Projected fuzzy c-means clustering algorithm with instance penalty

At present, high-dimensional data clustering has become a vital research field in machine learning. Traditional clustering algorithms cannot perform well on high-dimensional data, where the clustering task is usually divided into two stages: dimensionality reduction first and clustering later. In ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 255; S. 124563
Hauptverfasser: Wang, Jikui, Wu, Yiwen, Huang, Xueyan, Zhang, Cuihong, Nie, Feiping
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.12.2024
Schlagworte:
ISSN:0957-4174
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract At present, high-dimensional data clustering has become a vital research field in machine learning. Traditional clustering algorithms cannot perform well on high-dimensional data, where the clustering task is usually divided into two stages: dimensionality reduction first and clustering later. In general, the existing high-dimensional clustering methods usually have the following shortcomings: (1) the two-stage strategy splits the connection between clustering and dimensionality reduction; (2) these algorithms do not consider the impact of anomalous instances in high-dimensional data on clustering performance. Therefore, to address these problems, a projected fuzzy c-means clustering algorithm with instance penalty (PCIP) is proposed. Firstly, we construct an instance penalty matrix and assign an instance penalty coefficient to each sample. Secondly, a model for clustering high-dimensional data is constructed by integrating fuzzy c-means clustering (FCM) and principal component analysis (PCA). The proposed model can perform dimensionality reduction and clustering simultaneously. In addition, the time complexity of the proposed algorithm is linearly related to the number of samples n, which can efficiently deal with large data sets. The proposed PCIP algorithm is verified by experiments using clustering accuracy and normalized mutual information (NMI) as evaluation metrics. The experimental results on 10 image datasets show that the average accuracy and average NMI of the PCIP algorithm are improved by 0.0375 and 0.0275, respectively, compared to the second-ranked algorithm. •The proposed PCIP accomplishes both dimensionality reduction and clustering.•The instance penalty matrix is used to identify and handle the abnormal samples.•We propose an iterative algorithm to solve PCIP and its convergence is proved.•The time complexity of PCIP is linearly related to the number of samples.•Extensive experiments have demonstrated the effectiveness of PCIP.
AbstractList At present, high-dimensional data clustering has become a vital research field in machine learning. Traditional clustering algorithms cannot perform well on high-dimensional data, where the clustering task is usually divided into two stages: dimensionality reduction first and clustering later. In general, the existing high-dimensional clustering methods usually have the following shortcomings: (1) the two-stage strategy splits the connection between clustering and dimensionality reduction; (2) these algorithms do not consider the impact of anomalous instances in high-dimensional data on clustering performance. Therefore, to address these problems, a projected fuzzy c-means clustering algorithm with instance penalty (PCIP) is proposed. Firstly, we construct an instance penalty matrix and assign an instance penalty coefficient to each sample. Secondly, a model for clustering high-dimensional data is constructed by integrating fuzzy c-means clustering (FCM) and principal component analysis (PCA). The proposed model can perform dimensionality reduction and clustering simultaneously. In addition, the time complexity of the proposed algorithm is linearly related to the number of samples n, which can efficiently deal with large data sets. The proposed PCIP algorithm is verified by experiments using clustering accuracy and normalized mutual information (NMI) as evaluation metrics. The experimental results on 10 image datasets show that the average accuracy and average NMI of the PCIP algorithm are improved by 0.0375 and 0.0275, respectively, compared to the second-ranked algorithm. •The proposed PCIP accomplishes both dimensionality reduction and clustering.•The instance penalty matrix is used to identify and handle the abnormal samples.•We propose an iterative algorithm to solve PCIP and its convergence is proved.•The time complexity of PCIP is linearly related to the number of samples.•Extensive experiments have demonstrated the effectiveness of PCIP.
