID --M
0R~
AACTN
AAEDW
AAHCO
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
AEBSH
AEIPS
AFJKZ
AFTJW
AFXIZ
AGCQF
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
EBS
EFJIC
FDB
FIRID
FYGXN
KOM
OAUVE
ROL
SPC
SPCBC
SSH
SSR
SST
SSZ
T5K
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
EJD
ID FETCH-LOGICAL-c300t-9b6da0150abe08f7ee02feb0a99e9d39d542ebd40a9d841ad6e9cf4577f13a753
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001037512900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2451-9049
IngestDate Sat Nov 29 08:00:05 EST 2025
Tue Nov 18 22:28:46 EST 2025
Sat Apr 26 15:41:18 EDT 2025
IsPeerReviewed false
IsScholarly true
Keywords CFD simulation
Numerical simulation
hBN/water nanofluid
Artificial neural network
Photovoltaic thermal (PVT)
Energy and exergy analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-9b6da0150abe08f7ee02feb0a99e9d39d542ebd40a9d841ad6e9cf4577f13a753
ORCID 0000-0002-5799-1840
ParticipantIDs crossref_citationtrail_10_1016_j_tsep_2023_101997
crossref_primary_10_1016_j_tsep_2023_101997
elsevier_sciencedirect_doi_10_1016_j_tsep_2023_101997
PublicationCentury 2000
PublicationDate 2023-08-01
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Thermal science and engineering progress
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ebrahimnia-Bajestan, Charjouei Moghadam, Niazmand, Daungthongsuk, Wongwises (b0215) 2016; 92
Slimani, Amirat, Kurucz, Bahria, Hamidat, Chaouch (b0060) 2017; 133
Yuan, Li, Lindsay, Cherns, Pomeroy, Liu, Edgar, Kuball (b0225) 2019; 2
Mishra, Mukherjee, Nayak, Panda (b0250) 2014; 4
Al-Shamani, Sopian, Mat, Hasan, Abed, Ruslan (b0090) 2016; 124
Khanjari, Pourfayaz, Kasaeian (b0095) 2016; 122
Cao, Kamrani, Mirzaei, Khandakar, Vaferi (b0170) 2022; 8
Kostoglou, Polychronopoulou, Rebholz (b0220) 2015; 112
Kalogirou (b0175) 2009; 3
Jani, Mishra, Sahoo (b0180) 2016; 98
Alous, Kayfeci, Uysal (b0115) 2019; 162
M.H. Ahmadi, A. Baghban, E. Salwana, M. Sadeghzadeh, M. Zamen, S. Shamshirband, R. Kumar, Machine learning prediction Models of Electrical Efficiency of Photovoltaic-Thermal Collectors, (2019). 10.20944/preprints201905.0033.v1.
Shahsavar, Jha, Arıcı, Estellé (b0020) 2021; 170
Shen, Zhang, Zhang, Pu, Wei, Dong (b0265) 2021; 185
Ghadiri, Sardarabadi, Pasandideh-fard, Moghadam (b0080) 2015; 103
Kumar, Tiwari (b0130) 2022; 53
Kalani, Sardarabadi, Passandideh-Fard (b0185) 2017; 113
Al-Waeli, Sopian, Yousif, Kazem, Boland, Chaichan (b0200) 2019; 186
Rubbi, Habib, Saidur, Aslfattahi, Yahya, Das (b0260) 2020; 208
Çerçi, Hürdoğan (b0155) 2020; 116
Sardarabadi, Hosseinzadeh, Kazemian, Passandideh-Fard (b0100) 2017; 138
Aghakhani, Afrand, Karimipour, Kalbasi, Mehdi Razzaghi (b0015) 2022; 52
Salari, Taheri, Farzanehnia, Passandideh-fard, Sardarabadi (b0010) 2021; 282
Jia, Ran, Zhu, Fang (b0075) 2020; 196
Xuan, Roetzel (b0235) 2000; 43
Hürdoğan, Çerçi, Saydam, Ozalp (b0140) 2021; 44
Rajoria, Agrawal, Tiwari (b0295) 2013; 88
Nasrin, Rahim, Fayaz, Hasanuzzaman (b0005) 2018; 121
J. Yazdanpanahi, F. Sarhaddi, M. Mahdavi Adeli, Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses, Solar Energy, 118 (2015) 197-208. 10.1016/j.solener.2015.04.038.
Güzelel, Olmuş, Çerçi, Büyükalaca (b0160) 2021; 199
H.C. Brinkman, The viscosity of concentrated suspensions and solutions, The Journal of chemical physics, 20 (4) (1952) 571-571. 10.1063/1.1700493.
