Reinforcement evolutionary learning using data mining algorithm with TSK-type fuzzy controllers

Reinforcement evolutionary learning using data mining algorithm (R-ELDMA) with a TSK-type fuzzy controller (TFC) for solving reinforcement control problems is proposed in this study. R-ELDMA aims to determine suitable rules in a TFC and identify suitable and unsuitable groups for chromosome selectio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 11; číslo 3; s. 3247 - 3259
Hlavní autoři: Hsu, Chi-Yao, Hsu, Yung-Chi, Lin, Sheng-Fuu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.04.2011
Témata:
ISSN:1568-4946, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Reinforcement evolutionary learning using data mining algorithm (R-ELDMA) with a TSK-type fuzzy controller (TFC) for solving reinforcement control problems is proposed in this study. R-ELDMA aims to determine suitable rules in a TFC and identify suitable and unsuitable groups for chromosome selection. To this end, the proposed R-ELDMA entails both structure and parameter learning. In structure learning, the proposed R-ELDMA adopts our previous research – the self-adaptive method (SAM) – to determine the suitability of TFC models with different fuzzy rules. In parameter learning, the data-mining based selection strategy (DSS), which proposes association rules, is used. More specifically, DSS not only determines suitable groups for chromosomes selection but also identifies unsuitable groups to be avoided selecting chromosomes to construct a TFC. Illustrative examples are presented to show the performance and applicability of the proposed R-ELDMA.
ISSN:1568-4946
1872-9681
DOI:10.1016/j.asoc.2010.12.027