ArticleNumber 124563
Author Huang, Xueyan
Zhang, Cuihong
Wu, Yiwen
Wang, Jikui
Nie, Feiping
Author_xml – sequence: 1
  givenname: Jikui
  orcidid: 0000-0001-5926-7007
  surname: Wang
  fullname: Wang, Jikui
  email: wjkweb@163.com
  organization: School of Information Engineering and Artificial Intelligence, Lanzhou University of Finance and Economics, Lanzhou 730000, Gansu, China
– sequence: 2
  givenname: Yiwen
  surname: Wu
  fullname: Wu, Yiwen
  email: 2516482760@qq.com
  organization: School of Economics and Management, Dalian University of Technology, Dalian 116024, China
– sequence: 3
  givenname: Xueyan
  surname: Huang
  fullname: Huang, Xueyan
  email: 838815750@qq.com
  organization: School of Information Engineering and Artificial Intelligence, Lanzhou University of Finance and Economics, Lanzhou 730000, Gansu, China
– sequence: 4
  givenname: Cuihong
  surname: Zhang
  fullname: Zhang, Cuihong
  email: 1942819811@qq.com
  organization: School of Information Engineering and Artificial Intelligence, Lanzhou University of Finance and Economics, Lanzhou 730000, Gansu, China
– sequence: 5
  givenname: Feiping
  surname: Nie
  fullname: Nie, Feiping
  email: feipingnie@gmail.com
  organization: School of Artificial Intelligence, Optics and ElectroNics(iOPEN), Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China
BookMark eNp90L1OwzAQwHEPRaItvACTXyDBH3HsSCxQ8SVVggFmy7UvxVHqVLZL1T49qcrEwHI3_U_63QxNwhAAoRtKSkpofduVkPamZIRVJWWVqPkETUkjZFFRWV2iWUodIVQSIqfo4T0OHdgMDre74_GAbbEBExK2_S5liD6ssenXQ_T5a4P348Q-pGyCBbyFYPp8uEIXrekTXP_uOfp8evxYvBTLt-fXxf2ysJyQXDQKGrZquTRONEQI5RRQV3NQzLW8NtxZJaWijLGVpKpVXKyMq52pBAVZWT5H7HzXxiGlCK3eRr8x8aAp0Se57vRJrk9yfZaPkfoTWZ9N9kPI0fj-__TunMKI-vYQdbIeRrjzcfyYdoP_L_8BqmJ5Rg
CitedBy_id crossref_primary_10_1109_LSP_2025_3582536
crossref_primary_10_1109_TFUZZ_2025_3567501
Cites_doi 10.1109/43.159993
10.1109/TMM.2021.3139217
10.1109/TKDE.2019.2961076
10.1016/j.patcog.2020.107748
10.1016/j.eswa.2022.116743
10.1109/CVPR.2013.448
10.1016/j.ins.2022.05.097
10.1016/S0262-8856(97)00070-X
10.1145/2623330.2623726
10.1145/3828.3835
10.1109/TIP.2015.2475625
10.1109/TNNLS.2021.3071030
10.1016/j.patcog.2004.12.003
10.1016/j.patcog.2009.12.022
10.1016/j.knosys.2021.107443
10.1080/00220973.1993.9943832
10.1016/0098-3004(93)90090-R
10.1016/j.patcog.2019.107023
10.1145/276698.276876
10.1126/science.290.5500.2319
10.1016/j.patcog.2019.03.024
10.1109/TNN.2008.2005582
10.2333/bhmk.41.115
10.1016/j.patcog.2011.08.015
10.1016/S0167-9473(00)00064-5
10.1109/TPAMI.2005.55
10.1016/j.eswa.2020.113352
10.1016/j.eswa.2011.09.033
10.1007/s11222-007-9033-z
10.1007/s00357-020-09373-2
10.1016/0098-3004(84)90020-7
10.1016/j.patcog.2009.05.005
10.1016/j.neucom.2015.07.128
10.1080/01621459.1937.10503522
10.1007/s10489-022-03703-0
10.1007/s12065-022-00734-x
10.1109/TNNLS.2019.2909686
10.1109/TPAMI.2004.1261097
10.1038/nbt.4314
10.1016/j.eswa.2016.09.027
10.1016/j.asoc.2016.12.049
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2024.124563
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2024_124563
S0957417424014301
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-98e92bf37ad590558d8e1d63e82df36a3dc87781222b718f835bad6da451e74c3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001263552300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 03:07:40 EST 2025
Tue Nov 18 20:35:37 EST 2025
Sat Nov 16 16:00:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dimensionality reduction
Fuzzy c-means clustering
Instance penalty
Principal component analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-98e92bf37ad590558d8e1d63e82df36a3dc87781222b718f835bad6da451e74c3
ORCID 0000-0001-5926-7007
ParticipantIDs crossref_primary_10_1016_j_eswa_2024_124563
crossref_citationtrail_10_1016_j_eswa_2024_124563
elsevier_sciencedirect_doi_10_1016_j_eswa_2024_124563
PublicationCentury 2000
PublicationDate 2024-12-01
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yang, Zhang, Frangi, Yang (b44) 2004; 26
De Soete, Carroll (b10) 1994
Shen, Liu, Bao, Pan, Zha, Fan (b31) 2020; 98
Xiong, Swamy, Ahmad (b41) 2005; 38
Zhang, Qiao, Chen (b47) 2010; 43
Zimmerman, Zumbo (b50) 1993; 62
Qiao, Chen, Tan (b29) 2010; 43
Wang, Yang, Liu, Li, Yi, Nie (b39) 2022; 607
Azzouzi, Hjouji, EL-Mekkaoui, El Khalfi (b3) 2023; 53
Nie, F., Wang, X., & Huang, H. (2014). Clustering and projected clustering with adaptive neighbors. In
Jiang, B., Ding, C., Luo, B., & Tang, J. (2013). Graph-Laplacian PCA: Closed-form solution and robustness. In
Azzouzi, Hjouji, EL-Mekkaoui, EL Khalfi (b2) 2023; 16
Hou, Zhang, Xu, Zhang, Li (b19) 2009; 20
He (b16) 2003; 16
Wang, Wu, Xu, Zeng, Xie (b38) 2021; 232
Bezdek, Ehrlich, Full (b6) 1984; 10
(pp. 604–613).