Hu, Liu, Guo, Zhang, Chu, Wang (b0270) 2019; 135
Al-Waeli, Kazem, Yousif, Chaichan, Sopian (b0205) 2020; 145
Tumse, Bilgili, Sahin (b0165) 2022; 34
Al-Shamani, Mat, Ruslan, Abed, Sopian (b0050) 2016; 5
Xuan, Li, Hu (b0240) 2003; 49
Mousavi, Kasaeian, Shafii, Jahangir (b0055) 2018; 163
Kılıç (b0255) 2022
Soltani, Kasaeian, Sarrafha, Wen (b0300) 2017; 155
Krishnayatra, Tokas, Kumar (b0145) 2020; 21
Das (b0285) 2021; 28
Güzelel, Olmuş, Çerçi, Büyükalaca (b0135) 2022; 134
Pak, Cho (b0230) 1998; 11
Chaibi, Malvoni, El Rhafiki, Kousksou, Zeraouli (b0195) 2021; 4
Arslan (b0210) 2023; 255
Fayaz, Nasrin, Rahim, Hasanuzzaman (b0110) 2018; 169
Kazemian, Hosseinzadeh, Sardarabadi, Passandideh-Fard (b0040) 2018; 173
Nazri, Fudholi, Mustafa, Yen, Mohammad, Ruslan, Sopian (b0280) 2019; 111
Tripathi, Tiwari, Dwivedi (b0290) 2016; 136
İlhan, Ertürk (b0120) 2017; 111
Salari, Kazemian, Ma, Hakkaki-Fard, Peng (b0065) 2020; 205
Olmuş, Güzelel, Pınar, Özbek, Büyükalaca (b0025) 2022; 231
Gelis, Ozbek, Ozyurt, Celik (b0070) 2023; 219
Sardarabadi, Passandideh-Fard, Zeinali Heris (b0085) 2014; 66
Tiwari, Sodha (b0045) 2006; 31
Hosseinzadeh, Salari, Sardarabadi, Passandideh-Fard (b0105) 2018; 160
Ziyadanogullari, Percin (b0125) 2021; 35
Wolf (b0035) 1976; 16
Osorio, Wang, Karniadakis, Cai, Chryssostomidis, Panwar, Hovsapian (b0150) 2022; 252
Olmuş, Güzelel, Büyükalaca (b0030) 2023; 291
Shahsavar (10.1016/j.tsep.2023.101997_b0020) 2021; 170
10.1016/j.tsep.2023.101997_b0275
Ghadiri (10.1016/j.tsep.2023.101997_b0080) 2015; 103
Kumar (10.1016/j.tsep.2023.101997_b0130) 2022; 53
Yuan (10.1016/j.tsep.2023.101997_b0225) 2019; 2
Olmuş (10.1016/j.tsep.2023.101997_b0025) 2022; 231
Rubbi (10.1016/j.tsep.2023.101997_b0260) 2020; 208
Ebrahimnia-Bajestan (10.1016/j.tsep.2023.101997_b0215) 2016; 92
10.1016/j.tsep.2023.101997_b0190
Mishra (10.1016/j.tsep.2023.101997_b0250) 2014; 4
Al-Waeli (10.1016/j.tsep.2023.101997_b0205) 2020; 145
Gelis (10.1016/j.tsep.2023.101997_b0070) 2023; 219
10.1016/j.tsep.2023.101997_b0245
Xuan (10.1016/j.tsep.2023.101997_b0235) 2000; 43
Pak (10.1016/j.tsep.2023.101997_b0230) 1998; 11
Hu (10.1016/j.tsep.2023.101997_b0270) 2019; 135
Xuan (10.1016/j.tsep.2023.101997_b0240) 2003; 49
Al-Shamani (10.1016/j.tsep.2023.101997_b0050) 2016; 5
Tumse (10.1016/j.tsep.2023.101997_b0165) 2022; 34
Al-Shamani (10.1016/j.tsep.2023.101997_b0090) 2016; 124
Cao (10.1016/j.tsep.2023.101997_b0170) 2022; 8
Salari (10.1016/j.tsep.2023.101997_b0065) 2020; 205
Hürdoğan (10.1016/j.tsep.2023.101997_b0140) 2021; 44
Aghakhani (10.1016/j.tsep.2023.101997_b0015) 2022; 52
Çerçi (10.1016/j.tsep.2023.101997_b0155) 2020; 116
Kazemian (10.1016/j.tsep.2023.101997_b0040) 2018; 173
Osorio (10.1016/j.tsep.2023.101997_b0150) 2022; 252
Tripathi (10.1016/j.tsep.2023.101997_b0290) 2016; 136
Wolf (10.1016/j.tsep.2023.101997_b0035) 1976; 16
Güzelel (10.1016/j.tsep.2023.101997_b0160) 2021; 199
Olmuş (10.1016/j.tsep.2023.101997_b0030) 2023; 291
Kalani (10.1016/j.tsep.2023.101997_b0185) 2017; 113
Sardarabadi (10.1016/j.tsep.2023.101997_b0100) 2017; 138
Soltani (10.1016/j.tsep.2023.101997_b0300) 2017; 155
Kalogirou (10.1016/j.tsep.2023.101997_b0175) 2009; 3
Jia (10.1016/j.tsep.2023.101997_b0075) 2020; 196
Rajoria (10.1016/j.tsep.2023.101997_b0295) 2013; 88
Tiwari (10.1016/j.tsep.2023.101997_b0045) 2006; 31
Jani (10.1016/j.tsep.2023.101997_b0180) 2016; 98
Shen (10.1016/j.tsep.2023.101997_b0265) 2021; 185
Salari (10.1016/j.tsep.2023.101997_b0010) 2021; 282
Nazri (10.1016/j.tsep.2023.101997_b0280) 2019; 111
Chaibi (10.1016/j.tsep.2023.101997_b0195) 2021; 4
Khanjari (10.1016/j.tsep.2023.101997_b0095) 2016; 122
Kostoglou (10.1016/j.tsep.2023.101997_b0220) 2015; 112
Mousavi (10.1016/j.tsep.2023.101997_b0055) 2018; 163
Sardarabadi (10.1016/j.tsep.2023.101997_b0085) 2014; 66
Al-Waeli (10.1016/j.tsep.2023.101997_b0200) 2019; 186
Güzelel (10.1016/j.tsep.2023.101997_b0135) 2022; 134
Ziyadanogullari (10.1016/j.tsep.2023.101997_b0125) 2021; 35
Nasrin (10.1016/j.tsep.2023.101997_b0005) 2018; 121
İlhan (10.1016/j.tsep.2023.101997_b0120) 2017; 111
Fayaz (10.1016/j.tsep.2023.101997_b0110) 2018; 169
Arslan (10.1016/j.tsep.2023.101997_b0210) 2023; 255
Krishnayatra (10.1016/j.tsep.2023.101997_b0145) 2020; 21
Kılıç (10.1016/j.tsep.2023.101997_b0255) 2022
Hosseinzadeh (10.1016/j.tsep.2023.101997_b0105) 2018; 160