Yamamoto, Hwang (b43) 2014; 41
Scott, Walpole, Myers (b30) 1973; 57
Indyk, P., & Motwani, R. (1998). Approximate nearest neighbors: Towards removing the curse of dimensionality. In
Chan, Jia, Gao, Lu, Zeng, Ma (b9) 2015; 24
Brown, Mues (b7) 2012; 39
Jiang, Fu, Wen, Hao, Hong (b22) 2016; 187
He, Yan, Hu, Niyogi, Zhang (b18) 2005; 27
Vichi, Kiers (b35) 2001; 37
Liang, Tang, Wu, Li, Zhang (b23) 2023; 25
Nie, Ding, Luo, Huang (b26) 2010; 6322
Hammouche, Attia, Akhrouf, Akhtar (b15) 2022
Hagen, Kahng (b14) 1992; 11
Liu, Ting, Zhihua (b24) 2008
Zhong, Enke (b48) 2017; 67
He, Cai, Yan, Zhang (b17) 2005; vol. 2
Phillips, Wechsler, Huang, Rauss (b28) 1998; 16
Thrun, Ultsch (b34) 2021; 38
Friedman (b13) 1937; 32
Sleator, Tarjan (b32) 1985; 32
Wang, Zhao, Liu, Yang, Liu, Chen (b40) 2020; 151
Becht, McInnes, Healy, Dutertre, Kwok, Ng, Ginhoux, Newell (b4) 2019; 37
Yi, Wang, Zhou, Fang, Kong, Lu (b45) 2019; 92
Askari, Montazerin, Zarandi (b1) 2017; 53
Tenenbaum, Silva, Langford (b33) 2000; 290
Von Luxburg (b36) 2007; 17
Wang, Wang, Nie, Li (b37) 2021; 33
Xu, Yu, Cao, Chen, You (b42) 2019; 33
(pp. 977–986).
(pp. 3492–3498).
Belkin, Niyogi (b5) 2001; 14
Donoho (b11) 2000
Maćkiewicz, Ratajczak (b25) 1993; 19
Zhou, Pedrycz, Yue, Gao, Lai, Wan (b49) 2021; 113
Fan, Chow (b12) 2019; 31
Chakraborty, Paul, Das (b8) 2021; vol. 35
Zhang, Chen, Qiao (b46) 2012; 45
Azzouzi (10.1016/j.eswa.2024.124563_b2) 2023; 16
Askari (10.1016/j.eswa.2024.124563_b1) 2017; 53
Belkin (10.1016/j.eswa.2024.124563_b5) 2001; 14
Yamamoto (10.1016/j.eswa.2024.124563_b43) 2014; 41
10.1016/j.eswa.2024.124563_b27
Phillips (10.1016/j.eswa.2024.124563_b28) 1998; 16
10.1016/j.eswa.2024.124563_b21
Scott (10.1016/j.eswa.2024.124563_b30) 1973; 57
10.1016/j.eswa.2024.124563_b20
Wang (10.1016/j.eswa.2024.124563_b40) 2020; 151
Nie (10.1016/j.eswa.2024.124563_b26) 2010; 6322
Xu (10.1016/j.eswa.2024.124563_b42) 2019; 33
Hammouche (10.1016/j.eswa.2024.124563_b15) 2022
Becht (10.1016/j.eswa.2024.124563_b4) 2019; 37
Thrun (10.1016/j.eswa.2024.124563_b34) 2021; 38
He (10.1016/j.eswa.2024.124563_b17) 2005; vol. 2
Zimmerman (10.1016/j.eswa.2024.124563_b50) 1993; 62
Hagen (10.1016/j.eswa.2024.124563_b14) 1992; 11
Sleator (10.1016/j.eswa.2024.124563_b32) 1985; 32
Qiao (10.1016/j.eswa.2024.124563_b29) 2010; 43
Yang (10.1016/j.eswa.2024.124563_b44) 2004; 26
He (10.1016/j.eswa.2024.124563_b18) 2005; 27
Zhong (10.1016/j.eswa.2024.124563_b48) 2017; 67
Hou (10.1016/j.eswa.2024.124563_b19) 2009; 20
Shen (10.1016/j.eswa.2024.124563_b31) 2020; 98
Liu (10.1016/j.eswa.2024.124563_b24) 2008
He (10.1016/j.eswa.2024.124563_b16) 2003; 16
Fan (10.1016/j.eswa.2024.124563_b12) 2019; 31
Liang (10.1016/j.eswa.2024.124563_b23) 2023; 25
Maćkiewicz (10.1016/j.eswa.2024.124563_b25) 1993; 19
De Soete (10.1016/j.eswa.2024.124563_b10) 1994
Zhang (10.1016/j.eswa.2024.124563_b47) 2010; 43
Brown (10.1016/j.eswa.2024.124563_b7) 2012; 39
Von Luxburg (10.1016/j.eswa.2024.124563_b36) 2007; 17
Chan (10.1016/j.eswa.2024.124563_b9) 2015; 24
Donoho (10.1016/j.eswa.2024.124563_b11) 2000
Azzouzi (10.1016/j.eswa.2024.124563_b3) 2023; 53
Jiang (10.1016/j.eswa.2024.124563_b22) 2016; 187
Bezdek (10.1016/j.eswa.2024.124563_b6) 1984; 10
Yi (10.1016/j.eswa.2024.124563_b45) 2019; 92
Zhou (10.1016/j.eswa.2024.124563_b49) 2021; 113
Wang (10.1016/j.eswa.2024.124563_b38) 2021; 232
Wang (10.1016/j.eswa.2024.124563_b39) 2022; 607
Zhang (10.1016/j.eswa.2024.124563_b46) 2012; 45
Friedman (10.1016/j.eswa.2024.124563_b13) 1937; 32
Xiong (10.1016/j.eswa.2024.124563_b41) 2005; 38
Chakraborty (10.1016/j.eswa.2024.124563_b8) 2021; vol. 35
Wang (10.1016/j.eswa.2024.124563_b37) 2021; 33
Vichi (10.1016/j.eswa.2024.124563_b35) 2001; 37
Tenenbaum (10.1016/j.eswa.2024.124563_b33) 2000; 290
References_xml – reference: (pp. 604–613).
– year: 2022
  ident: b15
  article-title: Gabor filter bank with deep autoencoder based face recognition system
  publication-title: Expert Systems with Applications
– volume: 57
  start-page: 148
  year: 1973
  ident: b30
  article-title: Probability and statistics for engineers and scientists
  publication-title: The Mathematical Gazette
– volume: 113
  year: 2021
  ident: b49
  article-title: Projected fuzzy C-means clustering with locality preservation