Alous (10.1016/j.tsep.2023.101997_b0115) 2019; 162
Slimani (10.1016/j.tsep.2023.101997_b0060) 2017; 133
Das (10.1016/j.tsep.2023.101997_b0285) 2021; 28
References_xml – volume: 282
  year: 2021
  ident: b0010
  article-title: An updated review of the performance of nanofluid-based photovoltaic thermal systems from energy, exergy, economic, and environmental (4E) approaches
  publication-title: J. Clean. Prod.
– volume: 5
  year: 2016
  ident: b0050
  article-title: Effect of new ellipse design on the performance enhancement of PV/T collector: CDF approach
  publication-title: International Journal of Environment and Sustainability
– volume: 155
  start-page: 1033
  year: 2017
  end-page: 1043
  ident: b0300
  article-title: An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application
  publication-title: Sol. Energy
– volume: 11
  start-page: 151
  year: 1998
  end-page: 170
  ident: b0230
  article-title: Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles
  publication-title: Exp. Heat Transfer
– volume: 103
  start-page: 468
  year: 2015
  end-page: 476
  ident: b0080
  article-title: Experimental investigation of a PVT system performance using nano ferrofluids
  publication-title: Energ. Conver. Manage.
– volume: 199
  year: 2021
  ident: b0160
  article-title: Comprehensive modelling of rotary desiccant wheel with different multiple regression and machine learning methods for balanced flow
  publication-title: Appl. Therm. Eng.
– volume: 162
  year: 2019
  ident: b0115
  article-title: Experimental investigations of using MWCNTs and graphene nanoplatelets water-based nanofluids as coolants in PVT systems
  publication-title: Appl. Therm. Eng.
– volume: 252
  year: 2022
  ident: b0150
  article-title: Forecasting solar-thermal systems performance under transient operation using a data-driven machine learning approach based on the deep operator network architecture
  publication-title: Energ. Conver. Manage.
– reference: M.H. Ahmadi, A. Baghban, E. Salwana, M. Sadeghzadeh, M. Zamen, S. Shamshirband, R. Kumar, Machine learning prediction Models of Electrical Efficiency of Photovoltaic-Thermal Collectors, (2019). 10.20944/preprints201905.0033.v1.
– volume: 169
  start-page: 217
  year: 2018
  end-page: 230
  ident: b0110
  article-title: Energy and exergy analysis of the PVT system: Effect of nanofluid flow rate
  publication-title: Sol. Energy
– volume: 185
  year: 2021
  ident: b0265
  article-title: A numerical investigation on optimization of PV/T systems with the field synergy theory
  publication-title: Appl. Therm. Eng.
– volume: 255
  start-page: 369
  year: 2023
  end-page: 380
  ident: b0210
  article-title: Applying regression techniques to determine mathematical equations of exergy, electricity, and energy values of photovoltaic thermal collector
  publication-title: Sol. Energy
– volume: 113
  start-page: 1170
  year: 2017
  end-page: 1177
  ident: b0185
  article-title: Using artificial neural network models and particle swarm optimization for manner prediction of a photovoltaic thermal nanofluid based collector
  publication-title: Appl. Therm. Eng.
– volume: 205
  year: 2020
  ident: b0065
  article-title: Nanofluid based photovoltaic thermal systems integrated with phase change materials: Numerical simulation and thermodynamic analysis
  publication-title: Energ. Conver. Manage.
– volume: 136
  start-page: 260
  year: 2016
  end-page: 267
  ident: b0290
  article-title: Overall energy, exergy and carbon credit analysis of N partially covered Photovoltaic Thermal (PVT) concentrating collector connected in series
  publication-title: Sol. Energy
– volume: 208
  start-page: 124
  year: 2020
  end-page: 138
  ident: b0260
  article-title: Performance optimization of a hybrid PV/T solar system using Soybean oil/MXene nanofluids as a new class of heat transfer fluids
  publication-title: Sol. Energy
– volume: 2
  year: 2019
  ident: b0225
  article-title: Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration, Communications
  publication-title: Physics
– volume: 52
  year: 2022
  ident: b0015
  article-title: Numerical study of the cooling effect of a PVT on its thermal and electrical efficiency using a Cu tube of different diameters and lengths
  publication-title: Sustainable Energy Technol. Assess.