  publication-title: Pattern Recognition
– volume: 26
  start-page: 131
  year: 2004
  end-page: 137
  ident: b44
  article-title: Two-dimensional PCA: A new approach to appearance-based face representation and recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 43
  start-page: 1993
  year: 2010
  end-page: 2002
  ident: b47
  article-title: Graph-optimized locality preserving projections
  publication-title: Pattern Recognition
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: b6
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Computers & Geosciences
– volume: 31
  start-page: 749
  year: 2019
  end-page: 761
  ident: b12
  article-title: Exactly robust kernel principal component analysis
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 33
  start-page: 2847
  year: 2019
  end-page: 2862
  ident: b42
  article-title: Adaptive classifier ensemble method based on spatial perception for high-dimensional data classification
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 92
  start-page: 258
  year: 2019
  end-page: 273
  ident: b45
  article-title: Joint graph optimization and projection learning for dimensionality reduction
  publication-title: Pattern Recognition
– volume: 16
  start-page: 186
  year: 2003
  end-page: 197
  ident: b16
  article-title: Locality preserving projections
  publication-title: Advances in Neural Information Processing Systems
– volume: 53
  start-page: 262
  year: 2017
  end-page: 283
  ident: b1
  article-title: Generalized possibilistic fuzzy c-means with novel cluster validity indices for clustering noisy data
  publication-title: Applied Soft Computing
– volume: 19
  start-page: 303
  year: 1993
  end-page: 342
  ident: b25
  article-title: Principal components analysis (PCA)
  publication-title: Computational Geosciences
– volume: 232
  year: 2021
  ident: b38
  article-title: Joint image clustering and feature selection with auto-adjoined learning for high-dimensional data
  publication-title: Knowledge-Based Systems
– start-page: 413
  year: 2008
  end-page: 422
  ident: b24
  article-title: Isolation forest
  publication-title: 2008 eighth ieee international conference on data mining
– volume: 11
  start-page: 1074
  year: 1992
  end-page: 1085
  ident: b14
  article-title: New spectral methods for ratio cut partitioning and clustering
  publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
– volume: vol. 2
  start-page: 1208
  year: 2005
  end-page: 1213
  ident: b17
  article-title: Neighborhood preserving embedding
  publication-title: Tenth IEEE international conference on computer vision (iCCV’05) volume 1
– volume: 187
  start-page: 109
  year: 2016
  end-page: 118
  ident: b22
  article-title: Dimensionality reduction on anchorgraph with an efficient locality preserving projection
  publication-title: Neurocomputing
– start-page: 1
  year: 2000
  end-page: 32
  ident: b11
  article-title: High-dimensional data analysis: The curses and blessings of dimensionality
  publication-title: AMS Math Challenges Lecture
– volume: 290
  start-page: 2319
  year: 2000
  end-page: 2323
  ident: b33
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
– reference: Jiang, B., Ding, C., Luo, B., & Tang, J. (2013). Graph-Laplacian PCA: Closed-form solution and robustness. In
– volume: 25
  start-page: 1085
  year: 2023
  end-page: 1097
  ident: b23
  article-title: Robust image hashing with isomap and saliency map for copy detection
  publication-title: IEEE Transactions on Multimedia
– volume: 20
  start-page: 300
  year: 2009
  end-page: 315
  ident: b19
  article-title: Nonlinear dimensionality reduction by locally linear inlaying
  publication-title: IEEE Transactions on Neural Networks
– volume: 16
  start-page: 1237
  year: 2023
  end-page: 1258
  ident: b2
  article-title: An improved image clustering algorithm based on Kernel method and tchebychev orthogonal moments
  publication-title: Evolutionary Intelligence
– volume: 67
  start-page: 126
  year: 2017
  end-page: 139
  ident: b48
  article-title: Forecasting daily stock market return using dimensionality reduction
  publication-title: Expert Systems with Applications
– volume: 53
  start-page: 4327