– reference: J. Yazdanpanahi, F. Sarhaddi, M. Mahdavi Adeli, Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses, Solar Energy, 118 (2015) 197-208. 10.1016/j.solener.2015.04.038.
– volume: 3
  start-page: 83
  year: 2009
  end-page: 119
  ident: b0175
  article-title: Artificial neural networks and genetic algorithms in energy applications in buildings
  publication-title: Adv. Build. Energy Res.
– volume: 4
  year: 2021
  ident: b0195
  article-title: Artificial neural-network based model to forecast the electrical and thermal efficiencies of PVT air collector systems
  publication-title: Cleaner Engineering and Technology
– volume: 133
  start-page: 458
  year: 2017
  end-page: 476
  ident: b0060
  article-title: A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions
  publication-title: Energ. Conver. Manage.
– volume: 135
  start-page: 701
  year: 2019
  end-page: 710
  ident: b0270
  article-title: Performance improvement of baffle-type solar air collector based on first chamber narrowing
  publication-title: Renew. Energy
– volume: 138
  start-page: 682
  year: 2017
  end-page: 695
  ident: b0100
  article-title: Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints
  publication-title: Energy
– volume: 219
  year: 2023
  ident: b0070
  article-title: Multi-objective optimization of a photovoltaic thermal system with different water based nanofluids using Taguchi approach
  publication-title: Appl. Therm. Eng.
– volume: 28
  year: 2021
  ident: b0285
  article-title: Exploration of the effect of two-axis PLC solar tracking system on the thermal performance of solar air collector
  publication-title: Case Studies in Thermal Engineering
– volume: 92
  start-page: 1041
  year: 2016
  end-page: 1052
  ident: b0215
  article-title: Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers
  publication-title: Int. J. Heat Mass Transf.
– volume: 44
  start-page: 5586
  year: 2021
  end-page: 5609
  ident: b0140
  article-title: Experimental and Modeling Study of Peanut Drying in a Solar Dryer with a Novel Type of a Drying Chamber
  publication-title: Energy Sources Part A
– volume: 112
  start-page: 42
  year: 2015
  end-page: 45
  ident: b0220
  article-title: Thermal and chemical stability of hexagonal boron nitride (h-BN) nanoplatelets
  publication-title: Vacuum
– volume: 111
  start-page: 500
  year: 2017
  end-page: 507
  ident: b0120
  article-title: Experimental characterization of laminar forced convection of hBN-water nanofluid in circular pipe
  publication-title: Int. J. Heat Mass Transf.
– volume: 98
  start-page: 1091
  year: 2016
  end-page: 1103
  ident: b0180
  article-title: Performance prediction of rotary solid desiccant dehumidifier in hybrid air-conditioning system using artificial neural network
  publication-title: Appl. Therm. Eng.
– volume: 111
  start-page: 132
  year: 2019
  end-page: 144
  ident: b0280
  article-title: Exergy and improvement potential of hybrid photovoltaic thermal/thermoelectric (PVT/TE) air collector
  publication-title: Renew. Sustain. Energy Rev.
– volume: 43
  start-page: 3701
  year: 2000
  end-page: 3707
  ident: b0235
  article-title: Conceptions for heat transfer correlation of nanofluids
  publication-title: Int. J. Heat Mass Transf.
– volume: 196
  start-page: 625
  year: 2020
  end-page: 636
  ident: b0075
  article-title: Numerical analysis of photovoltaic-thermal collector using nanofluid as a coolant
  publication-title: Sol. Energy
– volume: 291
  year: 2023
  ident: b0030
  article-title: Seasonal analysis of a desiccant air-conditioning system supported by water-cooled PV/T units
  publication-title: Energ. Buildings
– volume: 16
  start-page: 79
  year: 1976
  end-page: 90
  ident: b0035
  article-title: Performance analyses of combined heating and photovoltaic power systems for residences
  publication-title: Energy Conversion
– volume: 145
  start-page: 963
  year: 2020
  end-page: 980
  ident: b0205
  article-title: Mathematical and neural network modeling for predicting and analyzing of nanofluid-nano PCM photovoltaic thermal systems performance
  publication-title: Renew. Energy
– volume: 170
  start-page: 410
  year: 2021
  end-page: 425
  ident: b0020
  article-title: Experimental investigation of the usability of the rifled serpentine tube to improve energy and exergy performances of a nanofluid-based photovoltaic/thermal system
  publication-title: Renew. Energy
– volume: 35
  start-page: 438
  year: 2021
  end-page: 452
  ident: b0125
  article-title: An exergy analysis of a concentric tube heat exchanger using hBN-water nanofluids
  publication-title: Int. J. Exergy
– volume: 186
  start-page: 368
  year: 2019
  end-page: 379
  ident: b0200
  article-title: Artificial neural network modeling and analysis of photovoltaic/thermal system based on the experimental study
  publication-title: Energ. Conver. Manage.