  year: 2023
  end-page: 4349
  ident: b3
  article-title: A novel efficient clustering algorithm based on possibilistic approach and kernel technique for image clustering problems
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
– volume: 33
  start-page: 5568
  year: 2021
  end-page: 5578
  ident: b37
  article-title: A novel formulation of trace ratio linear discriminant analysis
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 32
  start-page: 652
  year: 1985
  end-page: 686
  ident: b32
  article-title: Self-adjusting binary search trees
  publication-title: Journal of the ACM
– volume: 37
  start-page: 38
  year: 2019
  end-page: 44
  ident: b4
  article-title: Dimensionality reduction for visualizing single-cell data using UMAP
  publication-title: Nature Biotechnology
– volume: 43
  start-page: 331
  year: 2010
  end-page: 341
  ident: b29
  article-title: Sparsity preserving projections with applications to face recognition
  publication-title: Pattern Recognition
– volume: vol. 35
  start-page: 6930
  year: 2021
  end-page: 6938
  ident: b8
  article-title: Automated clustering of high-dimensional data with a feature weighted mean shift algorithm
  publication-title: Proceedings of the AAAI conference on artificial intelligence
– volume: 37
  start-page: 49
  year: 2001
  end-page: 64
  ident: b35
  article-title: Factorial k-means analysis for two-way data
  publication-title: Computational Statistics & Data Analysis
– reference: Nie, F., Wang, X., & Huang, H. (2014). Clustering and projected clustering with adaptive neighbors. In
– reference: Indyk, P., & Motwani, R. (1998). Approximate nearest neighbors: Towards removing the curse of dimensionality. In
– volume: 32
  start-page: 675
  year: 1937
  end-page: 701
  ident: b13
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: Journal of the American Statistical Association
– volume: 14
  start-page: 585
  year: 2001
  end-page: 591
  ident: b5
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: Advances in Neural Information Processing Systems
– volume: 16
  start-page: 295
  year: 1998
  end-page: 306
  ident: b28
  article-title: The FERET database and evaluation procedure for face-recognition algorithms
  publication-title: Image and Vision Computing
– volume: 38
  start-page: 280
  year: 2021
  end-page: 312
  ident: b34
  article-title: Using projection-based clustering to find distance-and density-based clusters in high-dimensional data
  publication-title: Journal of Classification
– volume: 45
  start-page: 1205
  year: 2012
  end-page: 1210
  ident: b46
  article-title: Graph optimization for dimensionality reduction with sparsity constraints
  publication-title: Pattern Recognition
– reference: (pp. 977–986).
– volume: 38
  start-page: 1121
  year: 2005
  end-page: 1124
  ident: b41
  article-title: Two-dimensional FLD for face recognition
  publication-title: Pattern Recognition
– volume: 98
  year: 2020
  ident: b31
  article-title: A generalized least-squares approach regularized with graph embedding for dimensionality reduction
  publication-title: Pattern Recognition
– volume: 39
  start-page: 3446
  year: 2012
  end-page: 3453
  ident: b7
  article-title: An experimental comparison of classification algorithms for imbalanced credit scoring data sets
  publication-title: Expert Systems with Applications
– volume: 41
  start-page: 115
  year: 2014
  end-page: 129
  ident: b43
  article-title: A general formulation of cluster analysis with dimension reduction and subspace separation
  publication-title: Behaviormetrika
– volume: 6322
  start-page: 451
  year: 2010
  end-page: 466
  ident: b26
  article-title: Improved MinMax cut graph clustering with nonnegative relaxation
  publication-title: ECML/PKDD (2)
– volume: 62
  start-page: 75
  year: 1993
  end-page: 86
  ident: b50
  article-title: Relative power of the Wilcoxon test, the Friedman test, and repeated-measures ANOVA on ranks
  publication-title: The Journal of Experimental Education
– volume: 17
  start-page: 395
  year: 2007
  end-page: 416
  ident: b36
  article-title: A tutorial on spectral clustering
  publication-title: Statistics and Computing
– reference: (pp. 3492–3498).