– volume: 21
  year: 2020
  ident: b0145
  article-title: Numerical heat transfer analysis & predicting thermal performance of fins for a novel heat exchanger using machine learning
  publication-title: Case Studies in Thermal Engineering
– volume: 116
  year: 2020
  ident: b0155
  article-title: Comparative study of multiple linear regression (MLR) and artificial neural network (ANN) techniques to model a solid desiccant wheel
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 66
  start-page: 264
  year: 2014
  end-page: 272
  ident: b0085
  article-title: Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units)
  publication-title: Energy
– reference: H.C. Brinkman, The viscosity of concentrated suspensions and solutions, The Journal of chemical physics, 20 (4) (1952) 571-571. 10.1063/1.1700493.
– volume: 4
  start-page: 109
  year: 2014
  end-page: 120
  ident: b0250
  article-title: A brief review on viscosity of nanofluids
  publication-title: International Nano Letters
– volume: 124
  start-page: 528
  year: 2016
  end-page: 542
  ident: b0090
  article-title: Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions
  publication-title: Energ. Conver. Manage.
– volume: 134
  year: 2022
  ident: b0135
  article-title: New multiple regression and machine learning models of rotary desiccant wheel for unbalanced flow conditions
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 88
  start-page: 110
  year: 2013
  end-page: 119
  ident: b0295
  article-title: Exergetic and enviroeconomic analysis of novel hybrid PVT array
  publication-title: Sol. Energy
– volume: 122
  start-page: 263
  year: 2016
  end-page: 278
  ident: b0095
  article-title: Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system
  publication-title: Energ. Conver. Manage.
– volume: 173
  start-page: 1002
  year: 2018
  end-page: 1010
  ident: b0040
  article-title: Effect of glass cover and working fluid on the performance of photovoltaic thermal (PVT) system: An experimental study
  publication-title: Sol. Energy
– volume: 49
  start-page: 1038
  year: 2003
  end-page: 1043
  ident: b0240
  article-title: Aggregation structure and thermal conductivity of nanofluids
  publication-title: AIChE J
– volume: 8
  start-page: 24
  year: 2022
  end-page: 36
  ident: b0170
  article-title: Electrical efficiency of the photovoltaic/thermal collectors cooled by nanofluids: Machine learning simulation and optimization by evolutionary algorithm
  publication-title: Energy Rep.
– volume: 31
  start-page: 2460
  year: 2006
  end-page: 2474
  ident: b0045
  article-title: Performance evaluation of hybrid PV/thermal water/air heating system: a parametric study
  publication-title: Renew. Energy
– volume: 231
  start-page: 566
  year: 2022
  end-page: 577
  ident: b0025
  article-title: Performance assessment of a desiccant air-conditioning system combined with dew-point indirect evaporative cooler and PV/T
  publication-title: Sol. Energy
– volume: 163
  start-page: 187
  year: 2018
  end-page: 195
  ident: b0055
  article-title: Numerical investigation of the effects of a copper foam filled with phase change materials in a water-cooled photovoltaic/thermal system
  publication-title: Energ. Conver. Manage.
– volume: 53
  year: 2022
  ident: b0130
  article-title: Performance evaluation of evacuated tube solar collector using boron nitride nanofluid
  publication-title: Sustainable Energy Technol. Assess.
– volume: 121
  start-page: 286
  year: 2018
  end-page: 300
  ident: b0005
  article-title: Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research
  publication-title: Renew. Energy
– volume: 160
  start-page: 93
  year: 2018
  end-page: 108
  ident: b0105
  article-title: Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation
  publication-title: Energ. Conver. Manage.
– year: 2022
  ident: b0255
  article-title: Numerical Investigation of Using Nanofluid Coolant in PVT System
– volume: 34
  start-page: 10823
  year: 2022
  end-page: 10844
  ident: b0165
  article-title: Estimation of aerodynamic coefficients of a non-slender delta wing under ground effect using artificial intelligence techniques
  publication-title: Neural Comput. & Applic.
– volume: 111
  start-page: 132
  year: 2019
  ident: 10.1016/j.tsep.2023.101997_b0280
  article-title: Exergy and improvement potential of hybrid photovoltaic thermal/thermoelectric (PVT/TE) air collector
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.03.024
– volume: 88
  start-page: 110
  year: 2013
  ident: 10.1016/j.tsep.2023.101997_b0295
  article-title: Exergetic and enviroeconomic analysis of novel hybrid PVT array
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2012.11.018
– volume: 103
  start-page: 468
  year: 2015
  ident: 10.1016/j.tsep.2023.101997_b0080
  article-title: Experimental investigation of a PVT system performance using nano ferrofluids
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2015.06.077
– volume: 53
  year: 2022
  ident: 10.1016/j.tsep.2023.101997_b0130
  article-title: Performance evaluation of evacuated tube solar collector using boron nitride nanofluid
  publication-title: Sustainable Energy Technol. Assess.
– volume: 122
  start-page: 263
  year: 2016
  ident: 10.1016/j.tsep.2023.101997_b0095
  article-title: Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2016.05.083
– volume: 112
  start-page: 42
  year: 2015
  ident: 10.1016/j.tsep.2023.101997_b0220
  article-title: Thermal and chemical stability of hexagonal boron nitride (h-BN) nanoplatelets
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2014.11.009
– volume: 2
  issue: 1
  year: 2019
  ident: 10.1016/j.tsep.2023.101997_b0225
  article-title: Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration, Communications
  publication-title: Physics
– volume: 219
  year: 2023
  ident: 10.1016/j.tsep.2023.101997_b0070
  article-title: Multi-objective optimization of a photovoltaic thermal system with different water based nanofluids using Taguchi approach
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.119609
– volume: 111
  start-page: 500
  year: 2017
  ident: 10.1016/j.tsep.2023.101997_b0120
  article-title: Experimental characterization of laminar forced convection of hBN-water nanofluid in circular pipe
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.03.040
– volume: 113
  start-page: 1170
  year: 2017
  ident: 10.1016/j.tsep.2023.101997_b0185
  article-title: Using artificial neural network models and particle swarm optimization for manner prediction of a photovoltaic thermal nanofluid based collector
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.11.105
– volume: 196
  start-page: 625
  year: 2020
  ident: 10.1016/j.tsep.2023.101997_b0075
  article-title: Numerical analysis of photovoltaic-thermal collector using nanofluid as a coolant
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.12.069
– volume: 162
  year: 2019
  ident: 10.1016/j.tsep.2023.101997_b0115
  article-title: Experimental investigations of using MWCNTs and graphene nanoplatelets water-based nanofluids as coolants in PVT systems
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114265
– volume: 5
  issue: 2
  year: 2016
  ident: 10.1016/j.tsep.2023.101997_b0050
  article-title: Effect of new ellipse design on the performance enhancement of PV/T collector: CDF approach
  publication-title: International Journal of Environment and Sustainability
  doi: 10.24102/ijes.v5i2.674
– volume: 133
  start-page: 458
  year: 2017
  ident: 10.1016/j.tsep.2023.101997_b0060
  article-title: A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2016.10.066
– volume: 3
  start-page: 83
  issue: 1
  year: 2009
  ident: 10.1016/j.tsep.2023.101997_b0175
  article-title: Artificial neural networks and genetic algorithms in energy applications in buildings
  publication-title: Adv. Build. Energy Res.
  doi: 10.3763/aber.2009.0304
– volume: 170
  start-page: 410
  year: 2021
  ident: 10.1016/j.tsep.2023.101997_b0020
  article-title: Experimental investigation of the usability of the rifled serpentine tube to improve energy and exergy performances of a nanofluid-based photovoltaic/thermal system
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.01.117
– volume: 43
  start-page: 3701
  issue: 19
  year: 2000
  ident: 10.1016/j.tsep.2023.101997_b0235
  article-title: Conceptions for heat transfer correlation of nanofluids
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(99)00369-5
– volume: 49
  start-page: 1038
  issue: 4
  year: 2003
  ident: 10.1016/j.tsep.2023.101997_b0240
  article-title: Aggregation structure and thermal conductivity of nanofluids
  publication-title: AIChE J
  doi: 10.1002/aic.690490420
– volume: 205
  year: 2020
  ident: 10.1016/j.tsep.2023.101997_b0065
  article-title: Nanofluid based photovoltaic thermal systems integrated with phase change materials: Numerical simulation and thermodynamic analysis
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2019.112384
– volume: 121
  start-page: 286
  year: 2018
  ident: 10.1016/j.tsep.2023.101997_b0005
  article-title: Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.01.014
– ident: 10.1016/j.tsep.2023.101997_b0190
  doi: 10.20944/preprints201905.0033.v1
– volume: 134
  year: 2022
  ident: 10.1016/j.tsep.2023.101997_b0135
  article-title: New multiple regression and machine learning models of rotary desiccant wheel for unbalanced flow conditions
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2022.106006
– volume: 8
  start-page: 24
  year: 2022
  ident: 10.1016/j.tsep.2023.101997_b0170
  article-title: Electrical efficiency of the photovoltaic/thermal collectors cooled by nanofluids: Machine learning simulation and optimization by evolutionary algorithm
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.11.252
– volume: 252
  year: 2022
  ident: 10.1016/j.tsep.2023.101997_b0150
  article-title: Forecasting solar-thermal systems performance under transient operation using a data-driven machine learning approach based on the deep operator network architecture
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2021.115063
– volume: 21
  year: 2020
  ident: 10.1016/j.tsep.2023.101997_b0145
  article-title: Numerical heat transfer analysis & predicting thermal performance of fins for a novel heat exchanger using machine learning
  publication-title: Case Studies in Thermal Engineering
  doi: 10.1016/j.csite.2020.100706
– volume: 98
  start-page: 1091
  year: 2016
  ident: 10.1016/j.tsep.2023.101997_b0180
  article-title: Performance prediction of rotary solid desiccant dehumidifier in hybrid air-conditioning system using artificial neural network