– volume: 151
  year: 2020
  ident: b40
  article-title: Locality adaptive preserving projections for linear dimensionality reduction
  publication-title: Expert Systems with Applications
– volume: 24
  start-page: 5017
  year: 2015
  end-page: 5032
  ident: b9
  article-title: PCANet: A simple deep learning baseline for image classification?
  publication-title: IEEE Transactions on Image Processing
– volume: 607
  start-page: 553
  year: 2022
  end-page: 571
  ident: b39
  article-title: Projected fuzzy C-means with probabilistic neighbors
  publication-title: Information Sciences
– volume: 27
  start-page: 328
  year: 2005
  end-page: 340
  ident: b18
  article-title: Face recognition using laplacianfaces
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 212
  year: 1994
  end-page: 219
  ident: b10
  article-title: K-means clustering in a low-dimensional euclidean space
  publication-title: New approaches in classification and data analysis
– volume: 11
  start-page: 1074
  issue: 9
  year: 1992
  ident: 10.1016/j.eswa.2024.124563_b14
  article-title: New spectral methods for ratio cut partitioning and clustering
  publication-title: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  doi: 10.1109/43.159993
– volume: 25
  start-page: 1085
  year: 2023
  ident: 10.1016/j.eswa.2024.124563_b23
  article-title: Robust image hashing with isomap and saliency map for copy detection
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2021.3139217
– volume: 33
  start-page: 2847
  issue: 7
  year: 2019
  ident: 10.1016/j.eswa.2024.124563_b42
  article-title: Adaptive classifier ensemble method based on spatial perception for high-dimensional data classification
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2019.2961076
– volume: 113
  year: 2021
  ident: 10.1016/j.eswa.2024.124563_b49
  article-title: Projected fuzzy C-means clustering with locality preservation
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2020.107748
– year: 2022
  ident: 10.1016/j.eswa.2024.124563_b15
  article-title: Gabor filter bank with deep autoencoder based face recognition system
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.116743
– ident: 10.1016/j.eswa.2024.124563_b21
  doi: 10.1109/CVPR.2013.448
– volume: 607
  start-page: 553
  year: 2022
  ident: 10.1016/j.eswa.2024.124563_b39
  article-title: Projected fuzzy C-means with probabilistic neighbors
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2022.05.097
– volume: 16
  start-page: 295
  issue: 5
  year: 1998
  ident: 10.1016/j.eswa.2024.124563_b28
  article-title: The FERET database and evaluation procedure for face-recognition algorithms
  publication-title: Image and Vision Computing
  doi: 10.1016/S0262-8856(97)00070-X
– ident: 10.1016/j.eswa.2024.124563_b27
  doi: 10.1145/2623330.2623726
– volume: 32
  start-page: 652
  issue: 3
  year: 1985
  ident: 10.1016/j.eswa.2024.124563_b32
  article-title: Self-adjusting binary search trees
  publication-title: Journal of the ACM
  doi: 10.1145/3828.3835
– volume: 24
  start-page: 5017
  issue: 12
  year: 2015
  ident: 10.1016/j.eswa.2024.124563_b9
  article-title: PCANet: A simple deep learning baseline for image classification?
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2015.2475625
– volume: 33
  start-page: 5568
  issue: 10
  year: 2021
  ident: 10.1016/j.eswa.2024.124563_b37
  article-title: A novel formulation of trace ratio linear discriminant analysis
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2021.3071030
– volume: 38
  start-page: 1121
  issue: 7
  year: 2005
  ident: 10.1016/j.eswa.2024.124563_b41
  article-title: Two-dimensional FLD for face recognition
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2004.12.003
– volume: 43
  start-page: 1993
  issue: 6
  year: 2010
  ident: 10.1016/j.eswa.2024.124563_b47
  article-title: Graph-optimized locality preserving projections
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2009.12.022
– volume: 232
  year: 2021
  ident: 10.1016/j.eswa.2024.124563_b38
  article-title: Joint image clustering and feature selection with auto-adjoined learning for high-dimensional data
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107443
– volume: 6322
  start-page: 451
  year: 2010
  ident: 10.1016/j.eswa.2024.124563_b26
  article-title: Improved MinMax cut graph clustering with nonnegative relaxation
  publication-title: ECML/PKDD (2)
– volume: 62
  start-page: 75
  issue: 1
  year: 1993
  ident: 10.1016/j.eswa.2024.124563_b50
  article-title: Relative power of the Wilcoxon test, the Friedman test, and repeated-measures ANOVA on ranks
  publication-title: The Journal of Experimental Education
  doi: 10.1080/00220973.1993.9943832
– volume: 19
  start-page: 303
  issue: 3
  year: 1993
  ident: 10.1016/j.eswa.2024.124563_b25
  article-title: Principal components analysis (PCA)
  publication-title: Computational Geosciences
  doi: 10.1016/0098-3004(93)90090-R
– volume: 98
  year: 2020
  ident: 10.1016/j.eswa.2024.124563_b31
  article-title: A generalized least-squares approach regularized with graph embedding for dimensionality reduction
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2019.107023
– ident: 10.1016/j.eswa.2024.124563_b20
  doi: 10.1145/276698.276876
– volume: vol. 2
  start-page: 1208
  year: 2005
  ident: 10.1016/j.eswa.2024.124563_b17
  article-title: Neighborhood preserving embedding
– volume: 290
  start-page: 2319
  issue: 5500
  year: 2000
  ident: 10.1016/j.eswa.2024.124563_b33
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– volume: 92
  start-page: 258
  year: 2019
  ident: 10.1016/j.eswa.2024.124563_b45
  article-title: Joint graph optimization and projection learning for dimensionality reduction
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2019.03.024
– volume: 20
  start-page: 300
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2024.124563_b19
  article-title: Nonlinear dimensionality reduction by locally linear inlaying
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2008.2005582
– volume: 41
  start-page: 115
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2024.124563_b43
  article-title: A general formulation of cluster analysis with dimension reduction and subspace separation
  publication-title: Behaviormetrika
  doi: 10.2333/bhmk.41.115
– volume: 45
  start-page: 1205
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2024.124563_b46
  article-title: Graph optimization for dimensionality reduction with sparsity constraints
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2011.08.015
– start-page: 212
  year: 1994
  ident: 10.1016/j.eswa.2024.124563_b10
  article-title: K-means clustering in a low-dimensional euclidean space
– volume: 37
  start-page: 49
  issue: 1
  year: 2001
  ident: 10.1016/j.eswa.2024.124563_b35
  article-title: Factorial k-means analysis for two-way data
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/S0167-9473(00)00064-5
– volume: 27
  start-page: 328
  issue: 3
  year: 2005
  ident: 10.1016/j.eswa.2024.124563_b18
  article-title: Face recognition using laplacianfaces
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2005.55
– volume: vol. 35
  start-page: 6930
  year: 2021
  ident: 10.1016/j.eswa.2024.124563_b8
  article-title: Automated clustering of high-dimensional data with a feature weighted mean shift algorithm
– volume: 151
  year: 2020
  ident: 10.1016/j.eswa.2024.124563_b40
  article-title: Locality adaptive preserving projections for linear dimensionality reduction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113352
– volume: 39
  start-page: 3446
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2024.124563_b7
  article-title: An experimental comparison of classification algorithms for imbalanced credit scoring data sets
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.09.033
– volume: 17
  start-page: 395
  year: 2007
  ident: 10.1016/j.eswa.2024.124563_b36
  article-title: A tutorial on spectral clustering
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-007-9033-z
– volume: 38
  start-page: 280
  year: 2021
  ident: 10.1016/j.eswa.2024.124563_b34
  article-title: Using projection-based clustering to find distance-and density-based clusters in high-dimensional data
  publication-title: Journal of Classification
  doi: 10.1007/s00357-020-09373-2
– volume: 10
  start-page: 191
  issue: 2–3
  year: 1984
  ident: 10.1016/j.eswa.2024.124563_b6
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Computers & Geosciences