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.12.112
– volume: 231
  start-page: 566
  year: 2022
  ident: 10.1016/j.tsep.2023.101997_b0025
  article-title: Performance assessment of a desiccant air-conditioning system combined with dew-point indirect evaporative cooler and PV/T
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2021.12.004
– volume: 155
  start-page: 1033
  year: 2017
  ident: 10.1016/j.tsep.2023.101997_b0300
  article-title: An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.06.069
– volume: 4
  year: 2021
  ident: 10.1016/j.tsep.2023.101997_b0195
  article-title: Artificial neural-network based model to forecast the electrical and thermal efficiencies of PVT air collector systems
  publication-title: Cleaner Engineering and Technology
  doi: 10.1016/j.clet.2021.100132
– volume: 34
  start-page: 10823
  issue: 13
  year: 2022
  ident: 10.1016/j.tsep.2023.101997_b0165
  article-title: Estimation of aerodynamic coefficients of a non-slender delta wing under ground effect using artificial intelligence techniques
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-022-07013-x
– volume: 138
  start-page: 682
  year: 2017
  ident: 10.1016/j.tsep.2023.101997_b0100
  article-title: Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints
  publication-title: Energy
  doi: 10.1016/j.energy.2017.07.046
– volume: 11
  start-page: 151
  issue: 2
  year: 1998
  ident: 10.1016/j.tsep.2023.101997_b0230
  article-title: Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles
  publication-title: Exp. Heat Transfer
  doi: 10.1080/08916159808946559
– year: 2022
  ident: 10.1016/j.tsep.2023.101997_b0255
– volume: 116
  year: 2020
  ident: 10.1016/j.tsep.2023.101997_b0155
  article-title: Comparative study of multiple linear regression (MLR) and artificial neural network (ANN) techniques to model a solid desiccant wheel
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2020.104713
– ident: 10.1016/j.tsep.2023.101997_b0245
  doi: 10.1063/1.1700493
– volume: 4
  start-page: 109
  issue: 4
  year: 2014
  ident: 10.1016/j.tsep.2023.101997_b0250
  article-title: A brief review on viscosity of nanofluids
  publication-title: International Nano Letters
  doi: 10.1007/s40089-014-0126-3
– ident: 10.1016/j.tsep.2023.101997_b0275
  doi: 10.1016/j.solener.2015.04.038
– volume: 66
  start-page: 264
  year: 2014
  ident: 10.1016/j.tsep.2023.101997_b0085
  article-title: Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units)
  publication-title: Energy
  doi: 10.1016/j.energy.2014.01.102
– volume: 92
  start-page: 1041
  year: 2016
  ident: 10.1016/j.tsep.2023.101997_b0215
  article-title: Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.08.107
– volume: 16
  start-page: 79
  issue: 1–2
  year: 1976
  ident: 10.1016/j.tsep.2023.101997_b0035
  article-title: Performance analyses of combined heating and photovoltaic power systems for residences
  publication-title: Energy Conversion
  doi: 10.1016/0013-7480(76)90018-8
– volume: 44
  start-page: 5586
  issue: 2
  year: 2021
  ident: 10.1016/j.tsep.2023.101997_b0140
  article-title: Experimental and Modeling Study of Peanut Drying in a Solar Dryer with a Novel Type of a Drying Chamber
  publication-title: Energy Sources Part A
  doi: 10.1080/15567036.2021.1974126
– volume: 136
  start-page: 260
  year: 2016
  ident: 10.1016/j.tsep.2023.101997_b0290
  article-title: Overall energy, exergy and carbon credit analysis of N partially covered Photovoltaic Thermal (PVT) concentrating collector connected in series
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.07.002
– volume: 160
  start-page: 93
  year: 2018
  ident: 10.1016/j.tsep.2023.101997_b0105
  article-title: Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2018.01.006
– volume: 52
  year: 2022
  ident: 10.1016/j.tsep.2023.101997_b0015
  article-title: Numerical study of the cooling effect of a PVT on its thermal and electrical efficiency using a Cu tube of different diameters and lengths
  publication-title: Sustainable Energy Technol. Assess.
– volume: 135
  start-page: 701
  year: 2019
  ident: 10.1016/j.tsep.2023.101997_b0270
  article-title: Performance improvement of baffle-type solar air collector based on first chamber narrowing
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.12.049
– volume: 185
  year: 2021
  ident: 10.1016/j.tsep.2023.101997_b0265
  article-title: A numerical investigation on optimization of PV/T systems with the field synergy theory
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.116381
– volume: 291
  year: 2023
  ident: 10.1016/j.tsep.2023.101997_b0030
  article-title: Seasonal analysis of a desiccant air-conditioning system supported by water-cooled PV/T units
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2023.113101
– volume: 28
  year: 2021
  ident: 10.1016/j.tsep.2023.101997_b0285
  article-title: Exploration of the effect of two-axis PLC solar tracking system on the thermal performance of solar air collector
  publication-title: Case Studies in Thermal Engineering
  doi: 10.1016/j.csite.2021.101692
– volume: 186
  start-page: 368
  year: 2019
  ident: 10.1016/j.tsep.2023.101997_b0200
  article-title: Artificial neural network modeling and analysis of photovoltaic/thermal system based on the experimental study
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2019.02.066
– volume: 208
  start-page: 124
  year: 2020
  ident: 10.1016/j.tsep.2023.101997_b0260
  article-title: Performance optimization of a hybrid PV/T solar system using Soybean oil/MXene nanofluids as a new class of heat transfer fluids
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.07.060
– volume: 282
  year: 2021
  ident: 10.1016/j.tsep.2023.101997_b0010
  article-title: An updated review of the performance of nanofluid-based photovoltaic thermal systems from energy, exergy, economic, and environmental (4E) approaches
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.124318
– volume: 124
  start-page: 528
  year: 2016
  ident: 10.1016/j.tsep.2023.101997_b0090
  article-title: Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2016.07.052
– volume: 199
  year: 2021
  ident: 10.1016/j.tsep.2023.101997_b0160
  article-title: Comprehensive modelling of rotary desiccant wheel with different multiple regression and machine learning methods for balanced flow
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117544
– volume: 163
  start-page: 187
  year: 2018
  ident: 10.1016/j.tsep.2023.101997_b0055
  article-title: Numerical investigation of the effects of a copper foam filled with phase change materials in a water-cooled photovoltaic/thermal system
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2018.02.039
– volume: 173
  start-page: 1002
  year: 2018
  ident: 10.1016/j.tsep.2023.101997_b0040
  article-title: Effect of glass cover and working fluid on the performance of photovoltaic thermal (PVT) system: An experimental study
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.07.051
– volume: 255
  start-page: 369
  year: 2023
  ident: 10.1016/j.tsep.2023.101997_b0210
  article-title: Applying regression techniques to determine mathematical equations of exergy, electricity, and energy values of photovoltaic thermal collector
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2023.02.020
– volume: 169
  start-page: 217
  year: 2018
  ident: 10.1016/j.tsep.2023.101997_b0110
  article-title: Energy and exergy analysis of the PVT system: Effect of nanofluid flow rate
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.05.004
– volume: 145
  start-page: 963
  year: 2020
  ident: 10.1016/j.tsep.2023.101997_b0205
  article-title: Mathematical and neural network modeling for predicting and analyzing of nanofluid-nano PCM photovoltaic thermal systems performance
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.06.099
– volume: 35
  start-page: 438
  issue: 4
  year: 2021
  ident: 10.1016/j.tsep.2023.101997_b0125
  article-title: An exergy analysis of a concentric tube heat exchanger using hBN-water nanofluids
  publication-title: Int. J. Exergy
  doi: 10.1504/IJEX.2021.117050
– volume: 31
  start-page: 2460
  issue: 15
  year: 2006
  ident: 10.1016/j.tsep.2023.101997_b0045
  article-title: Performance evaluation of hybrid PV/thermal water/air heating system: a parametric study
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2005.12.002
SSID ssj0002584398
Score 2.4295077
Snippet [Display omitted] •hBN/water nanofluid based PVT collectors has been investigated for the first time.•hBN can be utilized as an alternative nanoparticle to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101997
SubjectTerms Artificial neural network
CFD simulation
Energy and exergy analysis
hBN/water nanofluid
Numerical simulation
Photovoltaic thermal (PVT)
Title Numerical investigation and ANN modeling of performance for hexagonal boron Nitride-water nanofluid PVT collectors
URI https://dx.doi.org/10.1016/j.tsep.2023.101997
Volume 43
WOSCitedRecordID wos001037512900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2451-9049
  databaseCode: AIEXJ
  dateStart: 20170301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002584398
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5wwELa2mx7aQ9SnmqatfGhOiIg3-LhZbfomOWyq7QkZbLKbsmzEQrrt_-z_6Ribx6Zt1Bx6AWSZATEfZhh_8xmh176ZpDSITZ1aJNVh9DN0QlkKb3xqxjH3HM-tC4U_-mEYzGbkdDD42dTCXGV-ngebDbn8r66GNnC2KJ29hbtbo9AAx-B02ILbYftPjg8rOQkjxDRaDQ3FOR6FoVz7puE698oGBN9wzjf0vM4NxkLZAHBSFgvG9W9UaCnmNF-lWbVg2unnqSYQVKf81_0AF2AH9lShpSpG4J3moeSDNawPkQYQM_VH4-9y95VmNKnD2ZNi3uH2gwh5j8xM7uq5fb_-ZtJENmmf-HzZlXKfZMvqYOwekGPR62xZlUln7I281A-uCApfqrxaa5OlYgGrDIhlt_w7NVBajitoJlL6tBnVHbs3LMO4QyQN-LcvhkxeXByWay7kSy37sOu8Lc997bPZkhkbntxFJGxEwkYkbdxBO5bvkmCIdkbvJrP3bfLPgrDPrtdpbu9dFXRJ7uH1m_lz0NQLhKYP0K76g8EjibyHaMDzR-h-T9fyMSpaDOItDGJAAwYM4gaDeJXiHgYxHOAWg7jGIN7CIG4xiAGDuMPgE3R2PJmO3-pqcQ89sQ2j1EnsMSrSbTTmRpD6nBtWymODEsIJswlzHYvHzIEGFjgmZR4nSeq4vp-aNoWf7KdomK9y_gxhJ2CMeCJSdhLHJQa1_YC7DHrZSUDiYA-ZzdOLEqV8LxZgyaK_u24Pae05l1L35cbebuOUSL1fMiKNAGY3nPf8VlfZR_c6-L9Aw7Ko-Et0N7kqF-vilcLYLymtuYc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+and+ANN+modeling+of+performance+for+hexagonal+boron+Nitride-water+nanofluid+PVT+collectors&rft.jtitle=Thermal+science+and+engineering+progress&rft.au=B%C3%BCy%C3%BCkalaca%2C+Orhan&rft.au=K%C4%B1l%C4%B1%C3%A7%2C+Hac%C4%B1+Mehmet&rft.au=Olmu%C5%9F%2C+Umutcan&rft.au=G%C3%BCzelel%2C+Yunus+Emre&rft.date=2023-08-01&rft.issn=2451-9049&rft.volume=43&rft.spage=101997&rft_id=info:doi/10.1016%2Fj.tsep.2023.101997&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tsep_2023_101997
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-9049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-9049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-9049&client=summon