  doi: 10.1016/0098-3004(84)90020-7
– volume: 16
  start-page: 186
  issue: 1
  year: 2003
  ident: 10.1016/j.eswa.2024.124563_b16
  article-title: Locality preserving projections
  publication-title: Advances in Neural Information Processing Systems
– volume: 43
  start-page: 331
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2024.124563_b29
  article-title: Sparsity preserving projections with applications to face recognition
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2009.05.005
– volume: 187
  start-page: 109
  year: 2016
  ident: 10.1016/j.eswa.2024.124563_b22
  article-title: Dimensionality reduction on anchorgraph with an efficient locality preserving projection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.128
– volume: 32
  start-page: 675
  issue: 200
  year: 1937
  ident: 10.1016/j.eswa.2024.124563_b13
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1937.10503522
– volume: 53
  start-page: 4327
  issue: 4
  year: 2023
  ident: 10.1016/j.eswa.2024.124563_b3
  article-title: A novel efficient clustering algorithm based on possibilistic approach and kernel technique for image clustering problems
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
  doi: 10.1007/s10489-022-03703-0
– volume: 16
  start-page: 1237
  issue: 4
  year: 2023
  ident: 10.1016/j.eswa.2024.124563_b2
  article-title: An improved image clustering algorithm based on Kernel method and tchebychev orthogonal moments
  publication-title: Evolutionary Intelligence
  doi: 10.1007/s12065-022-00734-x
– start-page: 1
  year: 2000
  ident: 10.1016/j.eswa.2024.124563_b11
  article-title: High-dimensional data analysis: The curses and blessings of dimensionality
  publication-title: AMS Math Challenges Lecture
– volume: 31
  start-page: 749
  issue: 3
  year: 2019
  ident: 10.1016/j.eswa.2024.124563_b12
  article-title: Exactly robust kernel principal component analysis
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2019.2909686
– start-page: 413
  year: 2008
  ident: 10.1016/j.eswa.2024.124563_b24
  article-title: Isolation forest
– volume: 57
  start-page: 148
  issue: 400
  year: 1973
  ident: 10.1016/j.eswa.2024.124563_b30
  article-title: Probability and statistics for engineers and scientists
  publication-title: The Mathematical Gazette
– volume: 14
  start-page: 585
  issue: 6
  year: 2001
  ident: 10.1016/j.eswa.2024.124563_b5
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: Advances in Neural Information Processing Systems
– volume: 26
  start-page: 131
  issue: 1
  year: 2004
  ident: 10.1016/j.eswa.2024.124563_b44
  article-title: Two-dimensional PCA: A new approach to appearance-based face representation and recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2004.1261097
– volume: 37
  start-page: 38
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2024.124563_b4
  article-title: Dimensionality reduction for visualizing single-cell data using UMAP
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.4314
– volume: 67
  start-page: 126
  year: 2017
  ident: 10.1016/j.eswa.2024.124563_b48
  article-title: Forecasting daily stock market return using dimensionality reduction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.09.027
– volume: 53
  start-page: 262
  year: 2017
  ident: 10.1016/j.eswa.2024.124563_b1
  article-title: Generalized possibilistic fuzzy c-means with novel cluster validity indices for clustering noisy data
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.12.049
SSID ssj0017007
Score 2.4870248
Snippet At present, high-dimensional data clustering has become a vital research field in machine learning. Traditional clustering algorithms cannot perform well on...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 124563
SubjectTerms Dimensionality reduction
Fuzzy c-means clustering
Instance penalty
Principal component analysis
Title Projected fuzzy c-means clustering algorithm with instance penalty
URI https://dx.doi.org/10.1016/j.eswa.2024.124563
Volume 255
WOSCitedRecordID wos001263552300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbQlgMXaHmIQkE-cFulip2H7WOpikqFqkoUaW-R7Tg0ZZtd7Sb08esZx45TCqoAiYu1smxnNZ8z_jKeB0LvjFKEy5xG2lQiAu3HIqVYBY2JDasqaUQfKPyJHR_z2Uyc-Bqb676cAGsafnUllv8VaugDsG3o7F_AHRaFDvgNoEMLsEP7R8CfONsKEMmqu7m5nurowsB5NNXzziZF6IMS518Xq7o9u3Bm2LqniPCCLw2s3v500dunQm59wuchFO7WpfdokPeuvfW3rg6dXa_h68sx3uyw8wNnnbked2awW-939dnCn6beGEHTO44dIUpmdElypkYWpcRV4xm0LnXZeX_R4M6YcL5r1pc2LRRNd4m9m03G8yp4EX62C9t1gZUA7bNRfBuUZYJP0Mbex4PZUbhOYrGLmx_-iI-eco5-d5_0e4Zyi3WcbqLH_nMB7zmYt9AD0zxFT4ZSHNhr5mfofUAd96hjjzoeUccBdWxRxAPq2KP-HH35cHC6fxj58hiRTuK4jQQ3gqoqYbLMRJxlvOSGlHliOC2rJJdJqTljQOAoVcBAKuDaSpZ5KdOMGJbq5AWaNIvGvETYjq0yzRMjSEqV5FppQklKSskSLfNtRAaRFNrnjrclTObF4CR4XlgxFlaMhRPjNpqGOUuXOeXe0dkg6cJzP8fpCtgY98x79Y_zXqNH4_7dQZN21Zk36KH-3tbr1Vu_f34A5mWCEw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Projected+fuzzy+c-means+clustering+algorithm+with+instance+penalty&rft.jtitle=Expert+systems+with+applications&rft.au=Wang%2C+Jikui&rft.au=Wu%2C+Yiwen&rft.au=Huang%2C+Xueyan&rft.au=Zhang%2C+Cuihong&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=255&rft_id=info:doi/10.1016%2Fj.eswa.2024.124563&rft.externalDocID=S0957417424014301
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon